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Markov chains have long been used for generating random variates from spatial point processes. Broadly
speaking, these chains fall into two categories: Metropolis–Hastings type chains running in discrete time
and spatial birth–death chains running in continuous time. These birth–death chains only allow for removal
of a point or addition of a point. In this paper it is shown that the addition of transitions where a point is
moved from one location to the other can aid in shortening the mixing time of the chain. Here the mixing
time of the chain is analyzed through coupling, and use of the swap moves allows for analysis of a broader
class of chains. Furthermore, these swap moves can be employed in perfect sampling algorithms via the
dominated coupling from the past procedure of Kendall and Møller. This method can be applied to any
pairwise interaction model with repulsion. In particular, an application to the Strauss process is developed
in detail, and the swap chains are shown to be much faster than standard birth–death chains.

Keywords: birth death process; coupling from the past; perfect simulation; spatial point processes; Strauss
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1. Introduction

Spatial point processes are in wide use in statistical modeling (see [15] for an overview). Typi-
cally finite point processes are modeled as being absolutely continuous with respect to a Poisson
point process. That is, they have a density f (x)/c where f (x) is an easily computable function
but the normalizing constant c of the density is impractical to compute. A Monte Carlo algo-
rithm gains information about f (x)/c by studying random variates drawn from the distribution
the density describes.

To obtain these variates, a Markov chain is built whose stationary distribution matches the
target distribution. Metropolis–Hastings chains run in discrete time (see [9]), and the spatial
birth–death chain approach of Preston [21] runs in continuous time. In [6] problems were given
where the Metropolis–Hastings approach is faster than Preston’s.

The drawback of these Markov chain Monte Carlo methods is that unless the mixing time of
the Markov chain is known, the quality of the variates is suspect. Heuristics such as the autocor-
relation test can prove that a chain has not mixed, but cannot establish the positive claim that a
chain has mixed.

Perfect simulation algorithms solve this problem. They generate samples exactly from the
desired distribution without the need to know the mixing time of a Markov chain. Kendall [18]
showed how the coupling from the past (CFTP) idea of Propp and Wilson [22] could be used
together with a spatial birth and death chain to obtain samples from area interaction processes.
Kendall and Møller [19] showed how this method could be extended to any locally stable point
process using a method they called dominated CFTP. They also considered perfect sampling
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using Metropolis–Hastings chains, but restricted these chains to only adding or deleting a point
at each step.

So [6] indicates that Metropolis–Hastings chains can beat continuous time chains, but [19]
shows how to exactly sample using continuous time chains. The goal of this work is to introduce
a new swap move to the continuous time chains that speeds up convergence, while still allowing
for perfect simulation.

In Section 2 the theory behind spatial birth–death chains with the new swap move is developed,
and an example of such a chain is given for the Strauss process. Section 3 reviews the use of
dominated coupling from the past, and shows how the addition of swap moves fits into this
protocol. Section 4 bounds the expected running time of the procedure for a restricted class of
models.

2. Spatial point processes

Dyer and Greenhill [7] first introduced a swap move for hard core point processes in discrete
spaces. In this section their method is extended to more general point processes.

For ease of exposition, we consider here point processes that do not contain multiple points.
Let S be a separable measurable set, and λ be a diffuse measure on S (so λ({v}) = 0 for all v ∈ S)
such that λ(S) < ∞. (Typically S is a bounded Borel set of R2.) Then a Poisson point process is
a finite subset of S chosen as follows. First, let N be a Poisson distributed random variable with
parameter λ(S). Next, let X1, . . . ,XN be independently and identically distributed (i.i.d.) and
drawn from the probability distribution λ(·)/λ(S). Then {X1, . . . ,XN } (called a configuration) is
a draw from a Poisson point process with intensity measure λ(·) over S. Let μ be the distribution
of the configuration and � the set of all possible configurations. More details of μ and � can be
found in [4,21].

As an example of data modeled using these types of processes, Harkness and Isham [12]
studied locations of ant nests in a rectangular region R. With two types of ants, S = R × {0,1}
and λ is the product of Lebesgue and a measure on {0,1}.

The processes considered here are absolutely continuous with respect to μ with density f

satisfying a local stability condition (as in [19]):

(∃K > 0)(∀x ∈ �)(∀v ∈ S \ x)
(
f (x ∪ {v}) ≤ Kf (x)

)
. (1)

Many point processes of interest meet this condition, including the area interaction process [2,
25], the Strauss process [17,24] and the continuous random cluster model [11].

