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We study statistical inferences for a class of modulated stationary processes with time-dependent variances.
Due to non-stationarity and the large number of unknown parameters, existing methods for stationary, or lo-
cally stationary, time series are not applicable. Based on a self-normalization technique, we address several
inference problems, including a self-normalized central limit theorem, a self-normalized cumulative sum
test for the change-point problem, a long-run variance estimation through blockwise self-normalization,
and a self-normalization-based wild bootstrap. Monte Carlo simulation studies show that the proposed
self-normalization-based methods outperform stationarity-based alternatives. We demonstrate the proposed
methodology using two real data sets: annual mean precipitation rates in Seoul from 1771–2000, and quar-
terly U.S. Gross National Product growth rates from 1947–2002.

Keywords: change-point analysis; confidence interval; long-run variance; modulated stationary process;
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1. Introduction

In time series analysis, stationarity requires that dependence structure be sustained over time,
and thus we can borrow information from one time period to study model dynamics over another
period; see Fan and Yao [20] for nonparametric treatments and Lahiri [29] for various resampling
and block bootstrap methods. In practice, however, many climatic, economic and financial time
series are non-stationary and therefore challenging to analyze. First, since dependence structure
varies over time, information is more localized. Second, non-stationary processes often require
extra parameters to account for time-varying structure. One way to overcome these issues is
to impose certain local stationarity; see, for example, Dahlhaus [15] and Adak [1] for spectral
representation frameworks and Dahlhaus and Polonik [16] for a time domain approach.

In this article we study a class of modulated stationary processes (see Adak [1])

Xi = μ + σiei, i = 1, . . . , n, (1.1)

where ei are stationary time series with zero mean, and σi > 0 are unknown constants adjusting
for time-dependent variances. Then Xi oscillates around the constant mean μ, whereas its vari-
ance changes over time in an unknown manner. In the special case of σi ≡ 1, (1.1) reduces to
stationary case. If σi = s(i/n) for a Lipschitz continuous function s(t) on [0,1], then (1.1) is lo-
cally stationary. For the general non-stationary case (1.1), the number of unknown parameters is
larger than the number of observations, and it is infeasible to estimate σi . Due to non-stationarity
and the large number of unknown parameters, existing methods that are developed for (locally)
stationary processes are not applicable, and our main purpose is to develop new statistical infer-
ence techniques.
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First, we establish a uniform strong approximation result which can be used to derive a self-
normalized central limit theorem (CLT) for the sample mean X̄ of (1.1). For stationary case
σi ≡ 1, by Fan and Yao [20], under mild mixing conditions,

√
n(X̄ − μ) ⇒ N(0, τ 2), where τ 2 = γ0 + 2

∞∑
k=1

γk and γk = Cov(ei, ei+k). (1.2)

For the modulated stationary case (1.1), it is non-trivial whether
√

n(X̄ − μ) has a CLT without
imposing further assumptions on σi and the dependence structure of ei . Moreover, even when
the latter CLT exists, it is difficult to estimate the limiting variance due to the large number of
unknown parameters; see De Jong and Davidson [18] for related work assuming a near-epoch de-
pendent mixing framework. Zhao [41] studied confidence interval construction for μ in (1.1) by
assuming a block-wise asymptotically equal cumulative variance assumption. The latter assump-
tion is rather restrictive and essentially requires that block averages be asymptotically indepen-
dent and identically distributed (i.i.d.). In this article, we deal with the more general setting (1.1).
Under a strong invariance principle assumption, we establish a self-normalized CLT with the
self-normalizing constant adjusting for time-dependent non-stationarity. The obtained CLT is an
extension of the classical CLT for i.i.d. data or stationary time series to modulated stationary
processes. Furthermore, we extend the idea to linear combinations of means over different time
periods, which allows us to address inference regarding mean levels over multiple time periods.

Second, we study the wild bootstrap for modulated stationary processes. Since the seminal
work of Efron [19], a great deal of research has been done on the bootstrap under various set-
tings, ranging from bootstrapping for i.i.d. data in Efron [19], wild bootstrapping for indepen-
dent observations with possibly non-constant variances in Wu [39] and Liu [30], to various block
bootstrapping and resampling methods for stationary time series in Künsch [27], Politis and Ro-
mano [34], Bühlmann [12] and the monograph Lahiri [29]. With the established self-normalized
CLT, we propose a wild bootstrap procedure that is tailored to deal with modulated stationary
processes: the dependence is removed through a scaling factor, and the non-constant variance
structure of the original data is preserved in the wild bootstrap data-generating mechanism. Our
simulation study shows that the wild bootstrap method outperforms the widely used stationarity-
based block bootstrap.

Third, we address change-point analysis. The change-point problem has been an active area
of research; see Pettitt [32] for proportion changes in binary data, Horváth [25] for mean and
variance changes in Gaussian observations, Bai and Perron [8] for coefficient changes in linear
models, Aue et al. [6] for coefficient changes in polynomial regression with uncorrelated er-
rors, Aue et al. [7] for mean change in time series with stationary errors, Shao and Zhang [37]
for change-points for stationary time series and the monograph by Csörgő and Horváth [14] for
more discussion. Most of these works deal with stationary and/or independent data. Hansen [24]
studied tests for constancy of parameters in linear regression models with non-stationary regres-
sors and conditionally homoscedastic martingale difference errors. Here we consider

H0: Xi = μi + σiei,μ1 = · · · = μn, Ha : μ1 = · · · = μJ �= μJ+1 = · · · = μn, (1.3)

where J is an unknown change point. The aforementioned works mainly focused on detecting
changes in mean while the error variance is constant. On the other hand, researchers have also
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realized the importance of the variance/covariance structure in change point analysis. For exam-
ple, Inclán and Tiao [26] studied change in variance for independent data, and Aue et al. [5]
and Berkes, Gombay and Horváth [10] considered change in covariance for time series data.
To our knowledge, there has been almost no attempt to advance change point analysis under
the non-constant variances framework in (1.3). Andrews [4] studied change point problem un-
der near-epoch dependence structure that allows for non-stationary processes, but his Assump-
tion 1(c) on page 830 therein essentially implies that the process has constant variance. The
popular cumulative sum (CUSUM) test is developed for stationary time series and does not take
into account the time-dependent variances. Using the self-normalization idea, we propose a self-
normalized CUSUM test and a wild bootstrap method to obtain its critical value. Our empirical
studies show that the usual CUSUM tests tend to over-reject the null hypothesis in the presence
of non-constant variances. By contrast, the self-normalized CUSUM test yields size close to the
nominal level.

Fourth, we estimate the long-run variance τ 2 in (1.2). Long-run variance plays an essential role
in statistical inferences involving time series. Most works in the literature deal with stationary
processes through various block bootstrap and subsampling approaches; see Carlstein [13], Kün-
sch [27], Politis and Romano [34], Götze and Künsch [21] and the monograph Lahiri [29]. De
Jong and Davidson [18] established the consistency of kernel estimators of covariance matrices
under a near epoch dependent mixing condition. Recently, Müller [31] studied robust long-run
variance estimation for locally stationary process. For model (1.1), the error process {ei} is con-
taminated with unknown standard deviations {σi}, and we apply blockwise self-normalization to
remove non-stationarity, resulting in asymptotically stationary blocks.

