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On a characterization of ordered pivotal
sampling
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When auxiliary information is available at the design stage, samples may be selected by means of balanced
sampling. Deville and Tillé proposed in 2004 a general algorithm to perform balanced sampling, named
the cube method. In this paper, we are interested in a particular case of the cube method named pivotal
sampling, and first described by Deville and Tillé in 1998. We show that this sampling algorithm, when
applied to units ranked in a fixed order, is equivalent to Deville’s systematic sampling, in the sense that
both algorithms lead to the same sampling design. This characterization enables the computation of the
second-order inclusion probabilities for pivotal sampling. We show that the pivotal sampling enables to
take account of an appropriate ordering of the units to achieve a variance reduction, while limiting the loss
of efficiency if the ordering is not appropriate.

Keywords: balanced sampling; cube method; design effect; sampling algorithm; second order inclusion
probabilities; unequal probabilities

1. Introduction

When auxiliary information is available at the design stage, samples may be selected by means
of balanced sampling. The variance of the Horvitz–Thompson (HT) estimator is then reduced,
since it is approximately given by that of the residuals of the variable of interest on the balanc-
ing variables. Deville and Tillé [6] proposed a general algorithm for balanced sampling, named
the cube method. This sampling algorithm enables the selection of balanced samples with any
number of balancing variables, and any prescribed set of inclusion probabilities.

In order to measure the gain in efficiency provided by the cube method, Deville and Tillé [7]
proposed several variance approximations. They suppose that the sampling design is exactly bal-
anced, and performed with maximum entropy among sampling designs balanced on the same
balancing variables, with the same inclusion probabilities. Then, under an additional assumption
of asymptotic normality of the multivariate HT-estimator under Poisson sampling, the variance
approximations are derived. The assumption of exact balancing may be closely respected, if the
number of balancing variables remains small with regard to the sample size; otherwise, the bal-
ancing error must be taken into account in variance estimation, see Breidt and Chauvet [9]. The
second assumption is related to the entropy of the sampling design: the variance approximations
proposed by Deville and Tillé [7] are unlikely to hold if this assumption is not satisfied.

A practical way to increase the entropy of a sampling design is to sort the population randomly
before sampling. However, this preliminary randomization step is not systematically included in
the sampling process. This is a common practice to sort the population with respect to some
auxiliary variable before the sampling, so as to benefit from a stratification effect. In France,
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Census surveys are conducted annually; the detailed methodology is described in Godinot [8].
Each large municipality (10 000 inhabitants or more in 1999) is the subject of an independent
sampling design and is stratified according to the type of address (large addresses, new addresses,
or other addresses). In each stratum, the addresses are divided into 5 rotation groups. Each year,
all the addresses within one rotation group (for the strata of large addresses and new addresses)
or within a sub-sample (for the stratum of other addresses) are surveyed. In the stratum of other
addresses, the sub-sample is obtained by first, sorting the addresses with respect to the descending
number of dwellings, and then, applying the cube method. In such cases, the conditions for the
variance approximations proposed by Deville and Tillé [7] to hold are clearly not respected.

We are interested in a particular case of the cube method, called pivotal sampling (Deville
and Tillé [5]), obtained when the only balancing condition is given by the variable of inclusion
probabilities. That is, the cube method with the sole fixed-size constraint amounts to pivotal
sampling. This algorithm is an exact sampling procedure, which respects a prescribed set of in-
clusion probabilities, is strictly without replacement and leads to fixed-size designs. In this paper,
we show that the pivotal sampling algorithm, when applied to units ranked in a fixed order, is
equivalent to an algorithm proposed in Deville [4], and known in the literature as Deville’s sys-
tematic sampling (Tillé [13]). The two algorithms are equivalent, in the sense that both lead to the
same sampling design. In particular, the computation of the second-order inclusion probabilities
developed in Deville [4] may be readily applied to pivotal sampling. This provides an answer
to a problem raised by Bondesson and Grafström [1], page 7. Deville’s systematic sampling has
similarities with Markov chain designs introduced by Breidt [2]. It has found uses in the context
of longitudinal surveys, see Nedyalkova, Qualité, and Tillé [11].

The paper is organized as follows. In Section 2, the notation is defined. Ordered pivotal sam-
pling and Deville’s systematic sampling are presented in Sections 3 and 4, respectively, and some
useful results are derived. The second-order inclusion probabilities for ordered pivotal sampling
are given in Section 5. Some results which illustrate the practical interest of ordered pivotal
sampling are presented in Section 6.

2. Notation

Consider a finite population U consisting of N sampling units that may be represented by integers
k = 1, . . . ,N . We assume that the order of the units in the population is fixed prior to sampling,
and may be confounded with the natural order of their indexes. A sample s, defined as a subset
of U , is selected with inclusion probabilities π = (π1, . . . , πN)′. We assume without loss of
generality that 0 < πk < 1 for any unit k in U , with n = ∑

k∈U πk the sample size. Let πkl

denote the probability that units k and l are selected jointly in the sample.
We define Vk = ∑k

l=1 πl for any unit k ∈ U , with V0 = 0. A unit k is said to be cross-border if
Vk−1 ≤ i and Vk > i for some nonnegative integer i. The cross-border units are denoted as ki, i =
1, . . . , n − 1, and we note ai = i − Vki−1 and bi = Vki

− i. The microstratum Ui, i = 1, . . . , n, is
defined as

Ui = {k ∈ U ; ki−1 ≤ k ≤ ki}, (2.1)

with k0 = 0 and kn = N + 1. To fix ideas, useful quantities for population U are presented in
Figure 1.
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Figure 1. Inclusion probabilities and cross-border units in microstratum Ui , for population U .

