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In this paper, we study robust estimators of the memory parameter d of a (possibly) non-stationary Gaussian
time series with generalized spectral density f. This generalized spectral density is characterized by the
memory parameter d and by a function f* which specifies the short-range dependence structure of the
process. Our setting is semi-parametric since both f* and d are unknown, and d is the only parameter of
interest. The memory parameter d is estimated by regressing the logarithm of the estimated variance of
the wavelet coefficients at different scales. The two estimators of d that we consider are based on robust
estimators of the variance of the wavelet coefficients, namely the square of the scale estimator proposed
by Rousseeuw and Croux [J. Amer. Statist. Assoc. 88 (1993) 1273-1283] and the median of the square
of the wavelet coefficients. We establish a central limit theorem, for these robust estimators as well as
for the estimator of d, based on the classical estimator of the variance proposed by Moulines, Roueff and
Taqqu [Fractals 15 (2007) 301-313]. Some Monte-Carlo experiments are presented to illustrate our claims
and compare the performance of the different estimators. The properties of the three estimators are also
compared to the Nile river data and the Internet traffic packet counts data. The theoretical results and the
empirical evidence strongly suggest using the robust estimators as an alternative to estimate the memory
parameter d of Gaussian time series.

Keywords: long-range dependence; memory parameter estimator; robustness; scale estimator;
semiparametric estimation; wavelet analysis

1. Introduction

Long-range dependent processes are characterized by hyperbolically slowly decaying correla-
tions or by a spectral density exhibiting a fractional pole at zero frequency. During the last
decades, long-range dependence (and the closely related self-similarity phenomena) has been
observed in many different fields, including financial econometrics, hydrology and analysis of
Internet traffic. In most of these applications, however, the presence of atypical observations is
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quite common. These outliers might be due to gross errors in the observations but also to un-
modeled disturbances; see, for example, [31] and [30] for possible explanations of the presence
of outliers in Internet traffic analysis. It is well known that even a few atypical observations can
severely affect estimators, leading to incorrect conclusions. Hence, defining robust estimators of
the memory parameter, which are less sensitive to the presence of additive outliers, is a challeng-
ing practical problem.

In this paper, we consider the class of fractional processes, denoted M (d), defined as follows.
Let X = {X}rez be a real-valued Gaussian process, not necessarily stationary, and denote by
A X the first order difference of X, defined by [AX], = X,, — X;,—1, n € Z. Define, for an integer
K > 1, the Kth order difference recursively as follows: AKX = Ao AKX Let f* be a bounded
non-negative symmetric function, which is bounded away from zero in a neighborhood of the
origin. Following [20], we say that X is an M (d) process if, for any integer K > d — 1/2, AKX
is stationary with spectral density function

Fakxy(WD) =11 —ePPE=D 25 e (—x, ). 4))

Observe that f, k() in (1) is integrable since —(K —d) < 1/2. When d > 1/2, the process is
not stationary. One can, nevertheless, associate to X the function

F)=11—e 472 f* ), )

which is called a generalized spectral density function. In the sequel, we assume that f* €
H(B, L) with 0 < 8 <2 and L > 0, where H (B, L) denotes the set of non-negative and symmet-
ric functions g satisfying, for all A € (—m, ),

lg(L) — g(0)] < Lg(0)|1]P. 3)

Our setting is semi-parametric in that both d and f* in (2) are unknown. Here, f* can be seen as
a nuisance parameter, whereas d is the parameter of interest. This assumption on f* is typical in
the semi-parametric estimation setting; see for instance [25] and [21] and the references therein.

Different approaches have been proposed for building robust estimators of the memory pa-
rameter for M (d) processes in the semi-parametric setting outlined above. Stoev et al. [31] have
proposed a robustified wavelet-based regression estimator developed by [1]; the robustification
is achieved by replacing the estimation of the wavelet coefficients variance at different scales by
the median of the square of the wavelet coefficients. Another technique to robustify the wavelet
regression technique has been outlined in [23], which consists of regressing the logarithm of
the square of the wavelet coefficients at different scales. [18] proposed a robustified version
of the log-periodogram regression estimator introduced in [14]. The method replaces the log-
periodogram of the observation by a robust estimator of the spectral density in the neighborhood
of the zero frequency, obtained as the discrete Fourier transform of a robust autocovariance esti-
mator defined in [17]; the procedure is appealing and has been found to work well, but also lacks
theoretical support in the semi-parametric context (note, however, that the consistency and the
asymptotic normality of the robust estimator of the covariance have been discussed in [16]).

In the related context of the estimation of the fractal dimension of locally self-similar Gaussian
processes, Coeurjolly [10] has proposed a robust estimator of the Hurst coefficient; instead of
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using the variance of the generalized discrete variations of the process (which are closely related
to the wavelet coefficients, despite the facts that the motivations are quite different), this author
proposes to use the empirical quantiles and the trimmed means. The consistency and asymptotic
normality of this estimator is established for a class of locally self-similar processes, using a
Bahadur-type representation of the sample quantile; see also [9]. Shen, Zhu and Lee [28] propose
to replace the classical regression of the wavelet coefficients by a robust regression approach,
based on Huberized M-estimators.

The two robust estimators of d that we propose consist of regressing the logarithm of robust
variance estimators of the wavelet coefficients of the process X on a range of scales. We use, as
robust variance estimators, the square of the scale estimator proposed by [27] and the square of
the mean absolute deviation (MAD). These estimators are a robust alternative to the estimator
of d, proposed by [19], which uses the same method, but with the classical variance estimator.
Here, we derive a central limit theorem (CLT) for the two robust estimators of d and, by the
way, we give another methodology for obtaining a central limit theorem for the estimator of d
proposed by [19]. In this paper, we have also extended Theorem 4 of [2] and the Theorem of [11]
to arrays of stationary Gaussian processes. These new results were very helpful in establishing
the CLT for the three estimators of d that we propose.

The paper is organized as follows. In Section 2, we introduce the wavelet setting and define
the wavelet-based regression estimators of d. Section 3 is dedicated to the asymptotic properties
of the robust estimators of d. In this section, we derive asymptotic expansions of the wavelet
spectrum estimators and provide a CLT for the estimators of d. In Section 4, some Monte-Carlo
experiments are presented in order to support our theoretical claims. The Nile river data and two
Internet traffic packet counts data sets, collected from the University of North Carolina, Chapel,
are studied as an application in Section 5. Sections 6 and 7 detail the proofs of the theoretical
results stated in Section 3.

2. Definition of the wavelet-based regression estimators of the
memory parameter d

2.1. The wavelet setting

The wavelet setting involves two functions ¢ and ¥ in L?>(R) and their Fourier transforms

$&) < f T omeEdr and g Y / e a, @)

Assume the following:

(W-1) ¢ and ¢ are compactly-supported, integrable and $(0) = ffoooqb(t) dt =1 and
0 2
[l v (ndr=1. R
(W-2) There exists « > 1 such that SUPgcR [ &)+ [ED* < o0.

(W-3) The function i has M vanishing moments, that is, ffooo t"r(t)dtr = 0 for all m =
0,....M—1.
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(W-4) The function ), ., k"¢ (- — k) is a polynomial of degree m forallm =0, ..., M — 1.

Condition (W-2) ensures that the Fourier transform fﬁ decreases quickly to zero. Condition (W-3)
ensures that i oscillates and that its scalar product with continuous-time polynomials up to
degree M — 1 vanishes. It is equivalent to asserting that the first M — 1 derivatives of 1? vanish
at the origin and hence

¥ =0(rM), as A — 0. &)

Daubechies wavelets (with M > 2) and the Coiflets satisfy these conditions; see [19]. Viewing
the wavelet ¥ (¢) as a basic template, define the family {v/;«, j € Z, k € Z} of translated and
dilated functions

Vi) =272yt k), jeZkel. (©6)

Positive values of k translate i to the right, negative values to the left. The scale index j dilates ¥
so that large values of j correspond to coarse scales and hence to low frequencies. We suppose
throughout the paper that

1+p8)/2—a<d=<M. @)

We now describe how the wavelet coefficients are defined in discrete time, that is, for a real-
valued sequence {xi, k € Z} and for a finite sample {xx, k =1, ..., n}. Using the scaling func-
tion ¢, we first interpolate these discrete values to construct the following continuous-time func-
tions:

(S xpt —k) and x() =Y gk, r1eR. (8)

k=1 keZ

Without loss of generality we may suppose that the support of the scaling function ¢ is included
in [—T, 0] for some integer T > 1. Then

X, (1) =x(1) forallt € [0,n — T+ 1].

We may also suppose that the support of the wavelet function v is included in [0, T]. With
these conventions, the support of v; x is included in the interval [2/k, 2/ (k + T)]. The wavelet
coefficient Wy at scale j > 0 and location k € Z is formally defined as the scalar product in
L2(R) of the function ¢ — x(¢) and the wavelet 7 — Yik(t).