Fifth, the proposed methods can be extended to deal with the linear regression model

Xi = Uiβ + σiei, (1.4)

where Ui = (ui,1, . . . , ui,p) are deterministic covariates, and β = (β1, . . . , βp)′ is the unknown
column vector of parameters. For p = 2, Hansen [23] established the asymptotic normality of the
least-squares estimate of the slope parameter under a fairly general framework of non-stationary
errors. While Hansen [23] assumed that the errors form a martingale difference array so that they
are uncorrelated, the framework in (1.4) is more general in that it allows for correlations. On the
other hand, Hansen [23] allowed the conditional volatilities to follow an autoregressive model,
hence introducing stochastic volatilities. Phillips, Sun and Jin [33] considered (1.4) for stationary
errors, and their approach is not applicable here due to the unknown non-constant variances σ 2

i .
In Section 2.6 we consider self-normalized CLT for the least-squares estimator of β in (1.4). In
the polynomial regression case ui,r = (i/n)r−1, Aue et al. [6] studied a likelihood-based test for
constancy of β in (1.4) for uncorrelated errors with constant variance. Due to the presence of
correlation and time-varying variances, it is more challenging to study the change point problem
for (1.4) and this is beyond the scope of this article.

The rest of this article is organized as follows. We present theoretical results in Section 2.
Sections 3–4 contain Monte Carlo studies and applications to two real data sets.
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2. Main results

For sequences {an} and {bn}, write an = O(bn), an = o(bn) and an � bn, respectively, if
|an/bn| < c1, an/bn → 0 and c2 < |an/bn| < c3, for some constants 0 < c1, c2, c3 < ∞. For
q > 0 and a random variable e, write e ∈ Lq if ‖e‖q := {E(|e|q)}1/q < ∞.

2.1. Uniform approximations for modulated stationary processes

In (1.1), assume without loss of generality that E(ei) = 0 and E(e2
i ) = 1 so that {ei} and {e2

i − 1}
are centered stationary processes. With the convention S0 = S∗

0 = 0, define

Si =
i∑

j=1

ej and S∗
i =

i∑
j=1

(e2
j − 1), i = 1,2, . . . . (2.1)

Assumption 2.1. There exist standard Brownian motions {Bt } and {B∗
t } such that

max
1≤i≤n

|Si − τBi | = oa.s.(�n) and max
1≤i≤n

|S∗
i − τ ∗B∗

i | = oa.s.(�n), (2.2)

where �n is the approximation error, τ 2 and τ ∗2 are the long-run variances of {ei} and {e2
i − 1},

respectively. Further assume τ 2 > 0 to avoid the degenerate case τ 2 = 0.

The uniform approximations in (2.2) are generally called strong invariance principle. The two
Brownian motions {Bt } and {B∗

t } may be defined on different probability spaces and hence are
not jointly distributed, which is not an issue because our argument does not depend on their joint
distribution. To see how to use (2.2), under H0 in (1.3), consider

Fj = j (Xj − μ) and V 2
j =

j∑
i=1

(Xi − Xj)
2, where Xj = j−1

j∑
i=1

Xi. (2.3)

Theorem 2.1 below presents uniform approximations for Fj and V 2
j . Define

rn = |σn| +
n∑

i=2

|σi − σi−1| and r∗
n = |σ 2

n | +
n∑

i=2

|σ 2
i − σ 2

i−1|, (2.4)

�2
j =

j∑
i=1

σ 2
i and �∗2

j =
(

j∑
i=1

σ 4
i

)1/2

. (2.5)

Theorem 2.1. Let (2.2) hold. For any c ∈ (0,1], the following uniform approximations hold:

max
cn≤j≤n

∣∣∣∣∣Fj − τ

j∑
i=1

σi(Bi − Bi−1)

∣∣∣∣∣ = Oa.s.(rn�n), (2.6)
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max
cn≤j≤n

|V 2
j − �2

j | = Op{(r2
n�2

n + �2
n)/n + �∗2

n + r∗
n�n}. (2.7)

Theorem 2.1 provides quite general results under (2.2). We now discuss sufficient condi-
tions for (2.2). Shao [36] obtained sufficient mixing conditions for (2.2). In this article, we
briefly introduce the framework in Wu [40]. Assume that ei has the causal representation
ei = G(. . . , εi−1, εi), where εi are i.i.d. innovations, and G is a measurable function such that ei

is well defined. Let {ε′
i}i∈Z be an independent copy of {εi}i∈Z. Assume

∞∑
i=1

i‖ei − e′
i‖8 < ∞, where e′

i = G(. . . , ε−1, ε
′
0, ε1, . . . , εi−1, εi). (2.8)

Proposition 2.1 below follows from Corollary 4 in Wu [40].

Proposition 2.1. Assume that (2.8) holds. Then (2.2) holds with �n = n1/4 log(n), the optimal
rate up to a logarithm factor.

For linear process ei = ∑∞
j=0 aj εi−j with εi ∈ L8 and E(εi) = 0, ‖ei − e′

i‖8 = ‖ε0 − ε′
0‖8|ai |.

If
∑∞

i=1 i|ai | < ∞, then (2.2) holds with �n = n1/4 log(n). For many nonlinear time series,
‖ei − e′

i‖8 decays exponentially fast and hence (2.8) holds; see Section 3.1 of Wu [40]. From
now on we assume (2.2) holds with �n = n1/4 log(n).

Remark 2.1. If ei are i.i.d. with E(ei) = 0 and ei ∈ Lq for some 2 < q ≤ 4, the celebrated “Hun-
garian embedding” asserts that

∑i
j=1 ej satisfies a strong invariance principle with the optimal

rate oa.s.(n
1/q). Thus, it is necessary to have the moment assumption ei ∈ L8 in Proposition 2.1

in order to ensure strong invariance principles for both Si and S∗
i in (2.1) with approximation

rate n1/4 log(n). On the other hand, one can relax the moment assumption by loosening the ap-
proximation rate. For example, by Corollary 4 in Wu [40], assume ei ∈ L2q for some q > 2 and∑∞

i=1 i‖ei − e∗
i ‖2q < ∞, then (2.2) holds with �n = n1/min(q,4) log(n).

As shown in Examples 2.1–2.3 below, rn and r∗
n in (2.4) often have tractable bounds.

Example 2.1. If σi is non-decreasing in i, then σn ≤ rn ≤ 2σn and σ 2
n ≤ r∗

n ≤ 2σ 2
n . If σi is non-

increasing in i, then rn = σ1 and r∗
n = σ 2

1 . If σi are piecewise constants with finitely many pieces,
then rn, r

∗
n = O(1).

Example 2.2. Let σi = s(i/nγ ) for γ ∈ [0,1] and a Lipschitz continuous function s(t), t ∈
[0,∞), supt∈[0,∞) s(t) < ∞. Then rn, r

∗
n = O(n1−γ ). If γ = 1, we obtain a locally stationary

case with the time window i/n ∈ [0,1]; if γ ∈ [0,1), we have the infinite time window [0,∞)

as n/nγ → ∞, which may be more reasonable for data with a long time horizon.

Example 2.3. If σi = iβL(i) for a slowly varying function L(·) such that L(cx)/L(x) → 1
as x → ∞ for all c > 0. Then we can show rn = O{nβL(n)} or O(1) and r∗

n = O{n2βL2(n)}
or O(1), depending on whether β > 0 or β < 0. For the boundary case β = 0, assume
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L(i + 1)/L(i) = 1 + O(1/i) uniformly, then rn = L(n) + O(1)
∑n

i=2 L(i)/i = O{log(n) ×
max1≤i≤n L(i)}. Similarly, r∗

n = O{log(n)max1≤i≤n L2(i)}.