The microstrata are generally overlapping, since one cross-border unit may belong to two
adjacent microstrata: the cross-border unit ki belongs both to the microstratum Ui (with an as-
sociated probability ai ) and to the microstratum Ui+1 (with an associated probability bi ). In the
particular case when Vki

= i, we have bi = 0. To avoid the introduction of specific notations for
such cases, we consider in Sections 2–5 that, in this situation, the cross-border unit ki belongs to
the microstratum Ui+1 as a “phantom unit,” that is, with an associated probability equal to 0. In
Section 6, we simply consider that the cross-border unit ki belongs to the microstratum Ui only
in such situations.

The N sampling units are grouped to obtain a population Uc = {u1, . . . , u2n−1} of clusters.
There are the clusters of cross-border units (n − 1 singletons), denoted as u2i with associated
probability φ2i = πki

for i = 1, . . . , n − 1. There are the n clusters of units that are not cross-
borders and that are between two consecutive integers, denoted as u2i−1 with associated proba-
bility φ2i−1 = Vki−1 −Vki−1 , for i = 1, . . . , n. We note ψ = (φ1, . . . , φ2n−1)

′. To fix ideas, useful
quantities for population Uc are presented in Figure 2. If (at least) one of the cross-border units

Figure 2. Inclusion probabilities and cross-border units in microstrata Ui and Ui+1 for population Uc .
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Table 1. Clusters and associated probabilities for a population of size 8

i 1 2 3 4 5 6 7

ui {1,2} {3} {4} {5} ∅ {6} {7,8}
φi 0.7 0.3 0.4 0.9 0 0.8 0.9

in Ui has a large inclusion probability, there may not exist any non-cross-border unit between
integers i −1 and i, so that the cluster u2i−1 is empty. To avoid the need for specific notations for
such cases, we may view this situation as a particular case of our framework by allowing a cluster
u2i−1 to be a “phantom cluster,” that is, an empty cluster with associated probability φ2i−1 equal
to 0. For example, suppose that N = 8, n = 4 and π = (0.2,0.5,0.3,0.4,0.9,0.8,0.5,0.4)′. We
obtain the 4 microstrata U1 = {1,2,3}, U2 = {3,4,5}, U3 = {5,6} and U4 = {6,7,8}. In partic-
ular, we have a1 = 0.3 = π3 and b1 = 0, so that the cross-border unit 3 is a phantom unit for
the microstratum U2. Also, we obtain 7 clusters (see Table 1): the cluster u5 is empty, with an
associated probability equal to zero.

3. Ordered pivotal sampling

A general algorithm for pivotal sampling is described in Deville and Tillé [5]. In the version
presented in Algorithm 1, the order of the sampling units is explicitly taken into account. We call
it ordered pivotal sampling to avoid confusion. At each step, one or two coordinates of π(t) are
randomly rounded to 0 or 1, and remain there forever. In at most N steps, the final sample is
obtained.

Roughly speaking, the algorithm may be summarized as follows. At the beginning, in micro-
stratum U1 (i = 1), the two first units 1 and 2 fight, the loser is definitely eliminated while the
survivor (denoted as J0) gets the sum of their probabilities and then faces the following unit. The
fights go on until the accumulated probability exceeds 1, which occurs at time t = k1 when the
survivor J0 faces the cross-border unit k1. One of the two remaining units, denoted as W1, wins
and is then definitely selected in the sample while the other one, denoted as J1, jumps to the
microstratum U2.

More generally, in microstratum Ui , the first unit ki−1 is replaced with the unit Ji−1 which
jumps from the microstratum Ui−1. The units Ji−1 and ki−1 + 1 fight, the survivor gets the sum
of their probabilities and then faces the next unit. The fights go on until the survivor Ji−1 faces
the cross-border unit ki . One of the two remaining units (Wi ) wins and is then definitely selected
in the sample while the other one (Ji ) jumps to the following microstratum. Lemma 3.1 states
that Algorithm 1 may alternatively be seen as a two-stage procedure. The proof follows from
definition, and is thus omitted.

Lemma 3.1. Ordered pivotal sampling with parameter π may be obtained by two-stage sam-
pling, where a sample sc of n clusters is first selected in Uc by means of ordered pivotal sampling
with parameter ψ , and one unit k is then selected in each uj ∈ sc with a probability proportional
to πk .
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Algorithm 1 Ordered Pivotal Sampling with parameter π

1. We initialize with i = 1, J0 = 1 and π(0) = π .
2. For t = 2, . . . ,N, do:

(a) If m ∈ U \ {Ji−1, t}, then πm(t) = πm(t − 1).

(b) If πJi−1(t − 1) + πt (t − 1) < 1, let λ1(t) = πJi−1 (t−1)

πJi−1 (t−1)+πt (t−1)
. Then

i. with probability λ1(t), let

[πJi−1(t),πt (t)] = [πJi−1(t − 1) + πt (t − 1),0];
ii. with probability 1 − λ1(t), let Ji−1 = t and

[πJi−1(t),πt (t)] = [0,πJi−1(t − 1) + πt (t − 1)].

(c) If πJi−1(t − 1) + πt (t − 1) ≥ 1, let λ1(t) = 1−πt (t−1)
2−πJi−1 (t−1)−πt (t−1)

. Then

i. with probability λ1(t), let Wi = Ji−1, let Ji = t and

[πJi−1(t),πt (t)] = [1,πJi−1(t − 1) + πt (t − 1) − 1];
ii. with probability 1 − λ1(t), let Wi = t , let Ji = Ji−1 and

[πJi−1(t),πt (t)] = [πJi−1(t − 1) + πt (t − 1) − 1,1];
iii. let i = i + 1.