W, & / XY (1) dt = f OV d, j=0.keL ©

when [2/k, 2/k +T] € [0,n — T + 1], that is, for all (j, k) € Z,,, where

T, ¥ G k) j>0,0<k<n;—1}  withn; =27 —T+1)—T+1].  (10)

If AMX is stationary, then from [20], equation (17), the process {W; x}rez of wavelet co-
efficients at scale j > 0 is stationary, but the two-dimensional process {[W «, ngk]T}kez of
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wavelet coefficients at scales j and j’, with j > j', is not stationary. Here 7 denotes the transpo-
sition. This is why we consider instead the stationary, between-scale process

Wik Wik (G = jD"1 Ykez. (11)
where W (j — j’) is defined as follows:

. ./ def T
Wj’k(‘] — ] ) = [Wj/,Zj’j,k’ Wj/,zj’j/k-‘rl’ ey Wj/,zj’j/k-i-Zj*j,—l] .

For all j, j' > 1, the covariance function of the between-scale process is given by

LY

Cov(W;w(j =" Wjk) = / HEID; (s £ da, (12)
—T

where D; ;_i/(A; f) stands for the cross-spectral density function of this process. For further

details, we refer the reader to [20], Corollary 1. The case j = j’ corresponds to the spectral

density function of the within-scale process {W; i }rez.

In the sequel, we shall use that the within- and between-scale spectral densities D; ;7 (; d)
of the wavelet coefficients of the process X with memory parameter d € R can be approximated
by the corresponding spectral density of the generalized fractional Brownian motion By, de-
fined, ford e R and u € N, by

Docu(r;d) = [D2,(hid), ... DLV (ns d)] 03
=Y In+2n| e (A 4 2m)Y (+ 2Am)P (27 (A + 2m)),
leZ

where,
e, (&) def 2_“/2[1, e 127 e—i(2“—1)2—“5]T’ & eR.
For further details, see page 307 of [19] and Theorem 1 and Remark 5 of [20].

2.2. Definition of the robust estimators of d

Let us now define robust estimators of the memory parameter d of the M (d) process X from the
observations X1, ..., X;. These estimators are derived from the construction of [1], and consist
of regressing estimators of the scale spectrum

o? € Var(W0), (14)
with respect to the scale index j. The idea behind such a choice is that, by [19], equation (28),
o7 ~C2M4 as j— oo, (15)

where C is a positive constant. More precisely, if Ejz is an estimator of o2, based on Wj,o:nj—l =
(Wj0,..., Wjn;—1), then an estimator of the memory parameter d is obtained by regressing
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log(a.z) for a finite number of scale indices j in {Jo, ..., Jo + £}, where Jo = Jo(n) > 0 is the
lower scale and 1 4 £ > 2 is the number of scales in the regression. The regression estimator can
be expressed formally as

J()+Z
3. W E Y wj_y log@D), (16)
j=J
where the vector w & [wo, ..., we]” of weights satisfies Zf:o w; =0 and 21og(2) Zf:o iw; =

1; see [1] and [20]. For Jyp > 1 and € > 1, one may choose, for example, w corresponding to the
least squares regression matrix, defined by w = DB(BT DB)~'b where

bE0 Qlog2n'l,  BE|] Loy a7
’ 01 - ¢

is the design matrix, and D is an arbitrary positive definite matrix. The best choice of D depends
on the memory parameter d. However, a good approximation of this optimal matrix D is the di-
agonal matrix with diagonal entries D; ; = 271 i =0,...,¢; see[13] and the references therein.
We will use this choice of the design matrix in the numerical experiments.

In the sequel, we shall consider three different estimators of d based on three different estima-
tors of the scale spectrum o , with respect to the scale index j, which are defined below.

2.2.1. Classical scale estimator

This estimator has been considered in the original contribution of [1] and consists of estimating
the scale spectrum a% with respect to the scale index j by the empirical variance

nj

oCL] Z 20 (18)

where for any j, n; denotes the number of available wavelet coefficients at scale index j defined
in (10).
2.2.2. Median absolute deviation

This estimator is well known to be a robust estimator of the scale, and, as mentioned in [27], it
has several appealing properties: it is easy to compute and has the best possible breakdown point
(50%). Since the wavelet coefficients W; ; are centered Gaussian observations, the square of the
median absolute deviation of Wijom;—1 is defined by

2
al\z/IAD,j: (m(‘b) med |Wj,i|> . (19)

Ofifn_,- —1
where @ denotes the c.d.f. of a standard Gaussian random variable and

m(®) =1/ (3/4) = 1.4826. (20)
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The use of the median estimator to estimate the scalogram has been suggested to estimate the
memory parameter in [29]; see also [24], page 420. A closely related technique is considered
in [9] and [10] to estimate the Hurst coefficient of locally self-similar Gaussian processes. Note
that the use of the median of the squared wavelet coefficients has been advocated to estimate the
variance at a given scale in wavelet denoising applications; this technique is mentioned in [12] to
estimate the scalogram of the noise in the i.i.d. context; Johnstone and Silverman [15] proposed
to use this method in the long-range dependent context; the use of these estimators has not,
however, been rigorously justified.

2.2.3. The Croux and Rousseeuw estimator

This estimator is another robust scale estimator introduced in [27]. Its asymptotic properties in
several dependence contexts have been further studied in [16] and the square of this estimator is
defined by

~ . 2
or,; = (c(OUWji = Wikl: 0<ik<nj— U, ))" @1

where ¢(®) =2.21914 and k,,j = Ln? /4]. That is, up to the multiplicative constant c(®), ocr, j

is the k;, ; th order statistics of the n? distances |W;; — W; | between all the pairs of observations.

3. Asymptotic properties of the robust estimators of d

3.1. Properties of the scale spectrum estimators

The following proposition giv?,s an asymptotic expapsion for .E(%L, i G Ap,; and Eé& . defined
in (18), (19) and (21), respectively. These asymptotic expansions are used for deriving central
limit theorems for the different estimators of d.

Proposition 1. Assume that X is a Gaussian M (d) process with generalized spectral density
function, defined in (2), such that f* € H(B, L) for some L >0 and 0 < 8 < 2. Assume that
(W-1)-(W-4) hold with d, a and M satisfying (7). Let W; ; be the wavelet coefficients asso-
ciated to X defined by (9). If n — Jo(n) is an integer valued sequence satisfying Jo(n) — oo
and n2=70M 5 oo, as n — oo, then & a deﬁned in (18), (19) and (21), satisfies the following
asymptotic expansion, as n — oo, for any given £ > 1:

2 nj—1
2] IF( Wi ) (1) (22)
N/D —07) - —= =o0 ,
Jon) £ <o+ i@ =) Vi ; oj "
where * denotes CL, CR and MAD, O'j2 is defined in (14) and 1F is given by
1
IF(x,CL, ®) = 5Hz(x), (23)

(24)

IF(x.CR, @) = c(@)(1/4 — (x4 1/c(P)) + P(x — 1/c(d>))>’

Jr oM@y +1/c(@))dy
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(25)

Tix< —3/4) — (Qp<— —1/4
IF(x. MAD. q>)=—m(c1>)<( p=t/m@) —3/4) — Qpp=—1/m@) — 1/ )>’

2¢0(1/m(P))

where ¢ denotes the p.d.f. of the standard Gaussian random variable, m(®) and c(®) being
defined in (20) and (21), respectively, and Ha(x) = x> — 1 is the second Hermite polynomial.

The proof is postponed to Section 6.
We deduce from Proposition 1 and Theorem 6, given and proved in Section 6, the following
multivariate central limit theorem for the wavelet coefficient scales.

Theorem 2. Under the assumptions of Proposition 1, (Efy Jgr oo 6\*% T +£) where G cr . is de-
fined in (18), (19) and (21), satisfies the following multivariate central limit theorem:

/0.\2

2
*,Jo O—*n’()
2 o2
Vn2—ho-2hd | | TR TR 4 v, a)), (26)
A2 2
*]0+l O—*,j0+[
where
U ) = 4(f (O)) Z F) 2d(2+p)zv]2d(2 P AJHIN]
*,0, ] ‘K(d)p 2
(27)
Sli—jl_1
xy 3 (/ D) d)e“fd,\) . 0<ij=<t
teZ r=0 -

In 27), K(d) € [ 16172419/ (&)1 d€, Do i j| (- d) is the cross-spectral density defined in (13),
cp(F,) = E[IF(X, %, ®)H,(X)], where H, is the pth Hermite polynomial, and IF(-, *, ®) is
defined in (23), (24) and (25).