2.2. Self-normalized central limit theorem

In this section we establish a self-normalized CLT for the sample average X̄. To understand how
non-stationarity makes this problem difficult, elementary calculation shows

Var
{√

n(X̄ − μ)
} = γ0

n

n∑
i=1

σ 2
i + 2

n

∑
1≤i<j≤n

σiσj γj−i := τ 2
n , (2.9)

where γk = Cov(e0, ek). In the stationary case σi ≡ 1, under condition
∑∞

k=0 |γk| < ∞, τ 2
n → τ 2,

the long-run variance in (1.2). For non-constant variances, it is difficult to deal with τ 2
n directly,

due to the large number of unknown parameters and complicated structure. See De Jong and
Davidson [18] for a kernel estimator of τ 2

n under a near-epoch dependent mixing framework.
To attenuate the aforementioned issue, we apply the uniform approximations in Theorem 2.1.

Assume that (2.10) below holds. Note that the increments Bi − Bi−1 of standard Brownian mo-
tions are i.i.d. standard normal random variables. By (2.6), n(X̄−μ) is equivalent to N(0, τ 2�2

n)

in distribution. By (2.7), V n/�n → 1 in probability. By Slutsky’s theorem, we have Proposi-
tion 2.2.

Proposition 2.2. Let (2.2) hold with �n = n1/4 log(n). For rn, r
∗
n ,�2

n,�∗2
n in (2.4)–(2.5), as-

sume

δn = rn�n/�n + (r∗
n�n + �∗2

n )/�2
n → 0. (2.10)

Recall V 2
n in (2.3). Then as n → ∞, n(X̄ −μ)/V n ⇒ N(0, τ 2). Consequently, a (1 −α) asymp-

totic confidence interval for μ is X̄ ± zα/2τ̂V n/n, where τ̂ is a consistent estimate of τ (Sec-
tion 2.5 below), and zα/2 is (1 − α/2) standard normal quantile.

Proposition 2.2 is an extension of the classical CLT for i.i.d. data or stationary processes to
modulated stationary processes. If Xi are i.i.d., then n(X̄−μ)/V n ⇒ N(0,1). In Proposition 2.2,
τ 2 can be viewed as the variance inflation factor due to the dependence of {ei}. For stationary
data, the sample variance V 2

n/n is a consistent estimate of the population variance. Here, for non-
constant variances case (1.1), by (2.7) in Theorem 2.1, V 2

n/n can be viewed as an estimate of the
time-average “population variance” �2

n/n. So, we can interpret the CLT in Proposition 2.2 as a
self-normalized CLT for modulated stationary processes with the self-normalizing term V n, ad-
justing for non-stationarity due to σ1, . . . , σn and τ 2, accounting for dependence of {ei}. Clearly,
parameters σ1, . . . , σn are canceled out through self-normalization. Finally, condition (2.10) is
satisfied in Example 2.2 with γ > 3/4 and Example 2.3 with β > −1/4.

In classical statistics, the width of confidence intervals usually shrinks as sample size increases.
By Proposition 2.2 and Theorem 2.1, the width of the constructed confidence interval for μ

is proportional to V n/n or, equivalently, �n/n. Thus, a necessary and sufficient condition for
shrinking confidence interval is

∑n
i=1 σ 2

i /n2 → 0, which is satisfied if σi = o(
√

i). An intuitive
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explanation is as follows. For i.i.d. data, sample mean converges at a rate of O(
√

n). In (1.1),
if σi grows faster than O(

√
i), the contribution of a new observation is negligible relative to its

noise level.

Example 2.4. If σi � iβ with β ∈ [0,1/2), the length of confidence interval is proportional to
�n/n � nβ−1/2. In particular, if c1 < σi < c2 for some positive constants c1 and c2, then �n/n

achieves the optimal rate O(n−1/2). If σi � log(i), then �n/n � log(n)/
√

n.

The same idea can be extended to linear combinations of means over multiple time periods.
Suppose we have observations from k consecutive time periods T1, . . . , Tk , each of the form (1.1)
with different means, denoted by μ1, . . . ,μk , and each having time-dependent variances. Let
ν = β1μ1 + · · · + βkμk for given coefficients β1, . . . , βk . For example, if we are interested in
mean change from T1 to T2, we can take ν = μ2 − μ1; if we are interested in whether the
increase from T3 to T4 is larger than that from T1 to T2, we can let ν = (μ4 − μ3) − (μ2 − μ1).
Proposition 2.3 below extends Proposition 2.2 to multiple means.

Proposition 2.3. Let ν = β1μ1 + · · · + βkμk . For Tj , denote its sample size nj and its sample
average X̄(j). Assume that (2.10) holds for each individual time period Tj and, for simplicity,
that n1, . . . , nk are of the same order. Then∑k

j=1 βj X̄(j) − ν

�n

⇒ N(0, τ 2), where �2
n =

k∑
j=1

{
β2

j

n2
j

∑
i∈Tj

[Xi − X̄(j)]2
}
.

2.3. Wild bootstrap for self-normalized statistic

Recall σiei in (1.1). Suppose we are interested in the self-normalized statistic

Hn =
∑n

i=1 σiei√∑n
i=1 σ 2

i e2
i

.

For problems with small sample sizes, it is natural to use bootstrap distribution instead of the
convergence Hn ⇒ N(0, τ 2) in Proposition 2.2. Wu [39] and Liu [30] have pioneered the work
on the wild bootstrap for independent data with non-identical distributions. We shall extend their
wild bootstrap procedure to the modulated stationary process (1.1).

Let {αi} be i.i.d. random variables independent of {ei} satisfying αi ∈ L3,E(αi) = 0,

E(α2
i ) = 1. Define the self-normalized statistic based on the following new data:

H ∗
n =

∑n
i=1 ξi√∑n

i=1(ξi − ξ̄ )2
, where ξi = σieiαi and ξ̄ = ξ1 + · · · + ξn

n
.

Clearly, ξi inherits the non-stationarity structure of σiei by writing ξi = σie
∗
i with e∗

i = eiαi .
On the other hand, for the new error process {e∗

i }, E(e∗2
i ) = E(e2

i ) = 1 and Cov(e∗
i , e

∗
j ) = 0 for
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i �= j . Thus, {e∗
i } is a white noise sequence with long-run variance one. By Proposition 2.2, the

scaled version Hn/τ ⇒ N(0,1) is robust against the dependence structure of {ei}, so we expect
that H ∗

n should be close to Hn/τ in distribution.

Theorem 2.2. Let the conditions in Proposition 2.2 hold. Further assume(
n∑

i=1

σ 3
i

)2( n∑
i=1

σ 2
i

)−3

→ 0. (2.11)

Let τ̂ be a consistent estimate of τ . Denote by P
∗ the conditional law given {ei}. Then

sup
x∈R

|P∗(H ∗
n ≤ x) − P(Hn/τ̂ ≤ x)| → 0, in probability. (2.12)

Theorem 2.2 asserts that, H ∗
n behaves like the scaled version Hn/τ̂ , with the scaling factor τ̂

coming from the dependence of {ei}. Here we use the sample mean X̄ in (1.1) to illustrate a wild
bootstrap procedure to obtain the distribution of n(X̄ − μ)/(τV n) in Proposition 2.2.

(i) Apply the method in Section 2.5 to X1, . . . ,Xn to obtain a consistent estimate τ̂ of τ .
(ii) Subtract the sample mean X̄ from data to obtain εi = Xi − X̄, i = 1, . . . , n.

(iii) Generate i.i.d. random variables α1, . . . , αn satisfying E(αi) = 0,E(α2
i ) = 1.