3. The sample is given by {W1, . . . ,Wn}.

We assume that a sample Sop is selected in Uc by means of ordered pivotal sampling with
parameter ψ , and we let X1 < · · · < Xn denote the units selected in the sample, ranked in as-
cending order. Lemma 3.2 states useful relations between on the one hand, the sampled units Xi ,
and on the other hand, the winners Wi and jumpers Ji . Lemma 3.3 gives the probabilities for the
different outcomes in the case of a non-cross-border unit u2i−1.

Lemma 3.2. In case of ordered pivotal sampling with parameter ψ , we have

{Xi = u2i−2} ⇒ {
Ji−1 ∈ {X1, . . . ,Xi}

}
, (3.1)

{Xi = u2i−1} ⇒ {Wi = u2i−1} ∪ {Ji = u2i−1}, (3.2)

{Xi = u2i} ⇒ {
Ji /∈ {X1, . . . ,Xi}

}
. (3.3)

Proof. Assume that Xi = u2i−2. This implies that i units exactly are selected in the i − 1 first
microstrata U1, . . . ,Ui−1. On the other hand, if Ji−1 /∈ {X1, . . . ,Xi} the unit Ji−1 is not se-
lected in the sample so that at most i − 1 units are selected in U1, . . . ,Ui−1. This proves (3.1),
and by a similar argument we obtain (3.3). It is easily seen that (3.2) holds, since the selec-
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tion of u2i−1 implies that this unit is either the winner Wi or the jumper Ji in the microstra-
tum Ui . �

Lemma 3.3. In case of ordered pivotal sampling with parameter ψ , we have

pr(Wi = u2i−1) = (1 − ai − bi−1)(1 − ai − bi)

(1 − ai)(1 − bi)
, (3.4)

pr(Ji = u2i−1) = ai(1 − ai − bi−1)

(1 − ai)(1 − bi)
, (3.5)

pr(Xi = u2i−1) = 1 − ai − bi−1. (3.6)

Proof. The event

{Wi = u2i−1}
may be alternatively interpreted as follows: in the fight between Ji−1 and u2i−1, the unit u2i−1
survives; then in the next fight, the unit u2i−1 is the selected unit Wi , while the unit u2i is the
jumping unit Ji . Consequently, we have:

pr(Wi = u2i−1) = 1 − bi−1 − ai

1 − ai

× 1 − ai − bi

1 − bi

,

which gives (3.4). Similarly, we obtain

pr(Ji = u2i−1) = 1 − bi−1 − ai

1 − ai

× ai

1 − bi

,

which gives (3.5). We now consider equation (3.6). Since

{Xi = u2i−1} ⇒ {u2i−1 ∈ Sop}
and

pr(u2i−1 ∈ Sop) = 1 − ai − bi−1,

it suffices to show that

{u2i−1 ∈ Sop} ⇒ {Xi = u2i−1}. (3.7)

Since {u2i−1 ∈ Sop} implies that u2i−1 survives in its duel against Ji−1, this in turn implies that
Ji−1 /∈ {X1, . . . ,Xi}. In other words, {u2i−1 ∈ Sop} implies that exactly i − 1 units smaller than
u2i−1 were selected, which proves (3.7). �

Finally, let Uc,i = {u2i−2, . . . , u2n−1}, ψi = (bi−1, φ2i−1, . . . , φj , . . . , φ2n−1)
′, and Sop,i be

a random sample selected in Uc,i by means of ordered pivotal sampling with parameter ψi .
Lemma 3.4 establishes some relations for conditional inclusion probabilities in Sop,i of the first
units in Uc,i .
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Figure 3. Inclusion probabilities and cross-border units in the two first microstrata of population Uc,i .

Lemma 3.4.

pr(u2i ∈ Sop,i , u2i−1 /∈ Sop,i |u2i−2 ∈ Sop,i)
(3.8)

= bi

1 − ai

,

pr(u2i+1 ∈ Sop,i , u2i /∈ Sop,i , u2i−1 /∈ Sop,i |u2i−2 ∈ Sop,i)
(3.9)

= (1 − ai − bi)(1 − bi − ai+1)

(1 − ai)(1 − bi)
,

pr(u2i+2 ∈ Sop,i , u2i+1 /∈ Sop,i , u2i /∈ Sop,i , u2i−1 /∈ Sop,i |u2i−2 ∈ Sop,i)
(3.10)

= (1 − ai − bi)ai+1

(1 − ai)(1 − bi)
.

Proof. To fix ideas, the first units in population Uc,i and related quantities are presented in
Figure 3.

We first consider equation (3.8). Since bi−1 is the first-order inclusion probability of unit u2i−2
in sample Sop,i , we have

pr(u2i−2 ∈ Sop,i) = bi−1. (3.11)

On the other hand, the event

{u2i ∈ Sop,i , u2i−1 /∈ Sop,i , u2i−2 ∈ Sop,i}
may be alternatively interpreted as follows: in the first fight, the unit u2i−2 survives against the
unit u2i−1; in the second fight, any of the two units u2i−2 or u2i is the selected unit W1, while
the other is the jumping unit J1; then, the jumping unit J1 is selected during one of the following
fights. Consequently, we have:

pr(u2i ∈ Sop,i , u2i−1 /∈ Sop,i , u2i−2 ∈ Sop,i)
(3.12)

= bi−1

1 − ai

× 1 × bi,
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and equation (3.8) follows from (3.11) and (3.12). We now consider equation (3.9). The event