The proof of Theorem 2 is postponed to Section 6.
Remark 1. Since, for x = CL, IF(-) = H»(-)/2, Theorem 2 gives an alternative proof to ([19],

Theorem 2) of the limiting covariance matrix of (EéL Jor ,EéL T +z)T which is given, for
0=<i,j={ by

T
Vv () = 4x(7 @240 [ D .
-7

Thus, for * = CR and %« = MAD, we deduce the following:

Ucr.i.i(d) - 1/2
U.ii(d) ~ E[IF2(Z)]’

(28)
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where Z is a standard Gaussian random variable. With Lemma 8, we deduce, from inequal-

ity (28), that the asymptotic relative efficiency of 3*2‘ j is larger than 36.76% when x = MAD and
larger than 82.27% when * = CR.

3.2. CLT for the robust wavelet-based regression estimator

Based on the results obtained in the previous section, we derive a central limit theorem for the
robust wavelet-based regression estimators of d defined by

Jo+L

-~ def ~

den(Jo. W) E Y wj sy log(G; ). (29)
J=Jo

where 3*% j are given for * = CL, MAD and CR by (18), (19) and (21), respectively.
Theorem 3. Under the same assumptions as in Proposition 1 and if
n2~ 42800 _, asn— oo, (30)
then 21\*’,,(]0, w) satisfies the following central limit theorem:
vV n2=Jwm (Zl;’n(.](), w) — d) N N©O, W'V (d)w), 3D
where V. (d) is the (1 + £) x (1 + £) matrix defined by

4¢3 (IF,)

Vv (d) = 2pd|i—j|+i/\j
oo ,gz pK(d)?
(32)
oli—jl_q - . p
3 (/_nngg{”_jl(x;d)emd,\) . 0<ij<Ct.

teZ r=0

In (32), K(d) = fR |§|—2d|$(§)| d&, Doo,ji—j| (5 d) is the cross-spectral density defined in (13),
cp(Fy) = E[IF(X, *, ®)H,(X)], where H), is the pth Hermite polynomial and 1F(-, x, ®) is
defined in (23), (24) and (25).

The proof of Theorem 3 follows from Theorem 2 and the Delta method as explained in the
proof of [19], Proposition 3.

Remark 2. Since it is difficult to provide a theoretical lower bound for the asymptotic relative
efficiency (ARE) of dy , (Jo, w) defined by

ARE,.(d) = w! Ve (d)w/w! Vi (d)w, (33)
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Table 1. Asymptotic relative efficiency of LZ,,CR and anM AD With respect to En,CL

d -08 —-04 -02 O 02 06 08 1 12 16 2 22 26 3

AREcr(d) 072 0.67 0.63 0.65 0.70 0.63 0.70 0.75 0.76 0.75 0.79 0.74 0.77 0.74
AREpmaD(d) 048 039 038 036 043 039 044 047 045 0.50 048 0.5 049 0.49

where * = CR or MAD, we propose to compute this quantity empirically. We know from Theo-
rem 3 that the expression of the limiting variance w’ V., (d)w is valid for all Gaussian M (d) pro-
cesses satisfying the assumptions given in Proposition 1; thus it is enough to compute ARE, (d)
in the particular case of a Gaussian ARFIMA (0, d, 0) process (X;). Such a process is defined by

rG+d

X,=<1—3>-"Zf=2m

Jj=0

Zi—j, (34)

where {Z,} are i.i.d. AN'(0, 1). We propose to evaluate ARE, (d) empirically by simulating sev-
eral Gaussian ARFIMA (0, d, 0) processes for each d belonging to [—0.8; 3] and computing the
associated empirical standard error. With such a choice of d, both stationary and non-stationary
processes are considered. The empirical values of ARE,(d) are given in Table 1. The results
were obtained from the observations X1, ..., X, where n = 212 1000 independent replications
and w = DB(BT DB)~'b, where B and b are defined in (17) and D is a diagonal matrix with
diagonal coefficients D; ; = 27, We used Daubechies wavelets with M = 2 vanishing moments
when d <2 and M =4 when d > 2, which ensures that condition (7) is satisfied. The smallest
scale is chosen to be Jo =3 and Jy + £ = 8.

From Table 1, we can see that Zi\,,,CR is more efficient than Ei\n,MAD and that its asymptotic
relative efficiency AREcRr ranges from 0.63 to 0.79. These results indicate empirically that the
the loss of efficiency of the robust estimator ZZ\,LCR is moderate and makes it an attractive robust
procedure to the non-robust estimator c’l\,,,CL.

4. Numerical experiments

In this section the robustness properties of the different estimators of d, namely ECL‘H(JO, W),
ZI\CR,H(JO, w) and ZZ\MAD‘,?(JO, w), that are defined in Section 2.2 are investigated using Monte
Carlo experiments. In the sequel, the memory parameter d is estimated from n = 2!? observations
of a Gaussian ARFIMA (0, d, 0) process defined in (34), when d = 0.2 and 1.2 are eventually
corrupted by additive outliers. We use the Daubechies wavelets with M = 2 vanishing moments
which ensures that condition (7) is satisfied.

Let us first explain how to choose the parameters Jo and Jy + £. With n = 2!2, the maximal
available scale is equal to 10. Choosing Jy too small may introduce a bias in the estimation of d
by Theorem 3. However, at coarse scales (large values of Jp), the number of observations may
be too small, and thus choosing Jy too large may yield a large variance. Since at scales j =9 and
j =10, we have, respectively, 5 and 1 observations, we chose Jy + £ = 8. For the choice of Jy,
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0 2 4 6 0 2 4 6

Figure 1. Confidence intervals of the estimates ;1\,, CL> 3;1 cr and a\n,MAD of an ARFIMA(0, d, 0) pro-
cess with d = 0.2 (left) and d = 12 (right) for Jo=1,...,8 and Jo + £ =09. For each Jy, are displayed
confidence interval associated to dn cL (red), dn CR (green) and d,, MAD (blue), respectively.

we use the empirical rule proposed by [19] and illustrated in Figure 1. In this figure, we display
the estimates c/i\n,CL, c/i\,,,CR and Zin,MAD of the memory parameter d as well as their respective
95% confidence intervals from Jy = 1 to Jy = 7 with Jy + £ = 8. We propose to choose Jy = 3 in
both cases (d = 0.2 and d = 1.2) since the successive confidence intervals starting from Jo = 3 to
Jo =7 are such that the smallest one is included in the largest one. This choice is a way to achieve
a bias/variance trade-off. A further justification for this choice of Jy is given in Table 2, in which
we provide the empirical coverage probabilities associated to ZJ;),,(JO, w), which correspond to
the probability that d belongs to the 95% confidence intervals. Note that the confidence intervals
in Figure 1 were computed by using Theorem 3. More precisely, an approximation of the limiting
variance is obtained by computing the empirical standard error of +/n2~o (3\*,,,(]0, w) —d) for
the different values of Jy by simulating and estimating the memory parameter of 5000 Gaussian
ARFIMA(0, d, 0) processes with d = 0.2 (left part of Figure 1) and with d = 1.2 (right part of
Figure 1).

Table 2. Coverage probabilities pcr,, pcr and pmap of @,CL L};,CR Lz,M AD, respectively, for n = 212
observations of an ARFIMA(0, d, 0) process withd =0.2 andd =1.2

d=02 d=12
Jo 1 2 3 4 5 6 7 1 2 3 4 5 6 7

DPCL 036 090 095 094 094 094 0.94 0 0.79 094 094 094 095 0.95
PCR 052 092 095 095 095 0.94 0.95 0 0.85 095 095 095 096 0.95
pmap 073 093 095 095 096 095 0.95 0.01 0.89 095 095 095 095 0.95
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Figure 2. Empirical densities of the quantities v/n2~J0 (3*,,, — d), with x = CL (solid line), * = CR
(dashed line) and * = MAD (dotted line) of the ARFIMA (O, 0.2, 0) model without outliers (left) and with
1% of outliers (right).

In the left panels of Figures 2 and 3, the empirical distribution of +/n2~o (c)i\*,,, — d) are dis-
played when % = CL, MAD and CR for the ARFIMA (0, d, 0) model with d = 0.2 (Figure 2) and
d = 1.2 (Figure 3), respectively. They were computed using 5000 replications; their shapes are
close to the Gaussian density (the standard deviations are of course different). In the right panels
of Figures 2 and 3, the empirical distribution of vn2~7 (Zl;,n — d) are displayed when outliers
are present. We introduce 1% of additive outliers in the observations; these outliers are obtained
by choosing, uniformly at random, a time index and by adding to the selected observation 5 times
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Figure 3. Empirical densities of the quantities v n2—Jo (’d\*ﬂ — d), with x = CL (solid line), * = CR
(dashed line) and * = MAD (dotted line) of the ARFIMA (O, 1.2, 0) model without outliers (left) and with

1% of outliers (right).
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the standard error of the raw observations. The empirical distribution of vn2~7 (ZZ\CL,,Z —d) is
clearly located far away from zero, especially in the non-stationary ARFIMA(0, 1.2, 0) model.
One can also observe the considerable increase in the variance of the classical estimator. In sharp
contrast, the distribution of the robust estimators +/n2~7 (EI\MAD,,, —d) and Vn2=J (c/i\CR,,, —d)
stays symmetric and the variance stays constant.

