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with an application to operational loss data
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The univariate piecing-together approach (PT) fits a univariate generalized Pareto distribution (GPD) to the
upper tail of a given distribution function in a continuous manner. We propose a multivariate extension.
First it is shown that an arbitrary copula is in the domain of attraction of a multivariate extreme value
distribution if and only if its upper tail can be approximated by the upper tail of a multivariate GPD with
uniform margins.

The multivariate PT then consists of two steps: The upper tail of a given copula C is cut off and sub-
stituted by a multivariate GPD copula in a continuous manner. The result is again a copula. The other
step consists of the transformation of each margin of this new copula by a given univariate distribution
function.

This provides, altogether, a multivariate distribution function with prescribed margins whose copula
coincides in its central part with C and in its upper tail with a GPD copula.

When applied to data, this approach also enables the evaluation of a wide range of rational scenarios
for the upper tail of the underlying distribution function in the multivariate case. We apply this approach to
operational loss data in order to evaluate the range of operational risk.

Keywords: copula; domain of multivariate attraction; GPD copula; multivariate extreme value distribution;
multivariate generalized Pareto distribution; operational loss; peaks over threshold; piecing together

1. Introduction

The peaks over threshold approach (POT) shows that the upper tail of a univariate distribution
function F can reasonably be approximated only by that of a generalized Pareto distribution
(GPD). This result goes back to Balkema and de Haan [2] and Pickands [30]. A univariate GPD
W is derived from an extreme value distribution (EVD) G by the equality

W(x) = 1 + log(G(x)), 1/e ≤ G(x),

where, with a shape parameter α > 0, the family of standardized EVD is given by

G1,α(x) = exp(−x−α), x > 0,

G2,α(x) = exp(−(−x)α), x ≤ 0, (1)

G3(x) = exp(−e−x), x ∈ R,
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being the Fréchet, (reverse) Weibull and Gumbel case of an EVD.
The family of univariate standardized GPD is, consequently, given by

W1,α(x) = 1 − x−α, x ≥ 1,

W2,α(x) = 1 − (−x)α, −1 ≤ x ≤ 0,

W3(x) = 1 − exp(−x), x ≥ 0,

being the Pareto, beta and exponential case of a GPD.
If X is a univariate random variable with distribution function F , then the distribution function

F [x0] of X, conditional on the event X > x0, is given by

F [x0](x) = P(X ≤ x | X > x0)

= F(x) − F(x0)

1 − F(x0)
, x ≥ x0,

where we require F(x0) < 1. The POT approach shows that F [x0] can reasonably be approxi-
mated only by a GPD with appropriate shape, location and scale parameter Wγ,μ,σ . Note that

F(x) = (
1 − F(x0)

)
F [x0](x) + F(x0)

≈ (
1 − F(x0)

)
Wγ,μ,σ (x) + F(x0), x ≥ x0.

The piecing together approach (PT) now consists in replacing the distribution function F by

F ∗
x0

(x) =
{

F(x), x < x0,(
1 − F(x0)

)
Wγ,μ,σ (x) + F(x0), x ≥ x0, (2)

where the shape, location and scale parameters γ , μ, σ of the GPD are typically estimated from
given data. This modification aims at a more precise investigation of the upper end of the data.

Replacing F in (2) by the empirical distribution function F̂n of n independent copies of X

offers in particular a semi-parametric approach to the estimation of high quantiles F−1(q) =
inf{t ∈ R: F(t) ≥ q} outside the range of given data; see, for example, Section 2.3 of Reiss and
Thomas [33].

In this paper we propose an extension of the PT in (2) to higher dimensions. When applied to
data, this approach also enables the evaluation of a wide range of rational scenarios for the upper
tail of the underlying distribution function in the multivariate case. This will be exemplified in
Section 4 for operational loss data, where we simulate different scenarios for risk parameters
such as the value at risk or the expected shortfall. In Section 2 we provide the basic mathematics
for our PT approach. We will show that an arbitrary copula can reasonably be approximated in
its upper tail only by a GPD with uniform margins.

The multivariate PT approach, which will be established in Section 3, now consists of two
steps:

(i) The upper tail of a given m-dimensional copula C is cut off and substituted by the upper
tail of multivariate GPD copula in a continuous manner such that the result is again a copula.
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(ii) The other step consists of the transformation of each margin of this new copula by a given
univariate distribution function F ∗

i , 1 ≤ i ≤ m.

This provides, altogether, a multivariate distribution function with prescribed margins F ∗
i , whose

copula coincides in its central part with C and in its upper tail with a GPD copula. In Section 4.2
we will simulate the effects that the combination of univariate and multivariate PT has on quantile
functions and mean excess functions or, in terms of risk analysis, on value at risk and expected
shortfall. It turns out that in our specific model, which will be specified in Section 4, the appli-
cation of the multivariate PT approach leads to a rising expected shortfall while the value at risk
keeps (up to a level of 99.9%) nearly unchanged.