{u2i+1 ∈ Sop,i , u2i /∈ Sop,i , u2i−1 /∈ Sop,i , u2i−2 ∈ Sop,i}
may be interpreted as follows: in the first fight, the unit u2i−2 survives against the unit u2i−1;
in the second fight, u2i−2 is the selected unit W1, while u2i is the jumping unit J1; in the third
fight, the unit u2i+1 survives against the unit u2i ; then, the unit u2i+1 is selected during one of
the following fights. Consequently, we have:

pr(u2i+1 ∈ Sop,i , u2i /∈ Sop,i , u2i−1 /∈ Sop,i , u2i−2 ∈ Sop,i)

= bi−1

1 − ai

× 1 − ai − bi

1 − bi

× 1 − bi − ai+1

1 − ai+1
× (1 − ai+1) (3.13)

= bi−1(1 − ai − bi)(1 − bi − ai+1)

(1 − ai)(1 − bi)
,

which, together with (3.11), leads to (3.9). Finally, we consider equation (3.10). The event

{u2i+2 ∈ Sop,i , u2i+1 /∈ Sop,i , u2i /∈ Sop,i , u2i−1 /∈ Sop,i , u2i−2 ∈ Sop,i}
may be interpreted as follows: in the first fight, the unit u2i−2 survives against the unit u2i−1; in
the second fight, u2i−2 is the selected unit W1, while u2i is the jumping unit J1; in the third fight,
any of the two units Ji = u2i or u2i+1 survives; in the fourth fight, u2i+2 is the selected unit W2,
while the other unit is the jumper J2; then, the unit J2 is not selected during one of the following
fights. Consequently, we have:

pr(u2i+2 ∈ Sop,i , u2i+1 /∈ Sop,i , u2i /∈ Sop,i , u2i−1 /∈ Sop,i , u2i−2 ∈ Sop,i)

= bi−1

1 − ai

× 1 − ai − bi

1 − bi

× 1 × ai+1

1 − bi+1
× (1 − bi+1) (3.14)

= bi−1(1 − ai − bi)ai+1

(1 − ai)(1 − bi)
,

which gives (3.10). �

4. Deville’s systematic sampling

The sampling algorithm known in the literature as Deville’s systematic sampling (Deville [4];
Tillé [13]) is presented in Algorithm 2. This algorithm proceeds in n sub-samplings of size 1 in
the microstrata U1, . . . ,Un, and the random variables wi which indicate the sampled units are
generated so that a cross-border unit ki−1 may not be selected twice in the sample: at step i,
one unit denoted as Yi is drawn in Ui if ki−1 was not selected at step i − 1, and in Ui \ {ki−1}
otherwise. This sampling algorithm may be particularly useful in the context of business surveys,
when a fine stratification is used leading to small and possibly non-integer sample size inside
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Algorithm 2 Deville’s systematic sampling with parameter π

At step 1:
1. A distributed Uniform(0,1) random variable w1 is generated.
2. The unit k is selected if Vk−1 ≤ w1 < Vk .

At step i:

1. A random variable wi is generated:
(a) if unit ki−1 was selected at step i − 1, then wi is generated according to a distributed

Uniform(bi−1,1) random variable,
(b) otherwise, wi is generated:

• according to a distributed Uniform(0, bi−1) random variable with probability
ai−1bi−1{(1 − ai−1)(1 − bi−1)}−1,

• according to a distributed Uniform(0,1) random variable with probability 1 −
ai−1bi−1{(1 − ai−1)(1 − bi−1)}−1.

2. The unit k is selected if Vk−1 ≤ wi + (i − 1) < Vk .

(micro)strata. Deville’s systematic sampling directly handles the rounding problem, since any
unit for which the sampling outcome is still undecided is moved to the next stratum, where the
final sampling decision is then obtained. Lemma 4.1 follows from the definition of Algorithm 2.

Lemma 4.1. Deville’s systematic sampling with parameter π may be obtained by two-stage
sampling, where a sample sc of n clusters is first selected in Uc by means of Deville’s systematic
sampling with parameter ψ , and one unit k is then selected in each uj ∈ sc with a probability
proportional to πk .

Assume that a sample is selected in Uc by means of Deville’s systematic sampling with pa-
rameter ψ . The random variable Yi+1 which gives the result of the sampling in the microstratum
Ui+1 only depends on the outcome of step i, so that

pr(Yi+1 = uj |Y1, . . . , Yi) = pr(Yi+1 = uj |Yi). (4.1)

The different cases for the transition probabilities in (4.1) easily follow from the definition of
Algorithm 2, and are given below:

pr(Yi+1 = uj |Y1, . . . , Yi−1, Yi = u2i−2)
(4.2)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

bi

1 − ai

, j = 2i,

(1 − bi − ai+1)(1 − ai − bi)

(1 − ai)(1 − bi)
, j = 2i + 1,

ai+1(1 − ai − bi)

(1 − ai)(1 − bi)
, j = 2i + 2,
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pr(Yi+1 = uj |Y1, . . . , Yi−1, Yi = u2i−1)
(4.3)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

bi

1 − ai

, j = 2i,

(1 − bi − ai+1)(1 − ai − bi)

(1 − ai)(1 − bi)
, j = 2i + 1,

ai+1(1 − ai − bi)

(1 − ai)(1 − bi)
, j = 2i + 2,

pr(Yi+1 = uj |Y1, . . . , Yi−1, Yi = u2i )
(4.4)

=

⎧⎪⎨
⎪⎩

(1 − bi − ai+1)

(1 − bi)
, j = 2i + 1,

ai+1

(1 − bi)
, j = 2i + 2.