2.1. Spatial birth–death swap chains

The development of the swap move given here follows the framework of Preston [21], who
introduced the use of spatial birth–death chains for these problems. These chains are examples
of jump processes, where at a given state x, the chain stays in the state for an exponential length
of time with expected value given by 1/α(x). The state then jumps to a new state using kernel K,
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so the probability that the new state is in A is K(x,A)), independent of the past history (see [8],
Chapter X, for the details of jump processes).

In the Preston framework, the rate of births (addition of points to the configuration) and deaths
(deletion of points from the configuration) depends only on the current state:

• There exists a non-negative measurable birth rate function b from � × S equipped with the
standard product σ -field to R with the Borel σ -field. Call b(x, v) the birth rate at which
point v is added to configuration x.

• There exists a non-negative measurable death rate function d from �×S equipped with the
standard product σ -field to R with the Borel σ -field. Furthermore, w ∈ x ⇒ d(x,w) > 0
and w /∈ x ⇒ d(x,w) = 0. Then d(x,w) is the death rate at which a point w is removed
from configuration x.

To this birth–death framework we now add a swap rate:

• There exists a non-negative measurable swap rate function s from � × S × S equipped
with the standard product σ -field to R with the Borel σ -field. Furthermore, w /∈ x ⇒
s(x,w,v) = 0. So s(x,w,v) is the swap rate at which point w is removed and point v

is added.

The birth, death, and swap rates are used to build a kernel K for the Markov chain as fol-
lows. For all A ∈ B, let Kb(x,A) = ∫

v∈S
b(x, v)1(x ∪ {v} ∈ A)λ(dv). When Kb(x,�) < ∞

for all x in �, the birth kernel is Kb(x,A) = Kb(x,A)/Kb(x,�). Similarly, Kd(x,A) =∑
w∈x d(x,w)1(x \ {w} ∈ A), which always has a finite number of terms and so Kd(x,A) =

Kd(x,A)/Kd(x,�). The total rate of births is rb(x) = ∫
v∈S

b(x, v)λ(dv), and the total rate of
deaths is rd(x) = ∑

v∈x d(x, v).
For the swap kernel, set Ks(x,A) = ∑

w∈x

∫
v∈S

s(x,w,v)1(x ∪ {v} \ {w} ∈ A)λ(dv). When
Ks(x,�) < ∞ for all x ∈ �, let

Ks(x,A) = Ks(x,A)/Ks(x,�), rs(x) =
∑
w∈x

∫
v∈S

s(x,w,v)λ(dv). (2)

The overall rate at which the configuration changes is α(x) = rb(x) + rd(x) + rs(x), and the
overall kernel is:

K(x,A) = Kb(x,A)
rb(x)

α(x)
+ Kd(x,A)

rd(x)

α(x)
+ Ks(x,A)

rs(x)

α(x)
. (3)

Harris recurrence guarantees that a Markov process has a unique invariant measure (see [1]
for details of Harris recurrence in the continuous-time context). Kaspi and Mandelbaum [16]
showed that a continuous-time chain is Harris recurrent if and only if there exists a non-zero
σ -finite measure where X almost surely hits sets with positive measure.

In particular, for all the chains considered here, the death rate equals the number of points in
the configuration, and the birth rate is bounded above by a constant. This forces the chain to visit
the empty configuration infinitely often, making it Harris recurrent.

The detailed balance conditions (that imply f is invariant) for jump processes are: f (x)α(x)×
K(x,dy)dμ(x) = f (y)α(y)K(y,dx)dμ(y). For moves from configurations with n points to
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those with n + 1 (or vice versa), the detailed balance conditions are satisfied [21,23] when the
rate of births balance the rate of deaths with respect to f . So

f (x)b(x, v) = f (x ∪ {v})d(x ∪ {v}, v). (4)

Swap moves stay inside the same dimensional space, and it is straightforward to show that
reversibility for swap moves holds when

f (x)s(x,w,v) = f (x ∪ {v} \ {w})s(x ∪ {v} \ {w}, v,w). (5)