5. Application to real data

In this section, we compare the performance of the different estimators of the long memory
parameter d introduced in Section 2.2 on two different real data sets.

5.1. Nile river data

The Nile river data set is a well-known time series, which has been extensively analyzed; see [4],
Section 1.4, page 20. The data consists of yearly minimal water levels of the Nile river measured
at the Roda gauge, near Cairo, for the years 622—-1284 AD and contains 663 observations; the
units for the data, as presented by [4], are centimeters. The empirical mean and the standard
deviation of the data are equal to 1148 and 89.05, respectively. The question has been raised as
to whether the Nile time series contains outliers; see, for example, [3,8,25] and [18]. The test
procedure developed by [8] suggests the presence of outliers at 646 AD (p-value 0.0308) and at
809 (p-value 0.0007). Another possible outliers is at 878 AD. Since the number of observations
is small, in the estimation of d, we took Jy = 1 and Jy + £ = 6. With this choice, we observe a
significant difference between the classical estimators ZI\nQCL = 0.28 (with 95% confidence inter-
val [0.23, 0.32]) and the robust estimators Zi\,,,CR = 0.408 (with 95% confidence interval [0.34,
0.46]) and Zi\,,,MAD = 0.414 (with 95% confidence interval [0.34, 0.49]). Thus, to better under-
stand the influence of outliers on the estimated memory parameter in practical situations, a new
data set with artificial outliers was generated. Here, we replaced the presumed outliers of [8] by
the value of the observation plus 10 times the standard deviation. The new memory parameter
estimators are c/l\,,,CL =0.12, CZZ,CR = 0.4 and Zl\n,MAD = 0.392. As was expected, the values of
the robust estimators remained stable. However, the classical estimator of d was significantly
affected. A robust estimate of d for the Nile data is also given in [18]. The authors found 0.416,
which is very close to d,,,cr = 0.408 and d,, map = 0.414.

5.2. Internet traffic packet counts data

In this section, two Internet traffic packet counts data sets collected at the University of
North Carolina, Chapel (UNC) are analyzed. These data sets are available from the website
http://netlab.cs.unc.edu/public/old_research/net_Ird/. These data sets have been studied by [23].

Figure 4 (left) displays a packet count time series measured at the link of UNC on April 13,
Saturday, from 7:30 p.m. to 9:30 p.m., 2002 (Sat1930). Figure 4 (right) displays the same type
of time series but on April 11, a Thursday, from 1 p.m. to 3 p.m., 2002 (Thul1300). These packet
counts were measured every 1 millisecond, but, for a better display, we aggregated them at 1
second.


http://netlab.cs.unc.edu/public/old_research/net_lrd/
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Figure 4. Packet counts of aggregated traffic every 1 second.

The maximal available scale for the two data sets is 20. Since we have less than 4 observations
at this scale, we set the coarse scale Jy + £ = 19 and vary the finest scale Jy from 1 to 17. The
values of the three estimators of d are stored in Table 3 for Jy =1 to 14 as well as the standard
errors of v/n2-J (c/z'\n,* — d) for the two data sets: Thul300 and Sat1930. The standard errors in
Table 3 were obtained as follows. For each estimated value of d, we simulated n observations of
1000 Gaussian ARFIMA (0, d, 0) processes with this value of d, n being the number of observa-
tions of the data sets that we are studying (Thul300 or Sat1930), and we computed the empirical
standard errors of /n2~J0 (dn « — d) from these 1000 Gaussian ARFIMA(0, d, 0) processes.

In Figure 5, we display the estimates d,, CL, dn cr and dn MAD of the memory parameter d as
well as their respective 95% confidence intervals from Jy = 1 to Jo = 14. We propose to choose
Jo =9 for Thul300 and Jy = 10 for Sat1930 since, from these values of Jy, the successive

Table 3. Estimators of d with Jy =1 to Jy = 14 and Jy + £ = 19 obtained from Thul300 and Sat1930.
Here SE denotes the standard error of v/n2~7o (dn,« —d)

Jo 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Thu1300

dpcL 008 009 0.11 015 019 025 031 039 043 047 051 049 044 041
SEcL  (0.52) (0.56) (0.51) (0.52) (0.57) (0.52) (0.56) (1.45) (0.74) (0.76) (0.87) (0.91) (1.10) (1.21)
dpcr 008 007 007 009 013 019 028 034 037 040 042 043 048 045
SEcr  (0.55) (0.58) (0.61) (0.63) (0.59) (0.6) (0.67) (1.42) (0.82) (0.88) (0.97) (1.08) (1.18) (1.23)
dymap 0.08 008 0.07 009 0.13 019 027 033 038 040 043 043 05 048
SEmap (0.74) (0.87) (0.78) (0.83) (0.86) (0.84) (0.91) (1.49) (0.98) (1.04) (1.07) (1.15) (1.18) (1.2)

Sat1930

dpcL 005 006 008 011 0.4 017 023 028 033 036 037 039 042 042
SEcL  (0.41) (0.47) (0.43) (0.48) (0.47) (0.48) (0.46) (0.89) (0.54) (0.61) (0.70) (0.80) (1.11) (1.24)
dpcr 006 006 006 009 0.12 016 023 03 034 038 04 042 044 042
SEcr  (0.51) (0.47) (0.54) (0.48) (0.48) (0.53) (0.56) (0.90) (0.81) (0.70) (0.88) (0.96) (1.21) (1.26)
dymap 0.06 006 0.07 009 011 016 023 029 033 038 04 043 045 04

SEmap (0.59) (0.77) (0.72) (0.81) (0.70) (0.89) (0.82) (0.64) (1.13) (0.99) (1.10) (1.34) (1.49) (1.38)
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Figure 5. Confidence intervals of the estimates Zl\”’CL (red), Zl\”’CR (green) and c’i\,,M AD (blue) on the data
Thu1300 (left) and Sat1930 (right) for Jo =1, ..., 14 and Jy + £ = 19.

confidence intervals are such that the smallest one is included in the largest one (for the robust
estimators). Note that Park and Park [23] chose the same values of Jy using another methodology.
For these values of Jy, we obtain Jn,CL = 0.43 (with 95% confidence interval [0.412, 0.443]),
dy.cr = 0.37 (with 95% confidence interval [0.358, 0.385]) and d,, map = 0.38 with (95% con-
fidence interval [0.362, 0.397]) for Thul300 and CZ:,CL = 0.36 (with 95% confidence interval
[0.345, 0.374]), c?n,CR = Eq,MAD = 0.38 (with 95% confidence intervals [0.361, 0.398] for CR
and [0.357, 0.402] for MAD) for Sat1930. These values are similar to the one found by [23].

With this choice of Jy for Thul300, we observe a significant difference between the classical
estimator and the robust estimators. Thus to better understand the influence of outliers on the
estimated memory parameter, a new data set with artificial outliers was generated. The Thul300
time series shows two spikes shooting down. Especially, the first downward spike hits zero. Park
et al. [22] have shown that this dropout lasted 8 seconds. Outliers are introduced by dividing
by 6 the 8000 observations in this period. The new memory parameter estimators are Zl\n’CL =
0.445, ZZ;’CR =0.375 and CT,,,MAD = 0.377. As for the Nile river data, the classical estimator was
affected while the robust estimators remain stable.

6. Proofs

Theorem 4 is an extension of [2], Theorem 4, to arrays of stationary Gaussian processes in the
unidimensional case, and Theorem 5 extends the result of [11] to arrays of stationary Gaussian
processes. These two theorems are useful for the proof of Proposition 1.

Theoremd. Let {X;;, j > 1,i > 0} be an array of standard stationary Gaussian processes such
that for a fixed j > 1, (X ;)i=0 has a spectral density f; and an autocorrelation function p;,
defined by pj(k) =E(X; 0X k), for all k > 0. Assume also that there exists a sequence {u}j>1
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tending to zero as j tends to infinity, such that, for all j > 1,

sup | fj(A) — goo(W)| < uj, (35)

rE(—T,7)

where goo is a 2T-periodic function which is bounded on (—7t, ) and continuous at the origin.
Let h be a function on R such that E[h(X 2] < 0o, where X is a standard Gaussian random
variable, and of Hermite rank T > 1. Let {n}j>1 be a sequence of integers such that n j tends to
infinity as j tends to infinity. Then,

nj
1 < d
— Y h(X;) > N(0,5%),  asj— oo, (36)
Vo ’

where

52 = lim Var( Zh(Xj,)>_2nZ (0

j—00
>t

In the previous equality, c, = E[h(X) H¢(X)], where Hy is the £th Hermite polynomial, and X is
a standard Gaussian random variable.