Instead of fitting a GPD to the upper tail of a distribution, estimation of rare events in the mul-
tivariate case can also be based on the fact that the exponent measure pertaining to a multivariate
GPD is homogeneous; see de Haan and Sinha [11] and de Haan and Ronde [9] for details.

For recent accounts of basic and advanced topics of extreme value theory and statistics, see
the monographs by Reiss and Thomas [33], de Haan and Ferreira [10] and Resnick [34].

2. Multivariate GPD

In this section we provide the mathematics underlying our PT approach, which will be established
in Section 3.

Let F be an arbitrary m-dimensional distribution function that is in the domain of attraction
of an m-dimensional EVD G; that is, there exist norming constants an > 0, bn ∈ R

m such that

Fn(anx + bn) →
n→∞G(x), x ∈ R

m, (3)

where all operations on vectors are meant componentwise. The distribution function G is max
stable; that is, there exist norming constants cn > 0, dn ∈ R

m with

Gn(cnx + dn) = G(x), x ∈ R
m.

The one-dimensional margins Gi of G are up to scale and location parameters univariate EVD
in (1).

It is well known that (3) is equivalent with convergence of the univariate margins together with
convergence of the copulas

lim
n→∞Cn

F (u1/n) = CG(u) = G(G−1
1 (u1), . . . ,G

−1
m (um)), u ∈ (0,1)m, (4)

(Deheuvels [12,13], Galambos [19]). For a recent account on copulas, see Nelsen [29]. Some
elementary computations as in Falk [16], Section 6, or de Haan and Ronde [9], Section 4.2,
entail that convergence (4) is equivalent with

lim
t↓0

1

t

(
1 − CF (1 + tx)

) = lG(x) := − log(CG(exp(x))), x ≤ 0, (5)
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where lG is known as the stable tail dependence function introduced by Huang [22]. For a de-
tailed discussion of the stable tail dependence function, see Beirlant et al. [3]. The stable tail
dependence function is homogeneous t lG(x) = lG(tx), t ≥ 0, and, thus, (5) becomes

1 − CF (1 + tx) − lG(tx)

t
→t↓0 0.

Observe that lG(x) = 1 − H(x), x ≤ 0, where H is a multivariate GP function with uniform
margins Hi(x) = 1 + x, x ≤ 0, i ≤ m; that is,

H(x) = 1 + log(G̃(x)), x ≤ 0,

and G̃ is a multivariate EVD with negative exponential margins G̃i(x) = exp(x), x ≤ 0, i ≤ m.
We call in general an m-dimensional distribution function W a multivariate GPD if its upper

tail coincides with a GP function; that is, there exist a multivariate EVD G and a vector x0 ∈ R
m

with G(x0) < 1 such that

W(x) = 1 + log(G(x)), x ≥ x0. (6)

Note that H(x) = 1 + log(G(x)), G(x) ≥ 1/e, does not define a distribution function unless
m ∈ {1,2}; see Michel [27], Theorem 6. We, therefore, call H a GP function. It is, actually, a
quasi-copula (Alsina et al. [1], Genest et al. [20] and Section 5.1 in Falk et al. [17]). Lemma 5.1.5
in Falk et al. [17] implies, on the other hand, that for any GP function there exists a distribution
function W satisfying (6).

The preceding considerations together with elementary computations entail now the following
characterization of domains of attraction in terms of a GPD. By ‖ · ‖ we denote an arbitrary norm
on R

m.

Theorem 2.1. An arbitrary distribution function F is in the domain of attraction of a multivari-
ate EVD G if and only if this is true for the univariate margins and if there exists a GPD W with
ultimately uniform margins Wi(x) = 1 + x, x0 ≤ x ≤ 0, i ≤ m, such that

CF (y) = W(y − 1) + o(‖y − 1‖)
uniformly for y ∈ [0,1]m.

We have the following equivalences for an arbitrary copula C to lie in the domain of attraction
of an EVD.

Corollary 2.2. C is in the domain of attraction of an EVD G

⇐⇒ There exists a GPD W with ultimately uniform margins such that

C(y) = W(y − 1) + o(‖y − 1‖),
uniformly for y ∈ [0,1]m. In this case W(x) = 1 + log(G(x)), x0 ≤ x ≤ 0 ∈ R

m.
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⇐⇒ There exists a norm ‖ · ‖D on R
m such that

C(y) = 1 − ‖y − 1‖D + o(‖y − 1‖D),

uniformly for y ∈ [0,1]m. In this case G(x) = exp(−‖x‖D), x ≤ 0.

Recall that all norms on R
m are equivalent and, thus, o(‖y − 1‖D) in the second equivalence

above can be substituted by o(‖y − 1‖) with an arbitrary norm ‖ · ‖ on R
m.

The preceding results show that the upper tail of the copula CF of a distribution function F

can reasonably be approximated only by that of a GPD W with ultimately uniform margins. To
the best of our knowledge, this provides new insight into the significance of multivariate GPD.
But it is in accordance with Rootzén and Tajvidi [35], who showed that, in the multivariate case,
modelling exceedances of a random variable over a high threshold can rationally be done only
by a multivariate GPD.