(iv) Based on εi in (ii) and αi in (iii), generate bootstrap data ξb
i = εiαi , and compute

Hb
n =

∑n
i=1 ξb

i

τ̂ b

√∑n
i=1(ξ

b
i − ξ̄ b)2

,

where τ̂ b is a long-run variance estimate (see Section 2.5) for bootstrap data ξb
i .

(v) Repeat (iii)–(iv) many times and use the empirical distribution of those realizations of
Hb

n as the distribution of n(X̄ − μ)/(τV n).

The proposed wild bootstrap is an extension of that in Liu [30] for independent data to modu-
lated stationary case, and it has two appealing features. First, the scaling factor τ̂ makes the statis-
tic independent of the dependence structure. Second, the bootstrap data-generating mechanism
is adaptive to unknown time-dependent variances {σ 2

i }. For the distribution of αi in step (iii),
we use P(αi = −1) = P(αi = 1) = 1/2, which has some desirable properties. For example, it
preserves the magnitude and range of the data. As shown by Davidson and Flachaire [17], for
certain hypothesis testing problems in linear regression models with symmetrically distributed
errors, the bootstrap distribution is exactly equal to that of the test statistic; see Theorem 1 therein.

For the purpose of comparison, we briefly introduce the widely used block bootstrap for a
stationary time series {Xi} with mean μ. By (1.2),

√
n(X̄−μ) ⇒ N(0, τ 2). Suppose that we want

to bootstrap the distribution of
√

n(X̄ − μ). Let kn, �n, I1, . . . , I�n be defined as in Section 2.5
below. The non-overlapping block bootstrap works in the following way:

(i) Take a simple random sample of size �n with replacement from the blocks I1, . . . , I�n ,
and form the bootstrap data Xb

1, . . . ,Xb
n′ , n′ = kn�n, by pooling together Xis for which

the index i is within those selected blocks.



Modulated stationary processes 213

(ii) Let X̄b be the sample average of Xb
1, . . . ,Xb

n′ . Compute �n = √
n′{X̄b −E∗(X̄b)}, where

E∗(X̄b) = ∑n′
i=1 Xi/n′ is the conditional expectation of X̄b given {Xi}.

(iii) Repeat (i)–(ii) many times and use the empirical distribution of �n’s as the distribution
of

√
n(X̄ − μ).

In step (ii), another choice is the studentized version �̃n = √
n′{X̄b −E∗(X̄b)}/τ̂ b , where τ̂ b is

a consistent estimate of τ based on bootstrap data. Assuming stationarity and kn → ∞, the blocks
are asymptotically independent and share the same model dynamics as the whole data, which
validates the above block bootstrap. We refer the reader to Lahiri [29] for detailed discussions.
For a non-stationary process, block bootstrap is no longer valid, because individual blocks are not
representative of the whole data. By contrast, the proposed wild bootstrap is adaptive to unknown
dependence and the non-constant variances structure.

2.4. Change point analysis: Self-normalized CUSUM test

To test a change point in the mean of a process {Xi}, two popular CUSUM-type tests (see Sec-
tion 3 of Robbins et al. [35] for a review and related references) are

T 1
n = max

cn≤j≤(1−c)n

τ̂−1|SX(j)|√
j (1 − j/n)

and T 2
n = max

cn≤j≤(1−c)n
τ̂−1|SX(j)|, (2.13)

where τ̂ 2 is a consistent estimate of the long-run variance τ 2 of {Xi}, and

SX(j) =
(

1 − j

n

) j∑
i=1

Xi − j

n

n∑
i=j+1

Xi. (2.14)

Here c > 0 (c = 0.1 in our simulation studies) is a small number to avoid the boundary issue. For
i.i.d. data, j (1 − j/n) is proportional to the variance of SX(j), so T 1

n is a studentized version of
T 2

n . For i.i.d. Gaussian data, T 1
n is equivalent to likelihood ratio test; see Csörgő and Horváth [14].

Assume that, under null hypothesis,{
n−1/2

�nt�∑
i=1

[Xi − E(Xi)]
}

0≤t≤1

⇒ τ {Bt }0≤t≤1, in the Skorohod space (2.15)

for a standard Brownian motion {Bt }t≥0. The above convergence requires finite-dimensional
convergence and tightness; see Billingsley [11]. By the continuous mapping theorem, T 1

n ⇒
maxc≤t≤1−c |Bt − tB1|/√t (1 − t) and T 2

n /
√

n ⇒ maxc≤t≤1−c |Bt − tB1|.
For the modulated stationary case (1.3), (2.15) is no longer valid. Moreover, since T 1

n and
T 2

n do not take into account the time-dependent variances σ 2
i , an abrupt change in variances

may lead to a false rejection of H0 when the mean remains constant. For example, our simula-
tion study in Section 3.3 shows that the empirical false rejection probability for T 1

n and T 2
n is

about 10% for nominal level 5%. To alleviate the issue of non-constant variances, we adopt the
self-normalization approach as in previous sections. Recall Fj and V j in (2.3). For each fixed
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cn ≤ j ≤ (1 − c)n, by Theorem 2.1 and Slutsky’s theorem, Fj/V j ⇒ N(0, τ 2) in distribution,
assuming the negligibility of the approximation errors. Therefore, the self-normalization term V j

can remove the time-dependent variances. In light of this, we can simultaneously self-normalize
the two terms

∑j

i=1 Xi and
∑n

i=j+1 Xi in (2.14) and propose the self-normalized test statistic

T SN
n = max

cn≤j≤(1−c)n
τ̂−1|Tn(j)|, where Tn(j) = SX(j)√

(1 − j/n)2V 2
j + (j/n)2V

2
j

. (2.16)

Here, V 2
j is defined as in (2.3), V

2
j = ∑n

i=j+1(Xi − Xj)
2 with Xj = (n − j)−1 ∑n

i=j+1 Xi .

Theorem 2.3. Assume (2.2) holds. Let δn → 0 be as in (2.10). Under H0, we have

max
cn≤j≤(1−c)n

|Tn(j) − τ T̃n(j)| = Op(δn),

where

T̃n(j) = (1 − j/n)
∑j

i=1 σi(Bi − Bi−1) − j/n
∑n

i=j+1 σi(Bi − Bi−1)√
(1 − j/n)2

∑j

i=1 σ 2
i + (j/n)2

∑n
i=j+1 σ 2

i

.

By Theorem 2.3, under H0, T SN
n is asymptotically equivalent to maxcn≤j≤(1−c)n |T̃n(j)|. Due

to the self-normalization, for each j , the time-dependent variances are removed and T̃n(j) ∼
N(0,1) has a standard normal distribution. However, T̃n(j) and T̃n(j

′) are correlated for j �= j ′.
Therefore, {T̃n(j)} is a non-stationary Gaussian process with a standard normal marginal density.
Due to the large number of unknown parameters σi , it is infeasible to obtain the null distribution
directly. On the other hand, Theorem 2.3 establishes the fact that, asymptotically, the distribution
of T SN

n in (2.16) depends only on σ1, . . . , σn and is robust against the dependence structure of
{ei}, which motivates us to use the wild bootstrap method in Section 2.3 to find the critical value
of T SN

n .

(i) Compute Tn(j) and find Ĵ = argmaxcn≤j≤(1−c)n |Tn(j)|.
(ii) Divide the data into two blocks X1, . . . ,XĴ

and X
Ĵ+1, . . . ,Xn. Within each block, sub-

tract the sample mean from the observations therein to obtain centered data. Pool all
centered data together and denote them by ε1, . . . , εn.