Proof. By observing that h(x) =, ceHe(x)/L!, we start by proving that, for any fixed ,

Y Y cpei e /O H (X )
JVar(Sl Y, o (el /O Hu(X )

L N©.1),  asnj— oo (37)

Using Mehler’s formula given in [6, (2.1)], we have

Var(Z > .HZ(X”)>

i=1 t<{<t

Z > Ce'%E[Hel(Xj,il)Hiz(Xf”'z)]

£118;!
i1,ip=11t<l1,00<t

2 nj
> 2—‘,[ > pf(iz—il)].

T<{<t i1,ip=1

(38)

Since the Gaussian distribution is uniquely determined by its moments, it is enough to show the
convergence of moments to prove (37), that is for p > 1,

BICL ) Y coey (e /O He(X j)?PH]
(Cecoz (/O oy 5l — i) @PHD2

E[(Zij Do (ce /€Y Hy(Xj))P] N @2p)!
Crarat (GO pha —i)D? P2P

— 0, asnj —> oo and 39)

asnj — oo. (40)
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Observe that, for all m in N*,

R

i=1t<{<t
S 1)
= ) Y o B (Xga) e He, (X))
1<ityonsim < j TSy, by <t 1 m:
By [26], equation (33), page 69,
oY
E[Hy (X)) - He, (Xji)] =00 bn! 0 = (42)

. Vg k .. .
where it is understood that p; =TIlizg<k=m P}’ (g — i), vi= H15q<k5m Vg k!, and it L)
indicates that we are to sum over all symmetric matrices v with nonnegative integer entries,
v;; = 0 and the row sums equal to €1, ..., £,,.

(1) We start with the case where m =2p + 1. By Lemma 9, we get that

) 1 c2 nj
Jim 2 7‘![ > P/(lz—ll)]—h > —_goo<0> (43)

T<{<t i1,ip=1 T<{<t

Thus, in order to prove (39), it is enough to prove that

2p+1
njlgnoo p+1/2 [(Z > HZ(XJz)> ]=0- (44)

i=1 r<€<l
Let us now prove that

. 1 .
n lgnoo np—l——l/Z Z Sup l_[ p;‘l’k (lq - lk) = 0’ (45)

J Jj 1<iy,..., i2pr1<n; v 1<g<k<2p+1

where sup,, indicates that we are taking the supremum over all symmetric matrices v with non-
negative integer entries, v;; = 0 and the row sums equal to £, ..., £2p41. By (41) and (42), (44)
is a consequence of (45).

Let us first address the case where [{iy, ..., i2p1}| =2p + 1; that is, the indices iy, ..., i2p+1

are all different. Using that p;"‘k (ig —ix) = f_”n eilq.k(iq—ik)f;"q,k (ngt) dig ¢ and the notation
Dy, (1) =Y_7, e*, we obtain that

> [T »" =i

1<iy,..., iapr1=nj 1<q<k=<2p+1

2p+1 2p+1
= Dy, A D, | A1+ A 46
~/[‘—T[,]'[]P(2p+l) i ( ; 1>k) nj < 1,2 ; 2,k> (46)
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2p+1
X Dy; (—/\1,3 — A3+ Z k3,k>

k=4

2p
D, (_ Z)‘q,ﬂ’“) [T " Ce0dig
g=1

1<g<k=<2p+1

with the convention that £*°(1) dx is a Dirac measure at 0. The number of Dy; in the previous
product is equal to 2p + 1. Since the ¢;s are greater than 1, there is at least one k kineach D,
Moreover, there exists at least one D, ; having a sum of at least two A4 ks as argument otherw1se
the matrix v would have a null line which is impossible since the ¢;s are greater than 1. The
right-hand side of (46) can be bounded above by using that ab < (a* + b*)/2 with

2p+1 2p+1
a =Dy, ( > M,k) Dy, (—M,z +> ?nz,k)
k=2 k=3

172

9

and
2p+1 1/2 2p+1 2p
b= |Dp; (—/\1,2 + Z kz,k> Dy, (—)»1,3 — A3+ Z )»3,k) - Dy, (— Z)Lq,Zp-H)-
k=3 k=4 g=1

Then, using Lemma 10 and (35), we get (45). Actually, the D,, , which is common to @ and b,
can be any D, ; having a sum of at least two A4 ks as argument. Such a Dy does exist according
to the prev10us remark.

If i1, ....é2p+1}l <2p + 1, the number of D,; appearing in the right-hand side of (46) is
equal to |{i1,...,i2p+1]}|, and thus, using the same arguments as previously, we can also con-
clude, in this case, that (45) holds.

(2) Let us now study the case where m is even; that is, m = 2p with p > 1.

We shall prove that, among all the terms in the right-hand side of (42), the leading ones cor-
respond to the case where we have p pairs of equal indices in the set {{1, ..., £2,}, that is, for
instance, £1 = 4{o, 03 =4, ..., sz,] = Zzp and V2= £y, V3.4 = 3, ..., Vp—12p = Ezpfl, the
others v; ; being equal to zero. This gives

502 —i1)2pj(ia —i3)% - pjliny — inp—1)"2
0!l ’

(6212 (£2p))

The corresponding term in (41) with m = 2p is given by

2 2 2

Cﬂzc&;“ ezp 4 . . 12
> > 71},(:2—11) 2pj(ia —i3)% -+ pjinp — inp—1)"2"

o184ty

1<iy,inp<nj t<ly,ly,....Lyp <t

R E ]

i1,ir=1
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which corresponds to the denominator in the left-hand side of (40). Since there exists exactly
(2p)!/ (27 p!) possibilities to have pairs of equal indices among 2 p indices, we obtain (40) if we
prove that the other terms can be neglected.

We use the same line of reasoning as the one used in the case where m is odd and prove that

) 1 v
Jm = D, s [T ptg —in=0, 47)
/ nj 1<if,izp<n; ° 1<q<k<2p

where sup,, indicates that we are taking the supremum over all symmetric matrices v with non-
negative integer entries such that v;; = 0, the row sums equal to £1, ..., {2, and such that there
are at least two non-null values of v, on a row of v.

Let us first address the case where [{i1, ..., i2p}| = 2p. Using the notation Dy ; (1) = 3

and that p;q’k(iq —in=[", eik%k(iq*ik)fjw"‘k (Ag.k) dAg k, we obtain that

> [T » G —iv)

1<iy,....izp=<nj 1<q<k=<2p

2p 2p
_ / D [ D ks )Py =212+ Y 2ok
[_7[’]-[]1’(21’*1) k=2 k=3
2p 2p—1
X D, (—)»1,3 — 23+ ZA3J<> Dy, (— Z )‘q,2p>
g=1

k=4

nj o iir
r=1¢

(48)

X l_[ f;uq’k ()Lq,k) d)tq,ky

1<g<k<2p

with the convention that f ;0 (1) dA is a Dirac measure at 0. The number of Dy, in the previous
product is equal to 2p. Since the ¢;s is greater than 1, there are at least one A4,k in each Dy;.
Moreover, there exists at least one Dnj, having a sum of at least two A, xS, as argument; other-
wise, there are p pairs of equal indices in the set {1, ..., £3,}, which corresponds to the case
previously addressed. To conclude the proof of (47), we use the same arguments as those used in
the odd case.

If [{i1, ..., i2p}l < 2p, the number of D, ; appearing in the right-hand side of (48) is equal to
[{i1,...,i2p}|, and thus, using the same arguments as previously, we can also conclude in this
case that (47) holds.

We conclude the proof by applying [7], Proposition 6.3.9. By (37), (38) and (43), Assump-
tion (i) of [7], Proposition 6.3.9, holds true. Assumption (ii) comes from ) __ <t<t c%ggg 0/ —
ler c%ggg(O) /¢!, as t tends to infinity. Let us now check Assumption (iii). For this, it is
enough to prove that lim;_, o lim SUP,, 00 Var(n;l/2 Z:ll Y o= CceHe(X ;) /€ =0. Note that

—1/2 0 .
Var(nj / 27;1 Yoo CceHe (X0 /8D =", ZIS|<n_; c%(l - |s|/nj),of(s)/£!. We aim at ap-
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plying Lemma 12 to fy;, g»;, f and g defined hereafter. Let
2
¢ Is|
Foy @ =537 (1= —)pf(s.
2! nj
[s|<n;
Observe that for £ > 2, | f; (€)| < gn; (£) where
2
c Is|
gn;(0) == 1— = )p7(s).
1l nj :
[s|<n; ’
By Lemma 9 we get, as n; — oo, that
2 2

Jn; () = f(O) = 2n g 50) and g, (0) — g(0) =27 Zg ).