Proof of Corollary 2.2. It is well known that a GPD W with ultimately uniform margins can be
written as

W(x) = 1 − ‖x‖D, x0 ≤ x ≤ 0,

where ‖ · ‖D is a norm on R
m with particular properties, called a D-norm; see Section 4.4 in

Falk et al. [17]. In particular, G(x) = exp(−‖x‖D), x ≤ 0, defines an EVD on R
m. If C(y) =

W(y − 1) + o(‖y − 1‖), y ∈ [0,1]m, for some norm ‖ · ‖ on R
m, then

Cn

(
1 + y

n

)
=

(
1 − 1

n
‖y‖D + o

(
1

n
‖y‖

))n

→
n→∞ exp(−‖y‖D) = G(y), y ≤ 0.

Together with Theorem 2.1 this implies Corollary 2.2. �

In the final equivalence of Corollary 2.2, the norm can obviously be computed as

‖x‖D = lim
t↓0

1 − C(1 + tx)

t
= l(x), x ≤ 0;

that is, it is the stable tail dependence function. It turns out that any stable tail dependence func-
tion is actually a norm. This explains why it is a convex function and homogeneous of order
one.

Example 2.3. Take an arbitrary Archimedean copula

Cϕ(u) = ϕ−1(ϕ(u1) + · · · + ϕ(um)
)
,

where the generator ϕ : (0,∞) → [0,∞) is a continuous function that is strictly decreasing on
(0,1], ϕ(1) = 0, limx↓0 ϕ(x) = ∞ and ϕ−1(t) = inf{x > 0: ϕ(x) ≤ t}, t ≥ 0.



460 S. Aulbach, V. Bayer and M. Falk

Note that Cϕ is not automatically a copula for each function ϕ: (0,∞) → [0,∞) as above.
While, in the bivariate case m = 2, convexity of ϕ−1 is a necessary and sufficient condition, this is
no longer true in higher dimension m ≥ 3. Instead, Cϕ is, for general dimension m ≥ 2, a copula
if and only if ϕ−1 is differentiable up to order m−2, the derivatives satisfy (−1)k(ϕ−1)(k)(x) ≥ 0,
k = 0, . . . ,m− 2, x ∈ (0,∞) and further if (−1)m−2(ϕ−1)(m−2) is non-increasing and convex in
(0,∞); see McNeil and Nešlehová [24], Theorem 2.2.

If ϕ is differentiable from the left in x = 1 with left derivative ϕ′(1−) �= 0, then

lim
t↓0

1 − Cϕ(1 + tx)

t
=

∑
i≤m

|xi | = ‖x‖1, x ≤ 0;

that is, each Archimedean copula with a generator ϕ as above is in the domain of attraction of the
EVD G(x) = exp(−‖x‖1), x ≤ 0, with independent margins. The margins of Cϕ are, therefore,
tail independent; that is, the tail dependence parameters vanish:

χ(i, j) := lim
x↑1

P(Ui > x | Uj > x) = 0, 1 ≤ i �= j ≤ m,

where the random vector (U1, . . . ,Um) follows the distribution function Cϕ . For a discussion of
the tail dependence parameter and further literature, see Section 6.1 in Falk et al. [17].

The preceding considerations concern, for example, the Clayton and the Frank copula, which
have generators ϕC(t) = ϑ−1(t−ϑ −1) and ϕF (t) = − log((exp(−ϑt)−1)/(exp(−ϑ)−1)), ϑ >

0, but not the Gumbel copula with parameter λ > 1, which has generator ϕG(t) = −(log(t))λ,
λ ≥ 1, 0 < t ≤ 1.

Any multivariate EVD G has univariate EVD margins and any multivariate GPD W has uni-
variate GPD margins in its upper tail. We can transform an arbitrary multivariate EVD to an EVD
with negative exponential margins by just transforming the margins. Equally, we can transform
an arbitrary W to a GPD with uniform margins by just transforming the margins. This trans-
formation can also be done backwards; see Section 5.6 in Falk et al. [17]. We will, therefore,
consider in what follows multivariate GPD derived from an EVD G with negative exponential
margins. For a recent account on multivariate GPD, see Michel [25].

From the de Haan–Resnick–Pickands representation of a multivariate EVD, it is well known
that a function G on (−∞,0]m is the distribution function of an EVD with negative standard
exponential margins Gi(x) = exp(x), x ≤ 0, i ≤ m, if and only if it can be represented as

G(x) = exp

(∫
Sm

min
i≤m

(xi ti)μ(dt)
)

, x ≤ 0,

where μ is a finite measure on Sm := {t ≥ 0:
∑

i≤m ti = 1}, called an angular measure, with
the characteristic property

∫
Sm

tiμ(dt) = 1, i ≤ m; see Section 4.2 in Falk et al. [17]. Note
that this integrability condition on μ implies that μ(Sm) = ∫