2.2. Locally stable repulsive point processes

Kendall and Møller [19] describe how to create a jump process with stationary density f for
locally stable processes. Briefly, their method works as follows. Two coupled chains will be run:
the dominating chain with state D(t) at time t and the target chain with state X(t) at time t .
It will always be true that X(t) ⊆ D(t). Each point w ∈ D(t) has death rate d(D(t),w) = 1.
If a point dies that is also in X(t), it is removed from both X(t) and D(t). The rate of births
for the dominating chain is rb = Kλ(S), where K is the local stability constant in equa-
tion (1). If a birth occurs, a point v is chosen according to the probability measure λ(·)/λ(S).
Then v is always added to D(t) to get the next dominating state, but is only added to X(t)

with probability f (X(t) ∪ {v})/[Kf (X(t))]. Assume that each point v born in D(t) is marked
with a uniform draw from [0,1]. Then the point is born in X(t) if the mark falls below
f (X(t) ∪ {v})/[Kf (X(t))].

Suppose X(0) ⊆ D(0). Then since deaths are always accepted in both chains, but a birth in
the dominating chain might not occur in the target chain, the dominating configuration will be a
superset of the target configuration for all t ≥ 0.

Adding a swap move to this birth death framework can be done automatically when the rejec-
tion of a birth v can be linked to a single point w ∈ X(t). Consider an example.

Strauss model

In the Strauss model [17,24], the density has a factor that is exponential in the number of pairs
of points that lie within distance R of each other. Let ρ be a metric on S (usually Euclidean
distance), then the density can be written:

fS(x) = Z−1
(β1,β2,R)β

#x
1 β

s(x)
2 , s(x) =

∑
{v,v′}:v∈x,v′∈x\{v}

1
(
ρ(v, v′) ≤ R

)
, (6)

where Z(β1,β2,R) is the normalizing constant for the density. As noted in [17], in order for
Z(β1,β2,R) to be finite (and hence for the density to exist) β2 must be at most 1. In addition,
[17] generalizes the Strauss process to the pairwise interaction process. All methods presented
here are written for the Strauss process for simplicity, but work equally well for the pairwise
interaction process.

Let x be the state of the target chain, and suppose point v is born in the dominating chain.
Call point w ∈ x a neighbor of v if ρ(v,w) ≤ R. The Strauss process is locally stable with
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K = β1, so the chance of accepting v into x is f (x ∪ {v})/[Kf (x)] = β
s(x,v)
2 , where s(x, v) =∑

v′∈x 1(ρ(v′, v) ≤ R) is the number of neighbors of v in x.
Let Bern(p) denote the Bernoulli distribution with parameter p. One way to draw B ∼

Bern(β
s(x,v)
2 ) is to draw B1, . . . ,Bs(x,v)

i.i.d.∼ Bern(β2) and set B = B1B2 · · ·Bs(x,v). (Here
i.i.d.∼

denotes that the draws are to be independent and identically distributed.)
When Bi = 0, say that the point indexed by i blocks the birth of v. Suppose that v is blocked

by a single neighbor w. Then the swap move removes w, and allows the birth of v. Call this new
configuration x′. The probability of swapping from x to x′ (given birth v) is β

s(x,v)−1
2 (1 − β2).

This makes it straightforward to check that f (x)s(x,w,v) = f (x′)s(x′, v,w), so (5) is satisfied.
To implement this swap move, simply mark each point v born in D(t) with an i.i.d. sequence of
Bern(β2) random variables.

3. Perfect simulation by dominated CFTP

In the previous section it was shown how to couple a dominating chain and target chain using
standard birth–death chains and the new birth–death swap chain. Here a further coupling is built
that allows exact draws to be taken from the stationary distribution of the target chain using the
dominating CFTP (dCFTP) method of Kendall and Møller [19].

Both X(t) and D(t) are time-reversible, so they can be run backwards in time as easily as for-
wards while maintaining the property that if X(0) ⊆ D(0), then X(t) ⊆ D(t) for all t ∈ (−∞,0].
(A more detailed introduction to dCFTP can be found in [19].)

So far two chains (the dominating and target) have been coupled, but now consider two more
chains, called the lower chain and upper chain, denoted L(t) and U(t), respectively. Suppose
that these four chains have the sandwiching property that

L(t) ⊆ X(t) ⊆ U(t) ⊆ D(t) for all t ∈ (−∞,0]. (7)

The process (L(t),U(t)) can also be thought of as a bounding process for X(t) (see [14]).
Suppose X(0) is drawn from the stationary distribution. Then if L(0) = U(0), X(0) also

equals the lower and upper chain, and the state they all equal is a draw from the stationary
distribution. This is the idea behind CFTP.