Moreover, Y., gn; (£) > 27 Y, , c7g32(0)/£! and Lemma 12 yields

nlgn@ﬂ—Var(ZZﬁHg(X”)) —ZTEZ gxL(0),

i=1{>t >t

which tends to zero as ¢ tends to infinity since ) _, ceg £(0)/¢! is a convergent series. (]

Theorem 5. Let {X;;, j > 1,i > 0} be an array of standard stationary Gaussian processes such
that, for a fixed j > 1, (X ;)i=0 has a spectral density f; and an autocorrelation function pj
defined by pj(k) =E(X0X k), forall k > 0. Let F; be the c.d f. of X j 1 and Fy; the empirical
c.df., computed from Xj 1, ..., Xjn;. If {nj}j>1 is a sequence of integers such that n  tends to
infinity as j tends to infinity and if condition (35) holds, then

S (F, = F) -5 W in D([—o0, 00l), (49)

as j tends to infinity, where D([—00, o]) denotes the Skorokhod space on [—o0, o], and W is
a Gaussian process with covariance function

J J N
E[W@W ] =2m) M 25(0),

q=1

x,y€eR,

where J;(x) = E[H;(X){1ix<x) — Ex<x)}], Hy is the gth Hermite polynomial and X is a
standard Gaussian random variable.

Proof. Let S;(x) = n; -2 Zl 1(1{X, ;<x} — Fj(x)), for all x in R. We shall first prove that for

Xl,.0esXQ andal,.. ,ap inR

Y 2
C

> aqu(xq)—d>./\/<0, 27 Z—fggf;(O)), as j — 0o, (50)
=1

g=1
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where ¢, is the £th Hermite coefficient of the function / defined by

()= Zaq ~EL{<x,)-

Thus ZQ agSj(xg) = n_l/zz (h(X;;), where h is bounded and of Hermite rank 7 > 1

since, for all 7 in R, E(X1x<) = [pxLli<@(x)dx = f_oo(—w(x)) dx = —@(t) # 0, and the
CLT (50) follows from Theorem 4.
Let us now prove that there exists a positive constant C and 8 > 1 such that forall » <s <1,

E(Sj(s) = S;(nI?1S; (1) = S;(9)1*) < Cle —r|P. (51)
The convergence (49) then follows from (50), (51) and [5], Theorem 13.5. Note that

E(IS;(s) — S;()*1S;(t) — S;(s)I?)

~ Z Z B ((ks — ke)(X i) ks — ke)(X j. i) (ki — k) (X ) (ke — ko) (X j.00).

]ll’—lll’ 1

where k; (X) = 1{x<;} — E(1{x<s)). By expanding each difference of functions in Hermite poly-
nomials, we get

E(1Sj(s) = Sj (1S (1) — S;(s)?)
— L i i Z cpy (ks — kr)ep, (ks — kr)eps (ki — ks)ep, (ke — ks)

2
J L' =111'=1 p1.,.c..ps=1

X E(Hp, (X i) Hp, (X i) Hpy (X j,1) Hp, (X j 1))
Using the same arguments as in the case where m is even in the proof of Theorem 4, we obtain
E(ISj(s) = S;(PIS; (1) = S;(5))
& [cgl (kt — k)es, (ks — kr)

1
B 3 Z Z p1!p2!

1L.p2>1ii11'=1

Pyt =P =D

+ Cpy (ky — ks)cpl (ks — kr)cpz (ky — ks)cpz (ks — k)
pi!pa!
x pl' (=Dl — i)
+ Cpy (ky — ks)cpl (ks — kr)cpz (ky — ks)cpz (ks — k)
pi!pa!

x pf' (' = )pl? (1 - i/)] + O(n;l).
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Let || - [lo = (B()®)'? and (f, g) E[f(X)g(X)] where X is a standard Gaussian random
variable. Since, by (64), Z” L= 1'0/ - z),op2 (' —-i= O(nz) we get with the Cauchy—
Schwarz inequality that there exists a positive constant C such that

E(1S;(s) — S;(OP1S;() — S;()1?)

<C Z I:C,%J] (ke — k. )C (k ky) + Cpy (ky — ks)cm (ks — kr)cpz (ky — ks)cpz(ks - kr):|
p1!p2! pi!pa!

p1,p2>1
< C(llke — ks l31lks — kI3 + ke — ks, ks — ki )|?)
< Cllky — ks |3 lIks — K, [12.

Note that [k, — ksll3 < 2(IT(x< — Lix=s)l3 + IE(x<y) — E@x<)I3). Since s <1,
11x<s) — ]l{xfs}ng =®d(t) — ®(s) < C|t — 5|, where ® denotes the c.d.f. of a standard Gaus-
sian random variable. Moreover, [ E(1{x <s)) —E(L{x<}) ||% =|®(t)— P (s)|> < C|t — 5|2, which
concludes the proof of (51) with 8 =2. [l

Proof of Proposition 1. For %« = CL, the proof of (22) is immediate, since

nj— zn/
VG — o)) :—Z( —0})= il ZIF( Cch)

Let us now prove (22) for x = MAD. Let us denote by Fnj the empirical c.d.f. of Wj‘oznj,l and
by F; the c.d.f. of W o. Note that

oMAD, j = m(®)To(Fy;),

where Ty = T o Ty with T1:F > {r > [p1x<ydF(x)} and T»:U — U~1(1/2). To
prove (22), we start by proving that ,/n;j(F,; — F;) converges in distribution in the space of
cadlag functions equipped with the topology of uniform convergence. This convergence follows
by applying Theorem 5 to X;; = W;;/o; which is an array of zero mean stationary Gaus-
sian processes by [20], Corollary 1. The spectral density f; of (X;;)i>o0 is given by f;(}) =
D;o(A; f)/a where D; o(-; f) is the within scale spectral density of the process {W; i }x>0, de-

fined in (12), and a is the wavelet spectrum defined in (14). Here, goo(A) = Do ,0(X; d) /K(d),
with Do 0(-; d) deﬁned in (13) and K(d) = fj;o &1~ 2d|1ﬂ($)|2d$ since, by [20], (26) and (29)
in Theorem 1,

‘ D;o(A; 1) Doo,O()\§ d)
F*(0)K(d)224] K(d)
o2

<CLK(d)~"27P >0, as j — 0o,

% s .
‘f*(O)K(d)szj 1' <CL2Y™ -0, as j — oo.
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Note also that, by [20], Theorem 1, go(A) is a continuous and 27-periodic function on (—m, 7).
Moreover, go(A) is bounded on (—m, ) by Lemma 11, and (35) holds with

2

2—Bj ) o
<2’3] + C2—J.> — 0, as j — oo,

ui=0C -
! o2 /2%

where Cy and C; are positive constants. The asymptotic expansion (22) for Gmap, j can be de-
duced from the functional Delta method (stated, e.g., in [32], Theorem 20.8) and the classical
Delta method, stated, for example, in [32], Theorem 3.1. To show this, we have to prove that
To = T1 o T> is Hadamard differentiable and that the corresponding Hadamard differential is
defined and continuous on the whole space of cadlag functions. We prove first the Hadamard dif-
ferentiability of the functional T7. Let (g;) be a sequence of cadlag functions with bounded vari-
ations such that || g; — gllcc — 0, as t — 0, where g is a cadlag function. For any non-negative r,
we consider

N(Fj +tg)lr] = Ti(FPIr] _ (Fj +1g0)(r) — (Fj +18)(=r) = F;(r) + F;(=r)
t t

_1gi(r) —tgi(=r)
t

=81(r) — & (=r) —> gr) —g(-r),
since ||gr — glloo = 0, as t — 0. The Hadamard differential of 7} at g is given by

(DT1(F)).g)(r) = g(r) — g(=r).

By [32], Lemma 21.3, 7> is Hadamard differentiable. Finally, using the Chain rule [32], Theo-
rem 20.9, we obtain the Hadamard differentiability of Ty with the following Hadamard differen-
tial:
(DT (F)).8)(To(Fj) _ g(To(F))) — g(=To(F}))

(T1(Fj) [To(F )] (TV(F)))[To(Fp)]
In view of the last expression, DT (F;) is a continuous function of g and is defined on the whole
space of cadlag functions. Thus by [32], Theorem 20.8, we obtain:

DTy(Fj).g =

m(®) /15 (To(Fu)) — To(F})) = m(®) DTo(Fp) | /i (Fu, — Fj)} +0p(1),

where m(®) is the constant defined in (20). Since Ty(F;) = o;/m(P) and (Tl(Fj))’(r) =
20 j_1<p(r/ o), where ¢ is the p.d.f. of a standard Gaussian random variable, we get

nj—1

R o Wi,
J/1j(OMAD,j —0j) = —l; Z IF(i,MAD, CD) +op(1)

o
J =0 J

and the expansion (22) for * = MAD follows from the classical Delta method, applied with
f(x) = x2. We end the proof of Proposition 1 by proving the asymptotic expansion (22) for
x = CR. We use the same arguments as those used previously. In this case the Hadamard differ-
entiability comes from [16], Lemma 1. O
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The following theorem is an extension of [2], Theorem 4, to arrays of stationary Gaussian
processes in the multidimensional case.