Sm
1 dμ = ∫

Sm

∑
i≤m tiμ(dt) =∑

i≤m

∫
Sm

tiμ(dt) = m.
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As a consequence we obtain that a multivariate GPD W with standard uniform margins 1 −
Wi(x) = x, i ≤ m, in a left neighborhood of 0 ∈ R

m can be represented as

W(x) = 1 +
(∑

j≤m

xj

)∫
Sm

max
i≤m

(x̃i ti )μ(dt)

(7)

=: 1 +
(∑

j≤m

xj

)
D(x̃1, . . . , x̃m−1)

for x0 ≤ x ≤ 0, where μ is as above, x̃i = xi/
∑

j≤m xj and D: {u ∈ [0,1]m−1:
∑

j≤m−1 uj ≤
1} → [1/m,1] is a Pickands dependence function (Section 4.3 in Falk et al. [17]).

The following result characterizes a GPD with uniform margins in terms of random variables.
It provides an easy way to generate a multivariate GPD, thus extending the bivariate approach
proposed by Buishand et al. [6] to an arbitrary dimension. Recall that an arbitrary multivariate
GPD can be obtained from a GPD with ultimately uniform margins by just transforming the
margins. For a recent account on simulation techniques of multivariate GPD, see Michel [26].

Proposition 2.4.

(i) Let W be a multivariate GPD with standard uniform margins in a left neighborhood of
0 ∈ R

m. Then there is a random vector Z = (Z1, . . . ,Zm) with Zi ∈ [0,m] and E(Zi) = 1, i ≤ m,
and a vector (−1/m, . . . ,−1/m) ≤ x0 < 0 such that

W(x) = P

(
−U

(
1

Z1
, . . . ,

1

Zm

)
≤ x

)
, x0 ≤ x ≤ 0,

where the random variable U is uniformly distributed on (0,1) and independent of Z.
(ii) The random vector −U(1/Z1, . . . ,1/Zm) follows a GPD with standard uniform margins

in a left neighborhood of 0 ∈ R
m if U is independent of Z = (Z1, . . . ,Zm) and 0 ≤ Zi ≤ ci a.s.

with E(Zi) = 1, i ≤ m, for some c1, . . . , cm ≥ 1.

Note that the case of a GPD W with arbitrary uniform margins Wi(x) = 1 − aix in a left
neighborhood of 0 with arbitrary scaling factors ai > 0, i ≤ m, immediately follows from the
preceding result by substituting Zi by aiZi .

Proof of Proposition 2.4. First we establish part (i). From representation (7) we obtain that for
x in a left neighborhood of 0 ∈ R

m

W(x) = 1 +
(∑

j≤m

xj

)∫
Sm

max
i≤m

(x̃i ti)μ(dt)

with some measure μ on Sm such that μ(Sm) = m and
∫
Sm

tiμ(dt) = 1, i ≤ m.

Now μ̃(·) = μ(·)/m defines a probability measure on Sm. Let T = (T1, . . . , Tm) be a random
vector with values in Sm that has distribution μ̃ and put Z := mT. Then Z ∈ [0,m]m and E(Zi) =
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∫
Sm

tiμ(dt) = 1, i ≤ m. We have, further, for x ≤ 0 ∈ R
m with xj ≥ −1/m, j ≤ m,

P

(
−U

(
1

Z1
, . . . ,

1

Zm

)
≤ x

)

= P

(
−U

(
1

T1
, . . . ,

1

Tm

)
≤ mx

)

=
∫

Sm

P

(
−U

(
1

t1
, . . . ,

1

tm

)
≤ mx | T = t

)
(P ∗ T)(dt)

=
∫

Sm

P

(
−U

(
1

t1
, . . . ,

1

tm

)
≤ mx

)
μ̃(dt)

= 1

m

∫
Sm

P

(
−U

(
1

t1
, . . . ,

1

tm

)
≤ mx

)
μ(dt)

= 1

m

∫
Sm

P
(
U ≥ mmax

i≤m
(−xiti)

)
μ(dt)

= 1

m

∫
Sm

P

(
U ≥ −m

(∑
j≤m

xj

)
max
i≤m

(x̃i ti)

)
μ(dt)

= 1

m

∫
Sm

1 + m

(∑
j≤m

xj

)
max
i≤m

(x̃i ti )μ(dt)

= 1 +
(∑

j≤m

xj

)∫
Sm

max
i≤m

(x̃i ti )μ(dt).

This implies part (i) of the proposition.
On the other hand, we have for x ≤ 0 and large s > 0

P

(
−U

(
1

Z1
, . . . ,

1

Zm

)
≤ 1

s
x
)s

=
(∫

[0,c]
P

(
U ≥ 1

s
max
i≤m

(−xizi)

)
(P ∗ Z)(dz)

)s

=
(

1 − 1

s

∫
[0,c]

max
i≤m

(−xizi)(P ∗ Z)(dz)
)s

→
s→∞ exp

(
−

∫
[0,c]

max
i≤m

(−xizi)(P ∗ Z)(dz)
)

=: G(x)

with c = (c1, . . . , cm).