(iii) Based on ε1, . . . , εn, obtain an estimate τ̂ of τ . See Section 2.5 below.
(iv) Compute the test statistic T SN

n in (2.16).
(v) Based on εi in (ii), use the wild bootstrap method in Section 2.3 to generate synthetic

data ξ1, . . . , ξn, and use (i)–(iv) to compute the bootstrap test statistic T b
n based on the

bootstrap data ξ1, . . . , ξn.
(vi) Repeat (v) many times and find (1 − α) quantile of those T b

n s.

As argued in Section 2.3, the synthetic data-generating scheme (v) inherits the time-varying
non-stationarity structure of the original data. Also, the statistic T SN

n is robust against the de-
pendence structure, which justifies the proposed bootstrap method. If H0 is rejected, the change
point is then estimated by Ĵ = argmaxcn≤j≤(1−c)n |Tn(j)|.
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If there is no evidence to reject H0, we briefly discuss how to apply the same methodology
to test H̃0: σ1 = · · · = σJ �= σJ+1 = · · · = σn, that is, whether there is a change point in the
variances σ 2

i . By (1.1), we have (Xi − μ)2 = σ 2
i + σ 2

i ζi , where ζi = e2
i − 1 has mean zero.

Therefore, testing a change point in the variances σ 2
i of Xi is equivalent to testing a change point

in the mean of the new data X̃i = (Xi − X̄)2.

2.5. Long-run variance estimation

To apply the results in Sections 2.2–2.4, we need a consistent estimate of the long-run vari-
ance τ 2. Most existing works deal with stationary time series through various block bootstrap
and subsampling approaches; see Lahiri [29] and references therein. Assuming a near-epoch de-
pendent mixing condition, De Jong and Davidson [18] established the consistency of a kernel
estimator of Var(

∑n
i=1 Xi), and their result can be used to estimate τ 2

n in (2.9) for the CLT of√
n(X̄ − μ). However, for the change point problem in Section 2.4, we need an estimator of the

long-run variance τ 2 of the unobservable process {ei}, so the method in De Jong and David-
son [18] is not directly applicable.

To attenuate the non-stationarity issue, we extend the idea in Section 2.2 to blockwise self-
normalization. Let kn be the block length. Denote by �n = �n/kn� the largest integer not exceed-
ing n/kn. Ignore the boundary and divide 1, . . . , n into �n blocks

Ij = {(j − 1)kn + 1, . . . , jkn}, j = 1, . . . , �n. (2.17)

Recall the overall sample mean X̄. For each block j , define the self-normalized statistic

Dj = kn[X̄(j) − X̄]
V (j)

, where X̄(j) = 1

kn

∑
i∈Ij

Xi,V
2(j) =

∑
i∈Ij

[Xi − X̄(j)]2. (2.18)

By Proposition 2.2, the self-normalized statistics D1, . . . ,D�n ∼ N(0, τ 2) are asymptotically
i.i.d. Thus, we propose estimating τ 2 by

τ̂ 2 = 1

�n

�n∑
j=1

D2
j . (2.19)

As in (2.4)–(2.5), we define the quantities on block j

r(j) = |σjkn | +
∑
i∈Ij

|σi − σi−1| and r∗(j) = |σ 2
jkn

| +
∑
i∈Ij

|σ 2
i − σ 2

i−1|, (2.20)

�2(j) =
∑
i∈Ij

σ 2
i and �∗2(j) =

(∑
i∈Ij

σ 4
i

)1/2

. (2.21)
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Theorem 2.4. Let (2.2) hold with �n = n1/4 log(n). Recall rn,�n in (2.4)–(2.5). Define

Mn = 1

kn

+ max
1≤j≤�n

�∗2(j) + r∗(j)�n

�2(j)
+ max

1≤j≤�n

r(j)�n

�(j)
. (2.22)

Assume that rn�n/�n → 0 and

χn = �
−1/2
n + log(n)Mn + √

log(n)
�n

�2
n

�n∑
j=1

1

�(j)
+ �2

n

�3
n

�n∑
j=1

1

�2(j)
→ 0. (2.23)

Then τ̂ 2 − τ 2 = Op(χn). Consequently, τ̂ is a consistent estimate of τ .

Consider Example 2.2 with γ ∈ [0,1). Then χn � √
log(n)/�n + log2(n)(n1/4/

√
kn +

n5/4−γ /kn + √
knn

1/4−γ ). For γ ∈ (3/4,1), it can be shown that the optimal rate is χn �
n−1/8 log5/4(n) when kn � n3/4 log3/2(n). In Example 2.3 with σi = iβ for some β ∈ [0,1),
elementary but tedious calculations show that the optimal rate is

χn �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n−1/8 log5/4(n), kn � n3/4 log3/2(n),

β ∈ [0,3/4],
n(β−1)/(5−4β){log(n)}(8(1−β))/(5−4β), kn � n(4.5−4β)/(5−4β){log(n)}4/(5−4β),

β ∈ (3/4,1).

2.6. Some possible extensions

The self-normalization approaches in Sections 2.2–2.5 can be extended to linear regression
model (1.4) with modulated stationary time series errors. The approach in Phillips, Sun and
Jin [33] is not applicable here due to non-stationarity. For simplicity, we consider the simple case
that p = 2,Ui = (1, i/n), and β = (β0, β1)

′. Hansen [23] studied a similar setting for martingale
difference errors. Denote by β̂0 and β̂1 the simple linear regression estimates of β0 and β1 given
by

β̂1 = n
∑n

i=1 iXi − ∑n
i=1 i

∑n
i=1 Xi∑n

i=1 i2 − (
∑n

i=1 i)2/n
and β̂0 = X̄ − β̂1(n + 1)/(2n). (2.24)

Then simple algebra shows that

β̂0 − β0 = 2

n2 − n

n∑
i=1

(2n − 3i + 1)σiei, β̂1 − β1 = 6

n2 − 1

n∑
i=1

(2i − n − 1)σiei .

The latter expressions are linear combinations of {ei}. Thus, by the same argument in Proposi-
tion 2.2 and Theorem 2.1, we have self-normalized CLTs for β̂0 and β̂1.
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Theorem 2.5. Let si,0 = (2n − 3i + 1)σi and si,1 = (2i − n − 1)σi . Assume that {si,0}1≤i≤n and
{si,1}1≤i≤n satisfy condition (2.10). Then as n → ∞,

n2(β̂0 − β0)

2Vn,0
⇒ N(0, τ 2), where V 2

n,0 =
n∑

i=1

(2n − 3i + 1)2(Xi − β̂0 − β̂1i/n)2,

n2(β̂1 − β1)

6Vn,1
⇒ N(0, τ 2), where V 2

n,1 =
n∑

i=1

(2i − n − 1)2(Xi − β̂0 − β̂1i/n)2.

The long-run variance τ 2 can be estimated using the idea of blockwise self-normalization in
Section 2.5. Let kn, �n and Ij be defined as in Section 2.5. Then we propose

τ̂ 2 = 1

�n

�n∑
j=1

D2
j , where Dj =

∑
i∈Ij

(Xi − β̂0 − β̂1i/n)√∑
i∈Ij

(Xi − β̂0 − β̂1i/n)2
. (2.25)

Here, D1, . . . ,D�n are asymptotically i.i.d. normal random variables with mean zero and vari-
ance τ 2. Consistency can be established under similar conditions as in Theorem 2.4.