Theorem 6. Ler X, ={X (103’ o X (Jdl.)} be an array of standard stationary Gaussian processes

such that for j, j' in {0, ...,d}, the vector {X(J{l?, X(Jj.)} has a cross-spectral density fj(j’j ) and

N

a cross-correlation function py’J ) defined by py’l )(k) = IE(XSJEX(/I.)M),for all k > 0. Assume
also that there exists a non-increasing sequence {uj}j>1 such that uj tends to zero as J tends
to infinity, and, for all J > 1,

sup |0 — g0 <uy, (52)

re(—m,m)
where gg;j/) is a 2m-periodic function which is bounded on (—T7, ) and continuous at the
origin. Let h be a function on R such that E[h(X)*] < oo, where X is a standard Gaussian
random variable, and of Hermite rank t > 1. Let B ={fo, ..., Ba} in RIH! gnd H:RIH! 5 R,
the real-valued function defined by H(X) = Z‘;:O Bjh(xj).Let {n;},>1 be a sequence of integers
such that nj tends to infinity as J tends to infinity. Then

njy
\/%ZH@”) L NO0,5%),  asJ— oo, (53)
i=1

where
1 &
~2 .
=1 Vi HX
& = lim, ( o Z (—J»”)

2 i i)\~
:27{2% Z ﬁjﬁj'(gé‘é’”) “(0).

>t T 0<j,j'<d

In the previous equality, cy = E[h(X)H¢(X)], where Hy is the £th Hermite polynomial, and X is
a standard Gaussian random variable.

The proof of Theorem 6 follows the same lines as the one of Theorem 4 and is thus omitted.

Proof of Theorem 2. Without loss of generality, we set f*(0) = 1. In order to prove (26), let us

first prove that, for & = («o, ..., ®¢), where the ¢;s are in R,
4
[ Jon—2Jod (=2 , 2
n2=/"2 ZO‘J (‘7*,Jo+j(WJo+J,0:njo+j—l) U*,/0+j)
j=0

(54)
N, T U (d)ar).
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By Proposition 1,

¢
[ Jon—2Jod ~2 2
n2—Jo2=2% Zaj(0*,Jo+j(Wfo+j,03n10+j—1)_G*,Jo+j)
j=0
) (55)
L n2—Tn—2hd Mo+~
2—%02=2J0 Wi+
M ael Y IF(M,*@)JFOP(D.
j=0 nJjo+j . i—0 OJo+j
Thus, proving (54) amounts to proving that
i—1
2742 f(O)K(d e Wipt i
it i 0)).SC ()Zz 220N IF(—J"*"’,*@)i>N(o,aTU*(d)a), (56)
N Jp+e =0 i=0 OJo+j

since o, ;V/n2702720d g4y~ 22K (d) f(0)/ /lggres as n tends to infinity, by
[20], (29) i m Theorem 1. Note that

njo+j71 n]0+13712€—./_1
Wi Wit i
> IF<7°+“,*,CI> = IF( L2 T
0

o i (e i
i=0 Joti =0 = JotJ

njy+j—1 W,
+ 3 IF(L’” %, q>>.
i OJo+j
q=n sy j—(T—1)QLT —1)

Using the notation f; = 2a;224/=4/2+JK(d) f*(0) and that IF is either bounded or equal to
Hy/2,

| ¢ nyo+i—1 W
Jo+j,i
Bi IF( , %k, <I>>
Mo+t j2=: ! lg(; OJo+j
¢ njy+e—1ot=j_
1 Wit s.2t-iito
= Bj IF(jO’i,*,Q +op(l)
g+ ]Xz(:) ! i—0 U2=(:) O Jo+j
| njo+e—1
= F(Yjg,ei,%) +op(1),
A /n]()-i-f i=0 0

where

¢ 2t-i

W. Jo. 20—
F(Yjei®) =Y Bj Y IF(M %, cp)

j=0  v=0 Thoti
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and
v <WJ0+Z,1' Wite—1,2i Wigte—1,2i+1 W ot)26-ii
Jo.li = , ,
O Jo+0 O Jy+0—1 O Jy+e—1 O Jo+j
. . T
W ot j2t-iiat-i—1 W2t W ativot— )
OJo+j Oy OJy

is a (21 — 1)-dimensional stationary Gaussian vector. By Lemma 7, F is of Hermite rank larger
than 2. Hence, from Theorem 6 applied to H(-) =F(-), X, ; = Yy, ¢,; and h(-) =IF(-), we get

1 njy+e—1 J
F(Y )0, %) — N (0,52, (57)
N ; ”

1
where o o = llmn_monj " Var (ZHJOJrz F(Yjy,0,i,%)). By [20], (26) and (29), and by using
the same arguments as those used in the proof of Proposition 1, condition (52) of Theorem 6

. i i (r)
holds with /(1) = D], i3 P /oss o and gD = p" iy s d)/K(d), where

0<r<2J—1andD Jo+j.j—j' (5 f) s the cross-spectral density of the stationary between
scale process defined in (12). Lemma 11 and [20], Theorem 1, ensure that D((;)yjij/(.; d)is a
bounded, continuous and 2m-periodic function.

By using Mehler’s formula [6], equation (2.1), and the expansion of IF onto the Hermite
polymials basis given by: IF(x, *, ®) = szz cp(IF) H),(x)/p!, where ¢, (IF,) = E[IF(X, *,
®)H,(X)], H) being the pth Hermite polynomial, we get

njg+e—1
Var< Z F(Yj0i *))

njy+e i—0

njore—1ot=j 1 2t=i' |

Zﬂ/ﬂ, YOX X (ke )

njo“ =1 Li'=0 v=0 v/=0 Tdoti
8 IF<WJo+j’,2M/i’+u/ . <I>>]
Oldo+j’
(58)
S LV S
Jo+j.i
iy [ (—m)
Wit
xlF(M,*@)]Jro(l)
OJo+j'
njg+j— an0+j -1 (IF)
Wiorji Waerjnir 1\?
BiBj i ( [ ’ ’ +o(1).
= Z iBi Z > o Omer

J,j'=1 i'=0 p=>2
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Without loss of generality, we shall assume in the sequel that j > j’. Equation (58) can be
rewritten as follows by using that i’ =2/~/'q +r, where g e Nand r € {0, 1, ...,2/~/ — 1} and
equation (18) in [20]:

njo+j—lnjo+j—12] / —1 (IF
*

Zﬂ,ﬂf > ZZ”

n
Jot j i=0 q=0 r=0 p>2

X <IE[ Wit,0 Wit 2-7 iy er ])p +o(1)
Oho+ij Oho+j’

Mgt v (IF*) 7|
.zﬂjﬁf > oYy

n
\r|<njo+] r=0 p>2 Jotij

N (E[Wjo+j,0 WJo+j’,2/'i’r+r])p +oll)

OJo+j OJo+j'

Y IF,
_ Mgt Zﬂfﬂf DS Z ey )< Iflh)

n n
Jo+¢€ =1 tl<njgs; r=0 p=2 Jo+j

(r)

y (/“ Do =i fet dk)p +o(D),

OJo+jOJo+j'

where Dy, ; j— /(5 f) is the cross-spectral density of the stationary between scale process de-
fined in (12). We aim at applying Lemma 12 with f,, g,, f and g defined hereafter.

iy

2 2/
c (IF*) |-[| Wj 0 WJ S imi p
Jnggs; (T D) = pp' Z ]l{|t|<n10+j}(1_n ><E|: ot/ o+, T+ :|) .

—0 Jo+j O0Jo+j OJo+j’

Observe that | f;, o +j| = 8nyysso where

2 20"~ 2
¢p (IFs) i Wit 1.0 Wit jr2i=i' e
8nyr; (T, p) = L—— 1{|T|<n1+'}<1— )(E[ e —— D .
Mot p! ; o N+ OJo+j Odo+j'
Using [20], (26) and (29) in Theorem 1, we get that
D, () 2d(i—j"
lim Ddotii=i %) Doo i (A d).

N0 Oy jO o) K(d)
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This implies that lim,,_, oo f”/oﬂ' (t, p) = f(z, p) where

2 2i—i' 1 s
¢4 (IFy) (zd(J i opm "

P
fp)y==7 K@ | Doy d)el“dk) :

r=0
Furthermore, lim;_, g5 Joti (z, p) = g(z, p) where

c (IF ) 22d(j=j") 2
pl K@)?

gr,p)=

/ Do j— /(s d)e*dr| |

2
and |x|% =1 x,% for x = (xq, ..., x,) € R". Using (63)—(65) in [20], we get

22d(j~J")

2 (IF,) B
Zzgnjoﬂ- (t.p) — <Z P ] > K@) 21 f_n IDOOM,'_‘//()»;d)@d)», asn — oQ.

p>2t€l p>2

Then, with Lemma 12, we obtain

Z 3 UF)(f*(0)?