Multivariate piecing-together 463

Lemma 7.2.1 in Reiss [32] now implies that G is a distribution function that is obviously
max stable: Gs(s−1x) = G(x), s > 0; that is, G is a multivariate EVD and has negative standard
exponential margins Gi(x) = exp(xE(Zi)) = exp(x), x ≤ 0. As a consequence, 1 + log(G(x))

is a GP function with

1 + log(G(x)) = 1 −
∫

[0,c]
max
i≤m

(−xizi)(P ∗ Z)(dz)

= P

(
−U

(
1

Z1
, . . . ,

1

Zm

)
≤ x

)

for x0 ≤ x ≤ 0 and some x0 < 0. �

Let, for instance, C be an arbitrary m-dimensional copula; that is, C is the distribution function
of a random vector S with uniform margins P(Si ≤ s) = s, s ∈ (0,1), i ≤ m, (Nelsen [29]). Then
Z := 2S is a proper choice in part (ii) of Proposition 2.4. Proposition 2.4, therefore, maps the set
of copulas in a natural way to the set of multivariate GPDs, thus opening a wide range of possible
scenarios.

According to Theorem 2.1, we call a copula CW a GPD copula on [0,1]m or simply a GPD
copula if there exists y0 < 1 such that

CW(y) = W(y − 1), y0 ≤ y ≤ 1,

where W is a GPD with standard uniform margins in a left neighborhood of zero.
For mathematical convenience we temporarily shift a copula to the interval [−1,0]m by shift-

ing each univariate margin by −1. Thus we obtain a distribution function C̃W from a GPD copula
CW , whose marginal distribution functions are the uniform distribution on [−1,0], and C̃W co-
incides close to zero with a GPD W as in equation (7); that is, there exists x0 < 0 such that

C̃W (x) = W(x1, . . . , xm)

= 1 +
(∑

j≤m

xj

)∫
Sm

max
i≤m

(
ti

xi∑
j≤m xj

)
μ(dt), x ∈ [x0,0].

Because C̃W inherits its properties from the original GPD copula CW , we call C̃W a GPD copula
on [−1,0]m.

For later purposes we remark that a random vector V ∈ [−1,0]m following a GPD copula
on [−1,0]m can easily be generated as follows, using Proposition 2.4. Let U be uniformly dis-
tributed on (0,1) and independent of the vector S = (S1, . . . , Sm), which follows an arbitrary
copula on [0,1]m. Then we have for i ≤ m

P

(
−U

1

2Si

≤ x

)
=

⎧⎪⎨
⎪⎩

1 + x, if −1

2
≤ x ≤ 0,

1

4|x| , if x < −1

2
,

=: H(x), x ≤ 0,
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and, consequently,

V :=
(

H

(
− U

2S1

)
− 1, . . . ,H

(
− U

2Sm

)
− 1

)
= (V1, . . . , Vm)

with

Vi =

⎧⎪⎨
⎪⎩

− U

2Si

, if U ≤ Si ,

Si

2U
− 1, if U > Si ,

(8)

follows by Proposition 2.4 a GPD copula on [−1,0]m.

3. Multivariate piecing together

The multivariate PT approach consists of two steps. In a first step, the upper tail of a given m-
dimensional copula C is cut off and substituted by the upper tail of multivariate GPD copula in
a continuous manner. The result is again a copula, that is, an m-dimensional distribution with
uniform margins. The other step consists of the transformation of each margin of this copula by
a given univariate distribution function F ∗

i , 1 ≤ i ≤ m. This provides, altogether, a multivariate
distribution function with prescribed margins F ∗

i whose copula coincides in its central part with
C and in its upper tail with a GPD copula.

We start with fitting a GPD copula to the upper tail of a given copula C on [−1,0]m. Recall
that for mathematical convenience we shift any copula C̃(u), u ∈ [0,1]m, to a copula on [−1,0]m
by setting C(v) = C̃(1 + v), v ∈ [−1,0]m.

Let V = (V1, . . . , Vm) follow a GPD copula on [−1,0]m; that is, P(Vi ≤ x) = 1+x, −1 ≤ x ≤
0, is for each i ≤ m the uniform distribution on [−1,0], and there exists x0 = (x

(1)
0 , . . . , x

(m)
0 ) < 0

such that for each x = (x1, . . . , xm) ∈ [x0,0]

P(V ≤ x) = 1 +
(∑

i≤m

xi

)
D

(
x1∑
i≤m xi

, . . . ,
xm−1∑
i≤m xi

)
,

where D is a Pickands dependence function.
Let Y = (Y1, . . . , Ym) follow an arbitrary copula C on [−1,0]m and suppose that Y is inde-

pendent of V. Choose a threshold y = (y1, . . . , ym) ∈ [−1,0]m and put

Qi := Yi1(Yi≤yi ) − yiVi1(Yi>yi), i ≤ m. (9)

The random vector Q then follows a GPD copula on [−1,0]m, which coincides with C on
×i≤m[−1, yi]. This is the content of the main result of this section.