5. Second-order inclusion probabilities

We can now formulate our main result.

Theorem 5.1. Ordered pivotal sampling and Deville’s systematic sampling with the same pa-
rameter π induce the same sampling design.

Proof. From Lemmas 3.1 and 4.1, it is sufficient to prove the result in case of ordered systematic
sampling and Deville’s systematic sampling with parameter ψ in the population Uc . We only
need to show that equations (4.2)–(4.4) hold in case of ordered pivotal sampling. Recall that we
note

Uc,i = {u2i−2, . . . , u2n−1},
ψi = (bi−1, φ2i−1, . . . , φj , . . . , φ2n−1)

′,

and that Sop,i denotes a random sample selected in Uc,i by means of ordered pivotal sampling
with parameter ψi (see Section 3).

We first consider equation (4.2). From (3.1), we obtain:

pr(Xi+1 = u2i |X1, . . . ,Xi−1,Xi = u2i−2)

= pr(Xi+1 = u2i |X1, . . . ,Xi−1,Xi = u2i−2, Ji−1 ∈ {X1, . . . ,Xi}),
which is equivalent to pr(u2i ∈ Sop,i , u2i−1 /∈ Sop,i |u2i−2 ∈ Sop,i), so that the result follows from
equation (3.8).

Similarly, we obtain

pr(Xi+1 = u2i+1|X1, . . . ,Xi−1,Xi = u2i−2)

= pr(Xi+1 = u2i+1|X1, . . . ,Xi−1,Xi = u2i−2, Ji−1 ∈ {X1, . . . ,Xi})
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≡ pr(u2i+1 ∈ Sop,i , u2i /∈ Sop,i , u2i−1 /∈ Sop,i |u2i−2 ∈ Sop,i)

= (1 − ai − bi)(1 − bi − ai+1)

(1 − ai)(1 − bi)
,

where the last line follows from (3.9), and

pr(Xi+1 = u2i+2|X1, . . . ,Xi−1,Xi = u2i−2)

= pr(Xi+1 = u2i+2|X1, . . . ,Xi−1,Xi = u2i−2, Ji−1 ∈ {X1, . . . ,Xi})
≡ pr(u2i+2 ∈ Sop,i , u2i+1 /∈ Sop,i , u2i /∈ Sop,i , u2i−1 /∈ Sop,i |u2i−2 ∈ Sop,i)

= (1 − ai − bi)ai+1

(1 − ai)(1 − bi)
,

where the last line follows from (3.10). This proves equation (4.2). The proof for equation (4.4)
is similar, and is thus omitted.

We now turn to equation (4.3). We introduce some further notation. Let

Uc,i+1 = {u2i , . . . , u2n−1},
ψi+1 = (bi, φ2i+1, . . . , φj , . . . , φ2n−1)

′,

and let Sop,i+1 be a random sample selected in Uc,i+1 by means of ordered pivotal sampling with
parameter ψi+1. We have

pr(Xi+1 = u2i |X1, . . . ,Xi−1,Xi = u2i−1,Wi = u2i−1)

= pr(Xi+1 = u2i |X1, . . . ,Xi−1,Xi = u2i−1, Ji = u2i ) (5.1)

≡ pr(u2i ∈ Sop,i+1) = bi,

where the second line in (5.1) comes from

{Xi = u2i−1,Wi = u2i−1} ⇔ {Xi = u2i−1, Ji = u2i}.
Also,

pr(Xi+1 = u2i |X1, . . . ,Xi−1,Xi = u2i−1, Ji = u2i−1) = 1, (5.2)

since

{Xi = u2i−1, Ji = u2i−1} ⇒ {Xi = u2i−1,Wi = u2i} ⇒ {Xi+1 = u2i}.
Further,

pr(Wi = u2i−1|X1, . . . ,Xi−1,Xi = u2i−1)

= pr(Wi = u2i−1|Xi = u2i−1) (5.3)
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= pr(Xi = u2i−1|Wi = u2i−1)
pr(Wi = u2i−1)

pr(Xi = u2i−1)

= 1 × (1 − ai − bi−1)(1 − ai − bi){(1 − ai)(1 − bi)}−1

1 − ai − bi−1

= 1 − ai − bi

(1 − ai)(1 − bi)
,

the fourth line in (5.3) being a consequence of Lemma 3.3. The same reasoning leads to

pr(Ji = u2i−1|X1, . . . ,Xi−1,Xi = u2i−1)

= pr(Ji = u2i−1|Xi = u2i−1)

= pr(Xi = u2i−1|Ji = u2i−1)
pr(Ji = u2i−1)

pr(Xi = u2i−1)
(5.4)

= bi × ai(1 − ai − bi−1){(1 − ai)(1 − bi)}−1

1 − ai − bi−1

= aibi

(1 − ai)(1 − bi)
.

From equations (5.1)–(5.4), we obtain that

pr(Xi+1 = u2i |X1, . . . ,Xi−1,Xi = u2i−1)

= bi × 1 − ai − bi

(1 − ai)(1 − bi)
+ 1 × aibi

(1 − ai)(1 − bi)

= bi

1 − ai

.