For each positive integer N , a lower and upper chain can be created. Consider D(t) moving
backward through time, and let τN denote the time where the N th backward event occurs. Set
LN(τN) to the empty configuration, and UN(τN) = D(τN).

Every time there is an event at time t (either a birth or death in the dominating process moving
forwards in time) it is important to ensure that UN(t) and LN(t) continue to bound X(t) once
the event updates the chain. That is, if a point v is added to the target chain state, it must also
be added to the upper chain. If a point w is removed from the target chain state, it must also
be removed from the lower chain. Such a coupling has the funneling property (see [3]). All the
couplings used here have this important property.

An induction argument shows that the funneling property implies LN(0) ⊆ X(0) ⊆ UN(0).
Note if LN(0) = UN(0), then X(0) is trapped between them and also equals this common value.
This is the coupling part of CFTP.
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The “from the past” part of CFTP works as follows. Suppose LN(0) 
= UN(0). Then increase
the value of N and try again. Let N ′ > N . The first N events for the dominating process (looking
backward in time from time 0) have already been generated, these same events must be used in
subsequent evaluations of the bounding process. Therefore, only N ′ − N additional events need
to be generated. Once these events have been generated, run LN ′ and UN ′ forward until LN ′(0)

and UN ′(0) can be compared.
If LN(0) = UN(0) for some N , then LN ′(0) = UN ′(0) for all N ′ > N as well, so it is not

necessary to try every value of N . Propp and Wilson [22] noted that by doubling N at each step,
the total number of checked events is at most twice the minimum number. The choice of Ninitial

is arbitrary, but LN(0) cannot equal UN(0) unless every point in D(τN) has died by time 0. For
simplicity, here Ninitial is set equal to the expected number of points in the dominating process at
time 0, which is Kλ(S) (see [3] for a more advanced approach to choosing Ninitial).

Kendall and Møller showed (Theorem 2.1 of [19]) that as long as the probability that D(t)

visits the empty configuration in [0, t] goes to 1 as t goes to infinity, this procedure will terminate
in finite time with probability 1. The resulting configuration LN(0) = UN(0) is a draw exactly
from the target distribution.

Now consider the question: How should the lower and upper chains be updated for each event
in the dominating process so the funneling property holds for the swap move?

3.1. Updating the bounding process

For a jump process A(t), let A(t−) denote the limit as ε goes to 0 of A(t − ε), that is, the state
of the process right before time t . The bounding process needs to be updated if a point is born or
dies at time t . The procedure followed is the same as given in [14].

If a point w ∈ X(t−) dies, it is removed from X(t), and so can be removed from both LN(t)

and UN(t). Now suppose point v is born into the dominating chain at time t .
Case 1: Point v is blocked by at most one point w in UN(t−). Then X(t−) ⊆ UN(t−) and

so if w ∈ X(t), then w is swapped away by v, and if w /∈ X(t−), then v can be born. So either
way X(t) = X(t−) \ {w} ∪ {v}, w is removed from UN(t) (and LN(t) if it is there also) and v is
added to both LN(t) and UN(t).

Case 2: The point v is blocked by at least two points in LN(t−). Then there are at least two
blocking points in X(t−), so the birth does not occur in LN(t),X(t) or UN(t).

Case 3: the point v is blocked by at most one point in LN(t−), and at least two points in
UN(t−). Then if X(t−) contains the two blocking points in UN(t−), the swap does not occur,
but if it only contains the single blocking point in LN(t−), the swap does occur. The result is that
the birth v must be added to UN(t) (but not to LN(t)) to ensure X(t) ⊆ UN(t), and any blocking
point in LN(t−) must be removed from LN(t).

Figure 1 shows the running time advantage gained by using the swap move. The times are
measured in number of events generated by dominated CFTP (dCFTP). On the left are the raw
number of times for the chain without the swap move and with the swap move. The plot on the
right shows the ratio of these two times. Note that as β1 gets larger, the speedup gained by using
the swap move also increases.
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Figure 1. Running time of dCFTP for Strauss model on S = [0,1]2, β2 = 0.5, R = 0.05, λ is Lebesgue
measure.