Proposition 3.1. Suppose that P(Y > y) > 0. Each Qi defined in (9) follows the uniform dis-
tribution on [−1,0]. The random vector Q = (Q1, . . . ,Qm) follows a GPD copula on [−1,0]m,
which coincides with C on ×i≤m[−1, yi]; that is,

P(Q ≤ x) = C(x), x ≤ y.
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We have, moreover, with xi ∈ [max(yi, x
(i)
0 ),0], i ≤ m, for any non-empty subset K of {1, . . . ,m}

P(Qi ≥ xi, i ∈ K) = P(Vi ≥ bi,Kxi, i ∈ K),

where

bi,K := P(Yj > yj , j ∈ K)

−yi

= P(Yj > yj , j ∈ K)

P (Yi > yi)
∈ (0,1], i ∈ K.

Proof. First we show that each Qi follows the uniform distribution on [−1,0]. We have for
−1 ≤ x ≤ yi

P (Qi ≤ x) = P(Qi ≤ x,Yi ≤ yi) + P(Qi ≤ x,Yi > yi)

= P(Yi ≤ x)

= 1 + x,

whereas for yi < x ≤ 0 we obtain

P(Qi ≤ x) = P(Yi ≤ yi) + P(−yiVi ≤ x)P (Yi > yi)

= 1 + yi + P

(
Vi ≤ − x

yi

)
(−yi)

= 1 + yi +
(

1 − x

yi

)
(−yi)

= 1 + x.

The random vector Q, thus, follows a copula on [−1,0]m. We have, further, for x ≤ y

P(Q ≤ x) = P(Q ≤ x,Y ≤ y) + P(Q ≤ x,Y �≤ y)

= P(Y ≤ x)

= C(x).

By Proposition 2.1 in Falk and Michel [18] we have with xi ∈ [max(yi,ωi),0], i ≤ m, t ∈ [0,1]
and an arbitrary subset K ⊂ {1, . . . ,m}

P(Qj > txj , j ∈ K) = P(Qj > txj , Yj > yj , j ∈ K)

= P(−yjVj > txj , j ∈ K)P (Yj > yj , j ∈ K)

= tP (−yjVj > xj , j ∈ K)P (Yj > yj , j ∈ K)

= tP (Qj > xj , j ∈ K),

which, again by Proposition 2.1 in Falk and Michel [18], implies that Q follows a GPD.
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We have, moreover, with xi ∈ [max(yi, x
(i)
0 ),0], i ≤ m,

P(Qi ≥ xi, i ∈ K)

= P(Qi ≥ xi, Yi > yi, i ∈ K) + P(Qi ≥ xi, i ∈ K,Yj ≤ yj for some j ∈ K)

= P(−yiVi ≥ xi, i ∈ K)P (Yi > yi, i ∈ K)

= P

(
Vi ≥ −xi

yi

, i ∈ K

)
P(Yi > yi, i ∈ K)

= P(Vi ≥ bi,Kxi, i ∈ K). �

The above approach provides an easy way to generate a random vector X ∈ R
m with prescribed

margins F ∗
i , i ≤ m, such that X has a given copula in the central part of the data, whereas in the

upper tail it has a GPD copula.
Take Q = (Q1, . . . ,Qm) as in (9) and put Q̃ := (Q1 + 1, . . . ,Qm + 1). Then each component

Q̃i of Q̃ is uniformly distributed on (0,1) and thus

X := (X1, . . . ,Xm) := (F ∗−1
1 (Q̃1), . . . ,F

∗−1
m (Q̃m)) (10)

has the desired properties.
Combining the univariate and the multivariate PT approach now consists in choosing a thresh-

old u(i) ∈ R for each dimension i ≤ m and a univariate distribution function Fi together with an
arbitrary univariate GPD Wγi,μiσi

, and putting for i ≤ m

F ∗
i (x) :=

{
Fi(x), if x ≤ u(i)(
1 − Fi(u(i))

)
Wγi,μiσi

(x) + Fi(u(i)), if x > u(i)
. (11)

This is typically done in a way such that F ∗
i is a continuous function.

4. An application to operational loss data

In this section we apply our multivariate PT approach to operational loss data. For an excellent
introduction to operational risk and insurance analytics, see Chapter 10 of McNeil et al. [23] and
the literature cited there. In the sequel we give a brief summary.

According to the New Basel Capital Accord (Basel II), banks are required to determine the
regulatory capital charge for operational risk, defined as the risk of losses resulting from in-
adequate or failed internal processes, people and systems or from external events. The Basel
Committee on Banking Supervision encourages the use and further development of advanced
modelling techniques to quantify operational risk. The most risk-sensitive methodology is the
loss distribution approach using bank internal data to estimate probability distribution functions
for each business line/event type category. To provide a greater consistency of loss data collec-
tion within and between banks, operational losses are classified in eight business lines and seven
event types. To calculate the capital charge for each business line/event type combination, a risk
measure such as value at risk to the 99.9% confidence level over a one-year holding period is
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chosen. A conservative way to assess a bank’s total capital requirement is to sum up the capital
charges across business line/event type classes assuming perfect dependence and disregarding di-
versification effects in operational risk. Actually, the fact that all severe losses occur in the same
year is rather dubious. Therefore, the dependence structure among losses of different business
line/event type categories needs to be modelled explicitly. For simplicity, we consider in what
follows only business lines and not event types.