Similar computations lead to

pr(Xi+1 = u2i+1|X1, . . . ,Xi−1,Xi = u2i−1) = (1 − bi − ai+1)(1 − ai − bi)

(1 − ai)(1 − bi)

and

pr(Xi+1 = u2i+2|X1, . . . ,Xi−1,Xi = u2i−1) = ai+1(1 − ai − bi)

(1 − ai)(1 − bi)
,

which proves (4.3). �

Theorem 5.1 implies that ordered pivotal sampling shares the same second-order inclusion
probabilities as Deville’s systematic sampling. The computation of these probabilities is devel-
oped in Deville [4], and is reminded below.
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Theorem 5.2 (Deville [4]). Let k and l be two distinct units in U . If k and l are two non-cross-
border units that belong to the same microstratum Ui , then

πkl = 0,

if k and l are two non-cross-border units that belong to distinct microstrata Ui and Uj , respec-
tively, where i < j , then

πkl = πkπl{1 − c(i, j)},
if k = ki−1 and l is a non-cross-border unit that belongs to the microstratum Uj where i ≤ j ,
then

πkl = πkπl[1 − bi−1(1 − πk){πk(1 − bi−1)}−1c(i, j)],
if l = kj−1 and k is a non-cross-border unit that belongs to the microstratum Ui where i < j ,
then

πkl = πkπl{1 − (1 − πl)(1 − bj−1)(πlbj−1)
−1c(i, j)},

if k = pi−1 and l = pj−1, where i < j , then

πkl = πkπl[1 − bi−1(1 − bj−1)(1 − πk)(1 − πl){πkπlbj−1(1 − bi−1)}−1c(i, j)],

where c(i, j) = ∏j−1
l=i cl , cl = albl{(1 − al)(1 − bl)}−1 and with c(i, i) = 1.

As noticed by Deville [4], it follows from Theorem 5.2 that many of the second-order inclusion
probabilities are zero. As a result, no unbiased variance estimator may be found for the Horvitz–
Thompson estimator. The search for variance estimators under reasonable model assumptions
for the variable of interest y is a matter for further research.

6. Interest of ordered pivotal sampling

This is clear from Theorems 5.1 and 5.2 that ordered pivotal sampling induces a sampling design
with a rather small entropy, since the second-order inclusion probabilities heavily depend on the
order of the units in the population. If the maximization of entropy is a major concern, random-
ized pivotal sampling, where the list of the units in the population is randomly ordered before
applying the pivotal method, should certainly be preferred. The main interest of ordered pivotal
sampling lies in the gain of precision obtained from a stratification effect, if the ranking of the
units in the population is well correlated to the variable of interest. In this sense, ordered pivotal
sampling is similar in spirit to classical, ordered systematic sampling. However, systematic sam-
pling can be particularly inefficient if the ordering is unappropriate, with regard to the variable of
interest. Ordered pivotal sampling introduces more randomization in the sampling process, and
should be more robust, in some sense, than systematic sampling. In the sequel, ordered pivotal
sampling is compared to other sampling designs with respect to various criteria.
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To fix ideas, we consider the case of (i) equal inclusion probabilities πk = n/N , such that (ii)
the population size N is an integer multiple of the sample size n, and we note N = np. In this
case, the microstrata Ui, i = 1, . . . , n, are non overlapping with the same size Ni = p. We have

Ui = {(i − 1)p + 1, . . . , (i − 1)p + p}, (6.1)

and ordered pivotal sampling amounts to stratified simple random sampling of size ni = 1 in-
side each microstratum Ui . Also, it is well known that under the same assumptions (i) and
(ii), systematic sampling amounts to simple random sampling of size m = 1 in the population
Gc = {g1, . . . , gp} of M = p clusters, where each cluster

gj = {j, j + p, . . . , j + (n − 1)p} (6.2)

contains Mj = n units. Let y denote some variable of interest, and let

t̂yπ =
∑
k∈S

yk

πk

(6.3)

denote the Horvitz–Thompson (HT) estimator of the total ty = ∑
k∈U yk .

Under conditions (i) and (ii), ordered systematic sampling and ordered pivotal sampling may
be seen as particular cases of Markov chain designs (Breidt [2]). Let M be a doubly stochastic
transition probability matrix, of size p. In a Markov chain design with matrix of transition M , a
sample s = {R1,p + R2, . . . , (n − 1)p + Rn} is selected, where R1, . . . ,Rn is the Markov chain
associated to M , with R1 being uniformly distributed on {1, . . . , p}. Let I (p) denote the identity
matrix of size p, and J (p) denote the square matrix of size p with all elements equal to 1. The
use of the matrix of transition

Mρ = ρ
J (p)

p
+ (1 − ρ)I (p),

with ρ ∈ [0,1] defines the category of compromise Markov chain designs (Breidt [2]). The choice
ρ = 0 leads to ordered systematic sampling, while the choice ρ = 1 leads to ordered pivotal
sampling.

6.1. Entropies of sampling designs

As a measure of randomness of a sampling design q(·), we use the entropy H(q) defined as

H(q) = −
∑
s⊂U

q(s) logq(s), (6.4)

with 0 log 0 = 0 by convention. We have

H(srs) = logN ! − logn! − log(N − n)!

=
n−1∑
k=0

log

(
N − k

n − k

)
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for simple random sampling, and

H(sys) = log

(
N

n

)

for ordered systematic sampling, see for example Tillé and Haziza [14]. Some straightforward
algebra leads to

H(ops) = n log

(
N

n

)

for ordered pivotal sampling. As a measure of comparison of entropy for two sampling designs
q(·) and r(·), we may use the Kullback–Leibler divergence

D(q‖r) =
∑
s⊂U

q(s) log
q(s)

r(s)

if the two sampling designs are such that r(s) = 0 ⇒ q(s) = 0. We obtain

D(sys‖srs) =
n−1∑
k=1

log

(
N − k

n − k

)
,

D(ops‖srs) =
n−1∑
k=0

log

(
1 − k/N

1 − k/n

)
,

D(sys‖ops) = (n − 1) log

(
N

n

)
.