4. Analyzing the running time

Consider how many events must be generated before the dominated coupling from the past pro-
cedure terminates, that is, before UN(0) = LN(0). Deaths in UN(t) \ LN(t) cause the bounding
process to move together, while births can add a point to UN(t) but not to LN(t), and the swap
move sometimes removes a point from LN(t) but not UN(t). Therefore, it is reasonable that the
perfect simulation algorithm will run faster in situations where the birth rate is low.

In this section it is shown that, for perfect simulation of the Strauss process, the original no
swap chain takes (with high probability) a small number of steps per perfect sample when β1
and R are not too large, and β2 is not too small. By creating a mixture of the swap chain and no
swap chain, it is possible to improve this result to where it applies for values of β1 that are twice
as large as for the no swap chain.

The mixture works as follows: At each step, with probability pswap, the swap move chain is
used, while with probability 1 − pswap, the original no swap chain is used. The best theoretical
bound is achieved when pswap = 1/4.

Theorem 4.1. Suppose that N events are generated backwards in time and then run for-
ward to get UN(0) and LN(0). Let B(v,R) be the area within distance R of v ∈ S, let
r = supv∈S λ(B(v,R)).

If β1(1 − β2)r < 1, then for the chain without the swap move

P
(
UN(0) 
= LN(0)

) ≤ 2 exp(−0.09N) + β1λ(S) exp
(−N

(
1 − β1(1 − β2)r

)
/(4β1λ(S))

)
. (8)

If β1(1 − β2)r < 2, then for the chain where a swap is executed with probability 1/4,

P
(
UN(0) 
= LN(0)

) ≤ 2 exp(−0.09N)
(9)

+ β1λ(S) exp
(−N

(
1 − 0.5β1(1 − β2)r

)
/(4β1λ(S))

)
.
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Why the value of 1/4 for the probability? This is an artifact of the proof technique. The the-
orem only gives sufficient, not necessary, conditions for the algorithm to be fast, and simulation
experiments indicate that the algorithm actually takes the fewest steps when the swap moves are
used as often as possible (reasons why this could be true are noted below in the proof of the
theorem).

Theorem 4.1 has immediate consequences for the expected running time of dominated CFTP.
Recall that in dCFTP the number of events was doubled each time. Say P(UN(0) 
= LN(0)) ≤
a exp(−bN), and let T be the number of events generated in a call of dCFTP. Then for T ≥ t ,
dCFTP must have failed on a run of length at least t/2. So

E[T ] =
∞∑

N=1

P(T ≥ N) ≤
[�(2/b) lna�∑

N=1

1

]
+

∞∑
N=�(2/b) lna�

a exp(−bN/2), (10)

which makes E[T ] = O(lna/b), and the mean running time O(β1λ(S)(lnβ1λ(S))) for the no
swap chain when β1(1 − β2)r < 1 and in the 1/4-swap chain when β1(1 − β2)r < 2.

Proof of Theorem 4.1. Recall UN(τN) = D(τN), a Poisson spatial point process with parameter
β1λ(S). LN(τN) is the empty configuration, and the bounding processes are run forward in time.
Let Q(t) = UN(t) \ LN(t). Then the chains have come together if and only if #Q(0) = 0. Begin
by considering the no swap chain.

Strauss no swap move. All individual death rates are 1, so the total rate of deaths of points in
Q(t) is just #Q(t). Call a death a good event since it reduces #Q(t) by 1.

For #Q(t) to increase by 1 (call this a bad event), a birth must occur at v and be added to
UN(t) but not LN(t). Let w be any point in Q(t). Then for Q(t) to give rise to another point
in Q(t), a point v must be born within distance R of w and the Bern(β2) draw must be 0. The
area surrounding w is at most r , and the Bernoulli draw acts as a thinning procedure in a Poisson
process (see Appendix G of [20].) So the rate at which w creates new points in Q(t) is at most
β1(1 − β2)r , and the overall rate of bad events is at most β1(1 − β2)r#Q(t).

Suppose the rate of bad events is smaller than the rate of good events. The probability that one
event occurs in the time interval from t to t + h is proportional to h, the probability that n events
occurs is O(hn). Hence

E
[
E[#Q(t + h)|U(t),L(t)] − #Q(t)

] ≤ E

[(
#Q(t)β1(1 − β2)r − #Q(t)

)
h +

∞∑
i=2

iO(hi)

]
,

which means

lim
h→0

E[E[#Q(t + h)|U(t),L(t)] − #Q(t)]
h

≤ −E
[
#Q(t)

(
1 − β1(1 − β2)r

)]
.