The frequency of a loss event for business line i over a one-year time horizon will be denoted
by N(i). The random loss associated with the kth loss event for business line i will be denoted
by ζk(i).

The random loss L(i) over one year for business line i is, therefore, modelled as

L(i) =
N(i)∑
k=1

ζk(i),

where ζ1(i), ζ2(i), . . . are assumed to be i.i.d. with distribution function Fi and they are indepen-
dent of their total number N(i).

The goal is to model the total loss distribution for operational risk; that is, the distribution of

L :=
m∑

i=1

L(i),

or parameters of it such as the value at risk VAR(α) at the probability level α satisfying

P
(
L ≥ VAR(α)

) = 1 − α

or the expected shortfall at the probability level α

ES(α) := E
(
L | L ≥ VAR(α)

)
.

In order to assess the total capital charge, the traditional models for measuring operational risk
determine VAR(α) and ES(α) for each of the m business lines separately and then simply sum
up the corresponding capital charges.

In contrast, Di Clemente and Romano [14] suggest modelling the dependence structure
among L(1), . . . ,L(m) by a copula function, precisely, by the copula corresponding to the m-
dimensional t -distribution with ν degrees of freedom. For a closer look at the issue of modelling
the dependence among components of a random vector of financial risk factors using the concept
of a copula, see Chapter 5 of McNeil et al. [23].

In our application we analyse operational losses of the external database SAS OpRisk Global
Data, which contains worldwide information on publicly reported operational losses over US
$100 000. Since we do not know the probability of losses lying under US $100 000, we neglect
this cut-off limit in modelling the severity and frequency of the data. We concentrate on two
business lines of the financial sector, Commercial banking and Retail banking.

First we follow the copula extreme value theory approach for modelling operational loss data
as outlined in Di Clemente and Romano [14], but we add the multivariate PT approach developed
in Section 3.
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4.1. Estimation

Before applying the multivariate PT approach, we explore the characteristics of the empirical
distributions of the two business lines and estimate the model’s parameters. Thereby the severity
distribution of the random variable ζk(i) and the frequency distribution of the random variable
N(i), i = 1,2, are treated separately. To obtain the distribution function of the total loss L(i)

of the business line i over a one-year time horizon we accomplish a Monte Carlo simulation
combining the severity distribution with the frequency distribution.

First we analyse the empirical distributions of the loss severity. The measures skewness and
kurtosis indicate that the empirical distributions of the two business lines are skewed to the right
and very heavy tailed.

In the next step, parametric distributions (i.e., Weibull, gamma and lognormal distribution) are
fitted to the data. The parameters are estimated by the maximum likelihood method. With the
help of graphical analysis (QQ plots, theoretical versus empirical distribution function plots) and
goodness-of-fit tests (Anderson–Darling test, Cramer–von Mises (CvM) test), we conclude, that
none of the selected distributions provides a good fit to the complete data sets. (For a detailed
presentation and discussion of goodness-of-fit techniques, see D’Agostino and Stephens [8].)
However, the lognormal distribution fits the body of the data very well, while it underestimates
the severity of the data in the right tail.

Therefore, to fit the tail data accurately, the univariate POT method in the model of the severity
distribution of the losses ζk(i) is applied: The existence of a threshold u(i) for each business line
i is assumed such that ζk(i) follows a lognormal distribution function below u(i), whereas above
u(i) it follows a univariate GPD, that is,

P
(
ζk(i) ≤ x

)
(12)

=
{

Fi(x), x ≤ u(i),
Fi(u(i)) + (

1 − Fi(u(i))
)

GPDβ(i),ξ(i)

(
x − u(i)

)
, x ≥ u(i),

where the GPD is given by

GPDβ(i),ξ(i)(z) := 1 −
(

1 + ξ(i)
z

β(i)

)−1/ξ(i)

, z ≥ 0,

with shape and scale parameter ξ(i) > 0, β(i) > 0. Furthermore, Fi is defined as Fi(x) :=
�((log(x) − μ(i))/σ (i)), where � is the standard normal distribution function and μ(i) ∈ R,
σ(i) > 0 are location and scale parameters of the lognormal distribution.

In this case we obtain for x ≥ u(i)

P
(
ζk(i) > x

) = P
(
ζk(i) > u(i)

)(
1 + ξ(i)

x − u(i)

β(i)

)−1/ξ(i)

.