For the general linear regression model (1.4), the linearly weighted average structure of linear
regression estimates allows us to obtain self-normalized CLTs as in Theorem 2.5 under more
complicated conditions. Also, it is possible to extend the proposed method to the nonparametric
regression model with time-varying variances

Xi = f (i/n) + σiei, (2.26)

where f (·) is a nonparametric time trend of interest. Nonparametric estimates, for example,
the Nadaraya–Watson estimate, are usually based on locally weighted observations. The latter
feature allows us to derive similar self-normalized CLT. However, the change point problem
for (1.4) and (2.26) will be more challenging, and Aue et al. [6] studied (1.4) for uncorrelated
errors with constant variance. Also, it is more difficult to address the bandwidth selection issues;
see Altman [2] for related contribution when σi ≡ 1. It remains a direction of future research to
investigate (1.4) and (2.26).

3. Simulation study

3.1. Selection of block length kn for τ̂

Recall that D1, . . . ,D�n in (2.25) are asymptotically i.i.d. normal random variables. To get a
sensible choice of the block length parameter kn, we propose a simulation-based method by
minimizing the empirical mean squared error (MSE):

(i) Simulate n i.i.d. standard normal random variables Z1, . . . ,Zn.
(ii) Based on Z1, . . . ,Zn, obtain τ̂ with block length k.
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(iii) Repeat (i)–(ii) many times, compute empirical MSE(k) as the average of realizations of
(τ̂ − 1)2, and find the optimal k by minimizing MSE(k).

We find that the optimal block length k is about 12 for n = 120, about 15 for n = 240, about 20
for n = 360,600 and about 25 for n = 1200.

3.2. Empirical coverage probabilities

Let sample size n = 120. Recall ei and σi in (1.1). For σi , consider four choices:

A1: σi = 0.21i≤n/2 + 0.61i>n/2,

A2: σi = 0.2{1 + cos2(i/n4/5)},
A3: σi = 0.2 + 0.1 log(1 + |i − n/2|),
A4: σi = 0.3 + φ(i/60),

where φ is the standard normal density, and 1 is the indicator function. The sequences A1–A4
exhibit different patterns, with a piecewise constancy for A1, a cosine shape for A2, a sharp
change around time n/2 for A3 and a gradual downtrend for A4. Let εi be i.i.d. N(0, 1). For ei ,
we consider both linear and nonlinear processes.

B1: ei = {ηi − E(ηi)}/
√

Var(ηi), where ηi = θ |ηi−1| +
√

1 − θ2εi, |θ | < 1.

B2: ei =
∞∑

j=0

aj εi−j , where aj = (j + 1)−β√∑∞
j=0(j + 1)−2β

,β > 1/2.

For B1, by Wu [40], (2.8) holds. By Andel, Netuka and Svara [3], E(ηi) = θ
√

2/π and
Var(ηi) = 1 − 2θ2/π. To examine how the strength of dependence affects the performance,
we consider θ = 0,0.4,0.8, representing independence, intermediate and strong dependence,
respectively. For B2 with β > 2, (2.2) holds with �n = n1/4 log(n), and we consider three
cases β = 2.1,3,4. To assess the effect of block length kn, three choices kn = 8,10,12 are
used. Thus, we consider all 72 combinations of {A1,A2,A3,A4}×{B1, θ = 0,0.4,0.8;B2, β =
2.1,3,4} × {kn = 8,10,12}.

Without loss of generality we examine coverage probabilities based on 103 realized confidence
intervals for μ = 0 in (1.1). We compare our self-normalization-based confidence intervals to
some stationarity-based methods. For (1.1), if we pretend that the error process {ẽi = σiei} is
stationary, then we can use (1.2) to construct an asymptotic confidence interval for μ. Under sta-
tionarity, the long-run variance τ 2 of {ẽi} can be similarly estimated through the block method in
Section 2.5 by using the non-normalized version Dj = √

kn[X̄(j)− X̄] in (2.25); see Lahiri [29].
Thus, we compare two self-normalization-based methods and three stationarity-based alterna-
tives: self-normalization-based confidence intervals through the asymptotic theory in Proposi-
tion 2.2 (SN) and the wild bootstrap (WB) in Section 2.3; stationarity-based confidence intervals
through the asymptotic theory (1.2) (ST), non-overlapping block bootstrap (BB) and studen-
tized non-overlapping block bootstrap (SBB) in Section 2.3. From the results in Table 1, we see
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Table 1. Coverage probabilities (in percentage) for μ in (1.1) with ei from B1 [(a)] and B2 [(b)]. Nominal
level is 95%. SN and WB denote self-normalization-based confidence intervals using asymptotic theory
in Proposition 2.2 and the wild bootstrap procedure, respectively; ST, BB, SBB denote stationarity-based
confidence intervals using asymptotic theory in (1.2), non-overlapping block bootstrap and studentized non-
overlapping block bootstrap, respectively

θ kn σi SN WB ST BB SBB σi SN WB ST BB SBB

(a) Model B1
0.0 8 A1 98.0 94.7 93.1 92.2 92.8 A2 96.6 95.2 92.3 92.5 92.5

10 98.2 95.0 92.6 92.4 92.2 94.6 94.6 90.0 89.5 89.4
12 98.1 95.6 91.7 91.4 91.1 92.1 93.7 89.7 89.5 89.6

8 A3 96.4 95.0 92.5 92.3 92.0 A4 96.6 95.6 93.1 92.6 93.0
10 94.7 94.7 90.8 90.6 90.6 95.1 95.1 91.4 91.3 91.3
12 93.7 94.8 90.8 90.4 90.5 92.9 93.7 89.8 89.7 89.5

0.4 8 A1 98.7 95.9 92.7 92.6 92.9 A2 96.6 95.3 92.5 92.4 92.0
10 98.5 95.7 92.8 92.7 92.3 95.4 95.4 91.6 91.1 91.6
12 98.0 95.0 90.8 90.8 90.2 92.5 94.0 89.4 89.1 89.4

8 A3 96.6 95.2 91.7 91.7 91.6 A4 95.4 94.1 90.8 90.9 90.6
10 95.3 95.5 91.5 91.3 91.5 95.0 94.8 91.2 90.7 90.8
12 93.1 94.6 90.2 89.9 89.9 94.1 95.1 90.3 89.8 90.1

0.8 8 A1 97.9 94.6 87.8 86.8 87.3 A2 96.1 94.7 87.2 87.3 87.0
10 97.6 95.5 87.3 87.0 86.7 93.3 92.9 86.4 86.8 86.1
12 97.3 94.0 85.8 85.5 85.1 92.6 93.4 86.5 86.4 86.4

8 A3 94.8 93.5 85.7 85.7 86.0 A4 95.5 94.7 86.3 86.1 86.1
10 93.5 93.8 85.7 85.5 85.2 95.3 95.1 88.5 88.3 88.5
12 92.4 93.3 87.2 86.7 86.9 92.6 94.2 86.3 85.8 85.7

β

(b) Model B2
4.0 8 A1 97.6 94.9 91.8 91.4 91.9 A2 95.9 94.2 91.9 92.0 91.1

10 97.7 93.2 88.9 88.1 88.3 95.7 95.7 92.1 91.8 92.1
12 97.9 95.5 90.7 90.2 90.0 93.3 94.6 90.0 89.9 89.7

8 A3 94.6 93.3 89.8 89.5 89.5 A4 95.6 94.7 91.3 91.7 91.0
10 95.1 95.2 91.6 91.4 91.5 95.4 95.9 92.8 92.2 93.0
12 93.8 95.4 90.8 90.6 90.2 93.9 94.9 88.9 88.5 88.6