Let q(t) = E[#Q(t)], and let τN be the time of the N th event moving backwards in time. Then
q(τN) ≤ E[#D(τN)] = β1λ(S), so together with q ′(t) ≤ −q(t)(1 − β1(1 − β2)r):

q(t) ≤ β1λ(S) exp
(−t

(
1 − β1(1 − β2)r

))
.
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By Markov’s inequality, P(Q(0) 
= ∅) = P(#Q(0) ≥ 1) ≤ q(0).
Now fix N , the number of events to run back in time, and set t = N/[4β1λ(S)]. The chance

Q(0) does not equal 0 starting at −t is at most exp(−N/[4β1λ(S)](1 − β1(1 − β2)r)).

Using Chernoff bounds [5], it can be shown that for A ∼ Pois(α), P(A > 2α) ≤
exp(−α(2 ln 2 − 2 + 1)). So after t time, the probability that more than N/2 events were gen-
erated in a Poisson process with rate β1λ(S) is at most exp(−(N/4)(2 ln 2 − 2 + 1)). Both the
times of the births and times of deaths (viewed individually) are Poisson processes with rate
β1λ(S), therefore the probability that either uses more than N/2 events (by the union bound) is
at most 2 exp(−0.09N). But if at this time each process used at most N/2 events, then moving
back in time N events puts the user even farther back in time, and if coalescence occurs at −t , it
will also occur starting at τN . Again using the union bound, the probability of failure is at most

2 exp(−0.09N) + exp
(−N

(
1 − β1(1 − β2)r

))
.

Strauss with swap move. Now consider what happens when pswap > 0. The rate of good events
(deaths) remains unchanged, but the rate of bad events changes. In Section 3.1, Case 1 leaves
#Q(t) unchanged or reduces it by 1, Case 2 leaves #Q(t) unchanged, and Case 3 increases
#Q(t) by 1 or 2. To be precise, let AL be the set of blocking points in LN(t−), and AU be the
set of blocking points in UN(t−). Then the situations that change #Q(t) are:

Type #AU #AL #Q(t) − #Q(t−) no swap #Q(t) − #Q(t−) with swap

1 1 0 1 −1
2 at least 2 1 0 2
3 at least 2 0 1 1

Let b1 denote the area of the region where a birth is Type 1, with b2 and b3 defined similarly.
Together, the rate of change from births is:

b1[(1 − pswap) − pswap] + b2[2pswap] + b3[(1 − pswap) + pswap].
Any point in b3 neighbors at least two points in #Q(t−), and points in b1 or b2 neighbor at least
one. Each point in Q(t−) has r area adjacent to it, so b1 + b2 + 2b3 ≤ #Q(t)r .

The variable pswap can be set to any number from 0 to 1: letting pswap = 1/4 gives an upper
bound on the bad event rate of (1/2)b1 + (1/2)b2 + b3 ≤ (1/2)#Q(t)r .

Recall the bad event rate when pswap = 0 was bounded above by #Q(t)r . With pswap = 1/4,
the bad event rate is bounded above by #Q(t)r/2, and this factor of two carries throughout the
remainder of the proof to give (9). �

Häggström and Steif gave a result similar to the previous theorem for finitary codings for
high noise Markov random fields [10], but their analysis involves moving backwards rather than
forwards in time, and their result does not employ the swap move.

Figure 2 illustrates the mean run time for a fixed value of λ as the probability of a swap varies
from p = 0 up to p = 1. The running time (as measured by generated iterations) decreases as the
chance of swapping increases. This same phenomenon was noted for hard core gas models on
graphs [13], and at present is unexplained by theory.
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Figure 2. Running time of dCFTP for Strauss model on S = [0,1]2, β1 = 50, β2 = 0.5, R = 0.05, λ is
Lebesgue measure, as pswap runs from 0 to 1.

5. Conclusions

The regular birth–death chains only move when no point blocks the birth of a point in the dom-
inating process. The birth–death swap chains move when at most one point blocks the birth of a
point in the dominating process. This alone means that more moves are being taken, and helps to
explain the improved analysis and improved performance when used for perfect sampling with
dominated coupling from the past.
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