Both simple random sampling and ordered pivotal sampling clearly have much larger entropy
than ordered systematic sampling.

6.2. Maximum design-effect for sampling designs

This is a standard fact that the variance of the HT-estimator under without-replacement simple
random sampling is given by

Vsrs(t̂yπ ) = N2 1 − f

n
S2

y , (6.5)

where f = n/N , S2
y = 1

N−1

∑
k∈U(yk − μy)

2 and μy = 1
N

∑
k∈U yk . On the other hand, the

variance of the HT-estimator under ordered pivotal sampling and assumptions (i) and (ii) may be
written as

Vops(t̂yπ ) = N2 1 − f

n

1

n

n∑
i=1

S2
yi , (6.6)
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where S2
yi = 1

Ni−1

∑
k∈Ui

(yk − μyi)
2 and μyi = 1

Ni

∑
k∈Ui

yk . Finally, the variance of the HT-
estimator under systematic sampling is then given by

Vsys(t̂yπ ) = N2 1 − f

n

1

n
S2

Y , (6.7)

where

S2
Y = 1

M − 1

p∑
j=1

(
tyj − ty

M

)2

= n2

p − 1

p∑
j=1

(myj − μy)
2,

with tyj = ∑
k∈Gj

yk and myj = tyj /n.

As a measure of risk of a strategy combining a sampling design q(·) and HT-estimation, we
may use the maximum design-effect

DMAX(q) = max
y∈C

Vq(t̂yπ )

Vsrs(t̂yπ )
, (6.8)

where C denotes the set of non-constant variables of interest (that is, containing all variables y

such that S2
y 
= 0).

Theorem 6.1. Assume that conditions (i) and (ii) are satisfied. Then we have for ordered pivotal
sampling

DMAX(ops) = N − 1

N − n
(6.9)

and for ordered systematic sampling

DMAX(sys) = n
N − 1

N − n
. (6.10)

Proof. For any variable y, it follows from a standard analysis of variance that

S2
y =

n∑
i=1

p − 1

N − 1
S2

yi +
n∑

i=1

p

N − 1
(μyi − μy)

2,

so that
n∑

i=1

S2
yi ≤ N − 1

p − 1
S2

y
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and the equality occurs if all the stratum means μyi are equal. A joint application of (6.5) and
(6.6) leads to

Vops(t̂yπ )

Vsrs(t̂yπ )
≤ N − 1

n(p − 1)
S2

y

/
S2

y = N − 1

N − n
,

which gives (6.9). The use of an alternative analysis of variance leads to

S2
y =

p∑
j=1

n − 1

N − 1
σ 2

yj +
p∑

j=1

n

N − 1
(myj − μy)

2,

where σ 2
yj = 1

n−1

∑
k∈Gj

(yk − myj )
2. This leads to

S2
Y ≤ n2

p − 1

N − 1

n
S2

y ,

and the equality occurs if the variable y is constant inside any cluster gj . By a joint application
of (6.5) and (6.7), we have

Vsys(t̂yπ )

Vsrs(t̂yπ )
≤ n2

p − 1

N − 1

n2
S2

y

/
S2

y = n
N − 1

N − n
,

which gives (6.10). �

If the sample size n remains small to moderate, equation (6.9) implies that DMAX tends to 1
in case of ordered pivotal sampling, if N is sufficiently large. Even in the worst cases, ordered
pivotal sampling will thus be competitive to simple random sampling. On the other hand, equa-
tion (6.10) implies that a strategy involving systematic sampling may be considerably more risky
in some situations.

6.3. Equality of treatment of variables for sampling designs

As pointed out by a referee, the DMAX criterion considered previously is very stringent since
referring to the worst possible variable for sampling designs. In case of ordered systematic sam-
pling, this would be a cyclical variable whose period is equal to p = N/n; such a situation is
usually unlikely to occur, except in particular situations.

An alternative criterion studied by Deville [3] and Qualité [12] considers the equality of treat-
ment of variables. For any sampling design q(·) with first-order inclusion probabilities πk and
second-order inclusion probabilities πkl(q) with k, l ∈ U , let

�(q) = [�kl(q)]k,l∈U

be its design variance–covariance matrix, with �kl(q) = πkl(q) − πkπl . Let 0 ≤ λ1(q) ≤ · · · ≤
λN(q) denote the eigenvalues of �(q). For any variable y that lies on the unit sphere of the
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Euclidean norm (that is, such that
∑

k∈U y2
k = 1), we have

λ1(q) ≤ Vp(t̂yπ ) ≤ λN(q).

Roughly speaking, the extreme eigenvalues give the extreme possible values for the variance.
Qualité [12], page 50, proposed to measure the equality of treatment for variables in terms of
minimization of the dispersion of the eigenvalues, denoted as

δ(q) = N−1
N∑

k=1

{λk(q) − λ̄(q)}2

with λ̄(q) = N−1 ∑N
k=1 λk(q). Note that

∑N
k=1 λk(q) = T r(�(q)), where T r(·) denotes the

trace. For any sampling design q(·) with equal probabilities πk = n/N , this leads to

λ̄(q) = N−1
∑
k∈U

πk(1 − πk)

= p − 1

p2
,

which will be simply denoted as λ̄ in the sequel.
The ranking of the evaluated sampling designs with respect to this criterion is established in

Theorem 6.2. Clearly, ordered pivotal sampling tends to treat the variables more equally than
ordered systematic sampling. To demonstrate Theorem 6.2, we need the following lemma.