3.0 8 A1 99.1 95.7 91.1 91.0 91.2 A2 95.8 94.6 90.4 89.8 90.1
10 98.5 96.4 91.6 90.9 91.1 95.6 95.2 92.1 91.9 91.5
12 97.9 94.6 89.6 89.3 89.0 94.1 95.0 90.5 90.2 90.4

8 A3 95.9 94.6 92.0 91.9 91.7 A4 96.0 94.5 90.6 90.4 90.3
10 94.3 94.4 90.0 89.9 89.8 94.3 94.4 89.2 89.3 88.9
12 93.2 94.5 88.9 88.6 88.7 93.1 94.1 89.6 88.9 88.8

2.1 8 A1 97.1 92.5 86.2 86.2 85.5 A2 95.7 93.8 88.9 89.0 88.7
10 97.6 94.7 89.2 88.9 88.6 93.5 93.6 88.8 88.8 88.4
12 97.2 95.1 87.9 87.5 87.7 92.6 93.9 88.0 87.6 87.7

8 A3 94.0 93.7 88.5 88.4 88.3 A4 95.0 93.1 88.8 88.7 88.6
10 93.3 93.8 88.1 87.9 87.8 94.1 94.2 89.1 88.8 89.1
12 92.9 94.7 89.1 88.4 88.4 91.5 92.6 87.7 87.5 87.5
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that the coverage probabilities of the proposed self-normalization-based methods (columns SN
and WB) are close to the nominal level 95% for almost all cases considered. By contrast, the
stationarity-based methods (columns ST, BB and SBB) suffer from substantial undercoverage,
especially when dependence is strong (θ = 0.8 in Table 1(a) and β = 2.1 in Table 1(b)). For the
two self-normalization-based methods, WB slightly outperforms SN.

3.3. Size and power study

In (1.3), we use the same setting for σi and ei as in Section 3.2. For mean μi , we consider
μi = λ1i>40, λ ≥ 0, and compare the test statistics T 1

n , T 2
n in (2.13) and T SN

n in (2.16). First,
we compare their size under the null with λ = 0. The critical value of T SN

n is obtained using
the wild bootstrap in Section 2.4; for T 1

n and T 2
n , their critical values are based on the block

bootstrap in Section 2.3. In each case, we use 103 bootstrap samples, nominal level 5%, and
block length kn = 10, and summarize the empirical sizes (under the null λ = 0) in Table 2
based on 103 realizations. While T SN

n has size close to 5%, T 1
n and T 2

n tend to over-reject the
null, and the false rejection probabilities can be three times the nominal level of 5%. Next, we
compare the size-adjusted power. Instead of using the bootstrap methods to obtain critical val-
ues, we use 95% quantiles of 104 realizations of the test statistics when data are simulated di-
rectly from the null model so that the empirical size is exactly 5%. Figure 1 presents the power
curves for combinations {A1–A4} × {B1 with θ = 0.4; B2 with β = 3.0} with 103 realiza-
tions each. For A1, T SN

n outperforms T 1
n and T 2

n ; for A2–A4, there is a moderate loss of power
for T SN

n . Overall, T SN
n has power comparable to other two tests. In practice, however, the null

Table 2. Size (in percentage) comparison of T 1
n and T 2

n in (2.13) and T SN
n in (2.16), with sample size

n = 120, nominal level 5%, and block length kn = 10

Model B1 Model B2

σi θ T SN
n T 1

n T 2
n β T SN

n T 1
n T 2

n

A1 0.0 4.9 9.1 8.4 2.1 7.3 12.2 13.4
0.4 4.7 9.4 9.6 3.0 4.7 8.6 9.2
0.8 6.0 15.1 14.7 4.0 5.6 9.9 7.7

A2 0.0 5.7 8.2 6.1 2.1 5.8 9.5 8.6
0.4 6.1 8.9 6.8 3.0 5.3 9.6 6.8
0.8 7.3 12.6 9.3 4.0 4.2 7.5 4.2

A3 0.0 5.0 5.7 4.8 2.1 5.5 7.7 6.7
0.4 5.3 6.9 5.4 3.0 5.8 6.1 4.9
0.8 7.0 9.8 10.0 4.0 5.0 6.5 4.2

A4 0.0 5.4 8.4 6.0 2.1 6.9 8.8 7.1
0.4 5.7 7.9 5.2 3.0 4.8 6.6 6.3
0.8 7.2 11.1 9.2 4.0 5.3 6.2 5.8
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Figure 1. Size-adjusted power curves for T 1
n (dashed curve) and T 2

n (dotdash curve) in (2.13) and T SN
n

(solid curve) in (2.16) as functions of change size λ (horizontal axis) with sample size n = 120 and block
length kn = 10. For (A1, B1)–(A4, B1), the error process {ei} is from B1 with θ = 0.4; for (A1, B2)–(A4,
B2), the error process {ei} is from B2 with β = 3.0.

model is unknown, and when one turns to the bootstrap method to obtain the critical values,
the usual CUSUM tests T 1

n and T 2
n will likely over-reject the null as shown in Table 2. In sum-

mary, with such small sample size and complicated time-varying variances structure, T SN
n along

with the wild bootstrap method delivers reasonably good power and the size is close to nominal
level.

Finally, we point out that the proposed self-normalization-based methods are not robust to
models with time-varying correlation structures. For example, consider the model ei = 0.3ei−1 +
εi for 1 ≤ i ≤ 60 and ei = 0.8ei−1 + εi for 61 ≤ i ≤ n, where εi are i.i.d. N(0, 1). With kn = 10,
the sizes (nominal level 5%) for the three tests T SN

n , T 1
n , T 2

n are 0.154, 0.196, 0.223 for A1.
Future research directions include (i) developing tests for change in the variance or covariance
structure for (1.1) (See Inclán and Tiao [26], Aue et al. [5] and Berkes, Gombay and Horváth
[10] for related contributions); and (ii) developing methods that are robust to changes in correla-
tions.
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Figure 2. Annual mean precipitation in Seoul from 1771–2000.

4. Applications to two real data sets

4.1. Annual mean precipitation in Seoul during 1771–2000

The data set consists of annual mean precipitation rates in Seoul during 1771–2000; see Figure 2
for a plot. The mean levels seem to be different for the two time periods 1771–1880 and 1881–
2000. Ha and Ha [22] assumed the observations are i.i.d. under the null hypothesis. As shown in
Figure 2, the variations change over time. Also, the auto-correlation function plot (not reported
here) indicates strong dependence up to lag 18. Therefore, it is more reasonable to apply our
self-normalization-based test that is tailored to deal with modulated stationary processes. With
sample size n = 230, by the method in Section 3.1, the optimal block length is about 15. Based
on 105 bootstrap samples as described in Section 2.4, we obtain the corresponding p-values
0.016, 0.005, 0.045, 0.007, with block length kn = 12,14,16,18, respectively. For all choices of
kn, there is compelling evidence that a change point occurred at year 1880. While our result is
consistent with that of Ha and Ha [22], our modulated stationary time series framework seems to
be more reasonable. Denote by μ1 and μ2 the mean levels over pre-change and post-change time
periods 1771–1880 and 1881–2000. For the two sub-periods with sample sizes 110 and 120, the
optimal block length is about 12. With kn = 12, applying the wild bootstrap in Section 2.3 with
105 bootstrap samples, we obtain 95% confidence intervals [121.7,161.3] for μ1, [100.9,114.3]
for μ2. For the difference μ1 − μ2, with optimal block length kn = 15, the 95% wild bootstrap
confidence interval is [19.6,48.2]. Note that the latter confidence interval for μ1 − μ2 does not
cover zero, which provides further evidence for μ1 �= μ2 and the existence of a change point at
year 1880.