2472+ pd] C=p)+]
K@ Z do ;a2 2

2i=i' 1

<Yy (/ D). 0 d)emdk>p.

teZ r=0

7. Technical lemmas

Lemma 7. Let X be a standard Gaussian random variable. The influence functions IF defined
in Proposition 1 have the following properties:

E[IF(X, %, ®)] = 0; (59)
E[XIF(X, %, )] =0; (60)
E[X2IF(X, *, ®)] # 0. (61)

Proof. We only have to prove the result for * = MAD since the result for * = CR fol-
lows from [16], Lemma 12. (59) comes from E(Lix<i/m@))) = E(ljx<p-13/4)) = 3/4 and
E(1{x<—1/m@)}) = 1/4, where X is a standard Gaussian random variable. (60) follows from
TR XL <134y 9 () dx — [ X1, o134y (x) dx = —p(®71(3/4) + (-2 (3/4)) =0,
where ¢ is the p.d.f. of a standard Gaussian random variable and the fact that E(X) = 0. Let us
now compute E[X?IF(X, MAD, ®)]. Integrating by parts, we get fole{qu,flGM)}(p(x) dx —
3/4 — [px* e 1349 (X) dx + 1/4 = =2¢(®~'(3/4)). Thus, E[X*IF(X, MAD, ®)] =
2 =0, which concludes the proof. O
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Lemma 8. Let X be a standard Gaussian random variable. The influence functions IF, defined
in Lemma 1, have the following properties:

) m*(P)
E[IF"(X,MAD, ®)] = ———————- = 13601, (62)
16 (P~ (3/4)%)
E[IF?(X, CR, ®)] ~ 0.6077. (63)
Proof. Equation (63) comes from [27]. Since
m*(®)

2
EIF*(X, MAD, ®)] = do(®d-1(3/4)2) Var(L <01 3/4)

where 1 x|<¢-1(3/4)) is @ Bernoulli random variable with parameter 1/2, (62) follows. O

Lemma 9. Under the assumptions of Theorem 4 and for any fixed £ > 1,

.
1 J
— Z pi(r —s) > 2mgxt (0), asnj — oo. (64)

J r,s=1

Proof. Let us first prove that

i Z 0 (r —s) = 27800 (0), asn; — oo. (65)

n;
J I<r,s<n;

nj

Using that F;;, defined by F;;(A) = n;1|zrzlei/\r|2’ for all A in [—m. 7], satisfies
J7 Fu; (1) dr =27, we obtain

1 b1
;( ) pj(r—s)) —27ga(0) = / (£ (1) = goo(R) F, (1) dA
J 1<r,s<n; -

n (66)
+/ (800 (%) — 800(0)) Fy; (V) dh.

Using that ]:”j is non-negative, ffﬂ ]-"nj (A)dAr =27 and (35), the first term on the right-hand
side of (66) tends to zero as j tends to infinity. The second term on the right-hand side of (66)
can be bounded above as follows. For 0 < n < m,

‘ f (800 (M) — 800 (0)) Fy; (1) dx‘
-n
< f |00 (A) = 800 (0)| F; (1) dA (67)

—T7

n T
+ / 1800 (M) — 800 (0)| Fn; (A) dA + / [800 (M) — 800 (0)| Fn; (A) dA.
-n n
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Since there exists a positive constant C such that F,,; (A) < C/(n; |A|%), for all A in [—m, 7], the
first and last terms on the right-hand side of (67) are bounded by Crt/(n; n?). The continuity of
8oo at 0 and the fact that fi]n Fn,(W)dr < [T F,;(3)dr = 27 ensure that the right-hand side
of (67) tends to zero as j tends to infinity. This completes the proof of (65).

Observe that, for all k in Z, ,of (k)= [T ek f J‘.'[ (A) dx, where fj*f is the ¢th self-convolution
of fj. Since (35) implies that sup; ¢_ |f}'e ) — ggﬁ (1)] tends to zero as j tends to infinity
for any fixed £ > 2, the same arguments as those used to prove (65) lead to (64). O

Lemma 10. Under the assumptions of Theorem 4, let Dnj and Tnj be defined by Dn‘,» A) =
/ L, e and Fn; (M) = n71 | Zr L €12, respectively, for all ) in [—7, 7). Then the following
two statements hold true:

(i) For any fixed j, £ > 1,
1T, % £ oo < 271 £} — 835 lloo + 11855 l100)- (68)

where || Fy; % f1lloo = sup;ep | [ Fu; (¢ = 2) f1° () dal.
(ii) For any fixed £ > 1,

Dy.(A+x
sup/ Mf*l(k)d)\ — 0, asnj— oo. (69)
xeRJ— \/n]

Proof. (i) Using that .7-',1j is non-negative and such that f_nn .7-',,j (A)dA =27, we get that ||.7-'nj *
fj*‘Z lloo < 27|l fj*ﬁ ll oo, and thus (68) follows from the triangle inequality.
(ii) Writing f;@ ) =( fj*@ (M) — gt (n) + g2f () and using the Cauchy—Schwarz inequality,

|Du; (A + x)| m 12
sup f ’7f*’3(/\)dk<«/ £ — gbs ||oosup< fn_,.mx)dx)
xeRJ— SN xeR - (70)
1Dy, A+ )],
+sup/ — et yda.
xeR 1

By (39), ||f;£ - g<*>f)||<>o tends to zero for any fixed £ > 1, as n; tends to infinity. Since F,; is
a 2m-periodic function, ffﬂ Fu ; (A + x)dA =27 for all x in R, and thus the first term in the
right-hand side of (70) tends to zero as n; tends to infinity.

Let us now study the second term on the right-hand side of (70). Since D,; and g are
2m-periodic functions, n; 1/2f |Dn; (A +x) 85 ) da = /—1/2f D ()83 (u — x) du, for
all x in R. Then, by splitting the 1nterva1 [—m, m] into [—6, 8] and [—t, ]\ [-F, 8] and by using
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the Cauchy—Schwarz inequality, we get that, for all x in R,

% Dy, 40
—L—gx(Mdxr
~/—Tr N

s 1/2 ; s 1/2
5(/ ]—',,j(u)du> <f g;f;(u—x)zdu)
-5 -5
1/2 172
+ (/ Ty () du> (/ et — x)2du> .
[, 7w\[-3,6] [—7,7\[-4,3]

Using that fis Fn; (u)du and f[_n \[—5.6] Fn; () du are bounded above by f[_n g Fny () du =
27 and that g, is bounded, we get that there exists a positive constant C(¢) depending on £ such
that

T Dy, A+ 2], ¢ 1
su U T e ) dh < C0) |l gooll («/§+ >
xeﬂgv/;n N o oo fleo /nj8
Setting § = 8,, = n‘;‘”z, with a in (0, 1/2), (69) follows. 0

Lemma 11. Lete, (§) =27%/2[1,e 2" . e 1@ -D2"OT \yhore £ € R. Forall u > 0, each
component of the vector

Deo (i d) =Y |1+ 20w e, (A + 2m) Y (A + 20m) ¥ (274 (1 + 21m)),
leZ

is bounded on (—7, ), where 1,/0\ is defined in (4).

Proof. We start with the case where / = 0. Using (5), we obtain that 2-u/ 2|)\,|72d|$()\)| X
[¥2740)| = O(|A|2M~2d) a5 A — 0; hence, (7) ensures that 27%/2|A| =24 | (W) ||[P (27| =
O(1). Let ef,k) denotes the kth component of the vector e,,. For [ # 0, (W-2) ensures that, for all A
in (—m, 1), there exists a positive constant C such that |$ M) < C/( + |AD“. Then there exists
a positive constant C’ such that

D2l MY (4 2m) Y (27 (A 2nD))eP (0) < €7 a4 2ml T2
leZ* leZ*

If A =0, Y ,cp 1/127022% < 00 by (7). If A # 0, then, since —t <A < 7, > oz 1/
A+ 2wl 24H2¢ <3 o 1|20 — 1) 12422 < 00 by (7). O

Lemma 12. Let f, and g, be two sequences of measurable functions on a measure space
(2, F, n) such that, foralln, | f,| < gn. Assume that lim,,_, o g, = g, lim;,_, oo fgn du = fgd,u
and that limy, 0 fr = f. Then flimnﬁoo fndu =1lim,_ f fadu.

Proof. Since |f,| < g,, we have —g, < f, < g,. By applying Fatou’s Lemma first to g, — f,
and after to f, + g, we get liminf, oo [(gn — f) > [ ¢ — [ f and liminf,—, o [(gn + fn) >



CLT for the robust wavelet regression estimator 203

fg + ff Since hmn—)OOfgﬂ = fg, liminf,_ o f(gn —f) < jg +liminfn—>oo(_ffn), and
thus we deduce from the first inequality that limsup,,_, o, [ f» < [ f. In the same way, we deduce
from the second inequality that [ f <liminf,_,~ | f,, which concludes the proof. |
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