Lemma 6.1. Assume that the sampling design q(·) is performed with equal probabilities πk =
n/N , and that conditions (i) and (ii) are satisfied. Assume that �(q) has only two eigenvalues 0
and λ+(q) > 0, with multiplicities N0(q) and N − N0(q), respectively. Then:

δ(q) = N0(q)

N − N0(q)
λ̄2. (6.11)

Proof. Since q(·) has only one strictly positive eigenvalue λ+(q) with multiplicity N − N0(q),
we have λ+(q) = N

N−N0(q)
λ̄. Then

Nδ(q) =
N∑

k=1

{λk(q) − λ̄}2

= N0(q)λ̄2 + {N − N0(q)}
{

N

N − N0(q)
λ̄ − λ̄

}2

= N
N0(q)

N − N0(q)
λ̄2. �
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Theorem 6.2. Assume that conditions (i) and (ii) are satisfied. Then we have

δ(srs) ≤ δ(ops) ≤ δ(sys). (6.12)

Proof. It may be easily shown (see, e.g., Deville [3], page 120) that in case of simple random
sampling, �(srs) has only two eigenvalues 0 and λ+(srs) = Nλ̄

N−1 , with N0(srs) = 1.
Let I (n) denotes the identity matrix of size n, and J (n) denotes the square matrix of size n

with all elements equal to 1. After some algebra, we obtain from the definition of ordered pivotal
sampling that

�(ops) =

⎛
⎜⎜⎜⎝

�1 0 · · · 0

0 �1 · · · ...
...

. . .
. . . 0

0 · · · 0 �1

⎞
⎟⎟⎟⎠ = I (n) ⊗ �1,

where �1 = p−1{I (p) − p−1J (p)} and ⊗ denotes the Kronecker product. It follows that the
N eigenvalues of �(ops) are given by the products of the eigenvalues of I (n) and �1 (see for
example Theorem 1 in Magnus and Neudecker [10], page 28). The eigenvalues of �1 are p−1 and
0 with multiplicities p − 1 and 1, respectively. Consequently, �(ops) has only two eigenvalues
0 and λ+(ops) = p−1, with N0(ops) = n.

Similarly, we obtain from the definition of ordered systematic sampling that

�(sys) =

⎛
⎜⎜⎜⎝

�1 · · · · · · �1
...

...
...

...

�1 · · · · · · �1

⎞
⎟⎟⎟⎠ = J (n) ⊗ �1.

Since the eigenvalues of J (n) are 0 and n with multiplicities n − 1 and 1, respectively, �(sys)

has only two eigenvalues 0 and λ+(sys) = np−1, with N0(sys) = N − p + 1.
Equation (6.11) implies that δ(q) increases as N0(q) increases. Clearly, N0(srs) ≤ N0(ops),

and from the identity (N − p + 1) − n = (p − 1)(n − 1) ≥ 0, we obtain that N0(ops) ≤ N0(sys)

so that the result follows. �

6.4. Some numerical results on a small population

To investigate on the properties of considered sampling algorithms, we considered a small exam-
ple. We first generated a finite population of size N = 12, containing three variables of interest,
y1, y2 and y3. Table 2 shows the values for the three variables of interest. The variable y1 is
highly correlated to the order of the units in the population, on the contrary to variable y2. The
variable y3 exhibits a particularly unfavorable case for systematic sampling.

We considered equal probability sampling of size n = 2 (respectively, n = 4) by means of six
sampling designs: simple random sampling without replacement (SRS), ordered systematic sam-
pling (SYS), compromise Markov chain design with ρ = 0.25 (CMC25), ρ = 0.50 (CMC50),
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Table 2. Values of three variables of interest in the generated population

Unit 1 2 3 4 5 6 7 8 9 10 11 12

y1 10 10 10 15 45 45 50 50 60 60 60 65
y2 15 45 10 60 60 50 45 65 10 50 10 60
y3 10 45 60 15 50 65 10 50 60 10 45 60

ρ = 0.75 (CMC75), and ordered pivotal sampling (OPS). As a measure of variability of the
HT-estimator t̂yπ for a sampling design q(·), we considered the design-effect (DEFF) given by

DEFF = Vq(t̂yπ )

Vsrs(t̂yπ )
, (6.13)

where the variances are computed by means of formulas (6.5)–(6.7) for SRS, OPS and SYS,
and from formula (1) in Breidt [2], page 66, for compromise Markov chain designs. Table 3
shows DEFF for the five strategies. As could be expected, the CMC25, CMC50 and CMC75
give compromise results between SYS and OPS. Also, it is clear from Table 3 that both OPS and
SYS lead to a subsequent reduction of variance for variable y1, with DEFF ranging from 0.17 to
0.50 and OPS performing significantly better. The OPS strategy is essentially similar to SRS for
the variable y2 which is poorly correlated to the order of the units in the population, while SYS
may be much worse (DEFF = 1.39 for n = 2) or much better (DEFF = 0.36 for n = 4). Finally,
we obtain for the variable y3 a considerable loss for SYS, while the loss is more limited for OPS
with DEFF = 1.10 for n = 2 and DEFF = 1.36 for n = 4.
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Table 3. Design-effect for three variables of interest and five strategies in the generated population

Sample size n = 2 Sample size n = 4

y1 y2 y3 y1 y2 y3

SYS 0.50 1.39 2.18 0.27 0.36 5.44
CMC25 0.46 1.31 1.91 0.24 0.61 3.94
CMC50 0.43 1.24 1.64 0.21 0.76 2.81
CMC75 0.39 1.17 1.37 0.19 0.85 1.97
OPS 0.35 1.10 1.10 0.17 0.95 1.36
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