4.2. Quarterly U.S. GNP growth rates during 1947–2002

The data set consists of quarterly U.S. Gross National Product (GNP) growth rates from the
first quarter of 1947 to the third quarter of 2002; see Section 3.8 in Shumway and Stoffer [38]
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Figure 3. Quarterly U.S. GNP growth rates from 1947–2002.

for a stationary autoregressive model approach. However, the plot in Figure 3 suggests a non-
stationary pattern: the variation becomes smaller after year 1985 whereas the mean level remains
constant. Moreover, the stationarity test in Kwiatkowski et al. [28] provides fairly strong evi-
dence for non-stationarity with a p-value of 0.088. With the block length kn = 12,14,16,18,
we obtain the corresponding p-values 0.853,0.922,0.903,0.782, and hence there is no evidence
to reject the null hypothesis of a constant mean μ. Based on kn = 15, the 95% wild bootstrap
confidence interval for μ is [0.66%,1.00%]. To test whether there is a change point in the vari-
ance, by the discussion in the last paragraph of Section 2.4, we consider X̃i = (Xi − Xn)

2. With
kn = 12,14,16,18, the corresponding p-values are 0.001,0.006,0.001,0.010, indicating strong
evidence for a change point in the variance at year 1984. In summary, we conclude that there is
no change point in the mean level, but there is a change point in the variance at year 1984.

Appendix: Proofs

Proof of Theorem 2.1. Let rj = |σj | + ∑j

i=2 |σi − σi−1|. By the triangle inequality, we have
rj ≤ rn. Recall Si in (2.2). By the summation by parts formula, (2.6) follows via

Fj =
j∑

i=1

σi(Si − Si−1) = σjSj +
j−1∑
i=1

(σi − σi+1)Si

= σj τBj +
j−1∑
i=1

(σi − σi+1)τBi + Oa.s.(rn�n) (A.1)

= τ

j∑
i=1

σi(Bi − Bi−1) + Oa.s.(rn�n).
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By Kolmogorov’s maximal inequality for independent random variables, for δ > 0,

P

{
max

1≤j≤n

∣∣∣∣∣
j∑

i=1

σi(Bi − Bi−1)

∣∣∣∣∣ ≥ δ�n

}
≤ (δ�n)

−2E

[{
n∑

i=1

σi(Bi − Bi−1)

}2]
= δ−2. (A.2)

Thus, by (A.1), max1≤j≤n |Fj | = Op(�n + rn�n). Observe that

V 2
j − �2

j = Wj − F 2
j /j, where Wj =

j∑
i=1

σ 2
i (e2

i − 1). (A.3)

By (2.2), the same argument in (A.1) and (A.2) shows Wj = Op(�
∗2
n + r∗

n�n), uniformly. The
desired result then follows via (A.3). �

Proof of Theorem 2.2. Denote by �(x) the standard normal distribution function. By Proposi-
tion 2.2 and Slutsky’s theorem, P(Hn/τ̂ ≤ x) → �(x) for each fixed x ∈ R. Since �(x) is a con-
tinuous distribution, supx∈R |P(Hn/τ̂ ≤ x) − �(x)| = 0. It remains to prove supx∈R |P∗(H ∗

n ≤
x) − �(x)| → 0, in probability. Notice that, conditioning on {ei}, {ξi} are independent random
variables with zero mean. By the Berry–Esséen bound in Bentkus, Bloznelis and Götze [9], there
exists a finite constant c such that

sup
x∈R

|P∗(H ∗
n ≤ x) − �(x)| ≤ c

n∑
i=1

E∗(|ξi |3)
{

n∑
i=1

E∗(|ξi |2)
}−3/2

, (A.4)

where E∗ denotes conditional expectations given {ei}. Clearly, E∗(|ξi |2) = σ 2
i e2

i E(α2
1) and

E(|ξi |3) = σ 3
i |e3

i |E(|α3
1 |). Thus, under the assumption ei ∈ L3, we have

∑n
i=1 E∗(|ξi |3) =

Op(
∑n

i=1 σ 3
i ). Meanwhile, by the proof of Theorem 2.1,

∑n
i=1 E∗(|ξi |2) = ∑n

i=1 σ 2
i e2

i = {1 +
op(1)}∑n

i=1 σ 2
i . Therefore, the desired result follows from (A.4) in view of (2.11). �

Proof of Theorem 2.3. For cn ≤ j ≤ (1 − c)n, c ≤ (1 − j/n), j/n ≤ 1 − c. For SX(j) in (2.14),
by (2.6), we have maxcn≤j≤(1−c)n |SX(j) − τ S̃X(j)| = Oa.s.(rn�n), where

S̃X(j) =
(

1 − j

n

) j∑
i=1

σi(Bi − Bi−1) − j

n

n∑
i=j+1

σi(Bi − Bi−1).

By (2.7), maxcn≤j≤(1−c)n |(1 − j/n)2V 2
j + (j/n)2V

2
j − V 2

j | = Op(�n), where

V 2
j = (1 − j/n)2

j∑
i=1

σ 2
i + (j/n)2

n∑
i=j+1

σ 2
i and �n = (r2

n�2
n + �2

n)/n + �∗2
n + r∗

n�n.
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For cn ≤ j ≤ (1 − c)n, V 2
j ≥ c2�2

n . Thus, condition (2.10) implies �n = o(V 2
j ) and {V 2

j +
Op(�n)}1/2 = Vj + Op(�n/Vj ). Therefore, uniformly over cn ≤ j ≤ (1 − c)n,

Tn(j) − τ T̃n(j) = τ S̃X(j) + Oa.s.(rn�n)

Vj + Op(�n/Vj )
− τ S̃X(j)

Vj

= Op

{
rn�n

Vj

+ �nS̃X(j)

V 3
j

}
.

By (A.2), maxj |S̃X(j)| = Op(�n). Thus, the result follows in view of Vj ≥ c�n. �

Proof of Theorem 2.4. Condition Mn → 0 implies max1≤j≤�n r(j)�n/�(j) → 0. By (2.7),

ωj := V 2(j)

�2(j)
− 1 = Op

{
�∗2(j) + r∗(j)�n

�2(j)
+ 1

kn

}
= Op(Mn) → 0. (A.5)

Define Uj = �−1(j)
∑

i∈Ij
σi(Bi − Bi−1). Clearly, U1, . . . ,U�n are independent standard

normal random variables. Thus, max1≤j≤�n |Uj | = Op{
√

log(�n)} = Op{
√

log(n)}. By (2.6),
Xn − μ = Op{(�n + rn�n)/n} = Op(�n/n). Recall the definition of Dj in (2.18). By the same
argument in (2.6), using

√
1 + x = 1 + O(x) as x → 0, we have

Dj = kn{X̄(j) − μ}
�(j)

1√
1 + ωj

+ kn(μ − Xn)

�(j)

1√
1 + ωj

=
[
τUj + Oa.s.

{
r(j)�n

�(j)

}]
{1 + O(ωj )} + Op

{
kn�n

n�(j)

}
= τUj + Op

{√
log(n)Mn + �n

�n�(j)

}
.

By the latter expression and log(n)Mn → 0, we can easily verify τ̂ 2 − τ 2 = Op(χn). �
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