The threshold u(i) is chosen with the help of mean excess plots. The shape and scale pa-
rameters of the GPD are estimated by the maximum likelihood method. For a discussion of the
parameter estimation of a GPD and optimal choice of the threshold, see Section 6 of Embrechts
et al. [15].
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Table 1. Estimated model parameters

α(i) r(i) μ(i) σ (i) u(i) β(i) ξ(i)

Commercial banking 0.74 46.10 2.19 2.23 918.02 609.84 0.82
Retail banking 0.39 162.04 0.88 2.06 69.18 99.75 1.02

To determine the frequency distribution of the random variable N(i), the Poisson and negative
binomial distribution are fitted to the total number of losses per year. The parameters of these
distributions are estimated by the method of moments. Since the negative binomial distribution
has two parameters, α and r , it is more flexible and often provides a better fit to operational loss
data than the Poisson distribution; see Cruz [7], page 89. With the help of the χ2 goodness-of-
fit test, this expectation is confirmed. Therefore, the random variable N(i) is modelled by the
negative binomial distribution, whose probability mass function is expressed as

P
(
N(i) = n

) =
(

α(i) + n − 1

n

)(
1

1 + r(i)

)α(i)(
r(i)

1 + r(i)

)n

, n ∈ N0,

with α(i) > 0, r(i) > 0. The resulting estimates of the model’s parameters are given in Table 1.
In the following, we model the dependence structure among L(1) and L(2) by a copula func-

tion. The assumption of a normal copula has been quite popular in finance for modelling the
dependence between different risks, but it puts less weight on observations that are large in each
component; see, for example, Rachev et al. [31]. The t copula is more heavily tailed and, there-
fore, better suited for modelling operational risk.

In our bivariate case the t copula is fitted to the total loss data over a one-year time horizon. The
parameter of the correlation matrix and the degrees of freedom ν are estimated by the maximum
likelihood method. For a discussion of the problem of fitting copulas to data, see Section 5.5 of
McNeil et al. [23].

Table 2 contains the estimated correlation matrix for the t copula with ν = 8.64 estimated
degrees of freedom.

To evaluate the goodness of fit of the t copula, the CvM test is applied. For recent reviews of
copula goodness-of-fit testing, see Berg [4] and Genest et al. [21]. In Table 3 the CvM test value
and corresponding p-value are reported.

Since the p-value is 0.521978, the null hypothesis that the dependence structure of the data
follows a t copula is not rejected.

Table 2. Estimated correlation matrix for the t copula

Commercial Retail

Commercial 1 0.76
Retail 0.76 1
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Table 3. Goodness-of-fit test for the t copula

CvM statistic p-value

0.02543851 0.521978

4.2. Simulation

In the previous section we estimated the parameters that specify a situation where only the uni-
variate PT approach is applied. This model is similar to the one described in Di Clemente and
Romano [14]. Now we show by simulations how popular risk measures such as value at risk or
expected shortfall can be influenced by the combination of univariate and multivariate piecing
together.

First we take the t copula derived in Section 4.1and add the multivariate PT approach devel-
oped in Section 3. We simulate 104 independent copies of Ỹ = (Ỹ1, Ỹ2) and V = (V1,V2), which
follow the t copula from above and a GPD copula on [−1,0]2, respectively. The realizations of
Y := Ỹ − 1 and V are then combined with those of a random vector Q according to definition
(9). The distribution of Q is then a GPD copula on [−1,0]2 which coincides with the previously
mentioned t copula – shifted by minus one – below some threshold vector y = (y1, y2). The last
step consists in shifting the realizations of Q to the interval [0,1]2 and transforming the mar-
gins by F ∗

1 ,F ∗
2 according to equation (10). (F ∗

1 ,F ∗
2 are derived from Monte Carlo simulations

as described in Section 4.1.) Thus we obtain 104 realizations of a random vector X that follows
a multivariate distribution function that has the marginal distribution functions F ∗

1 ,F ∗
2 and the

associated copula is a GPD copula that coincides with the original t copula in its central part.
These realizations of X are then taken to compute the empirical counterparts of the value at risk
and the expected shortfall.

Before we apply these steps, we remark that there are still two remaining degrees of freedom
in our model: the GPD copula that underlies V and the copula threshold vector y. Our goal in this
section is to give a first insight into the consequences of replacing the upper tail of a given copula
with a GPD copula. (Note that this procedure is justified by Theorem 2.1 and Corollary 2.2.) For
this purpose, we assume a simple model:

(i) We define the GPD copula underlying V indirectly by setting Z := 2S in Proposition 2.4,
where S follows a bivariate normal copula.

(ii) The copula threshold vector is obtained by y := (F1(u(1)),F2(u(2))) − 1; that is, the
thresholds for the marginal distributions in the univariate PT approach (see equation (12)) are
transformed and used for the multivariate PT approach, too.

This way, we construct a parametric model that is only dependent on the correlation matrix

� =
(

1 �

� 1

)
, � ∈ [0,1),

of the random vector S. It is typically very difficult, particularly in higher dimensions, to find
a good multivariate model that describes both marginal behavior and dependence structure ef-
fectively. The advantage of the preceding copula model is that it depends on just one parameter
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� ∈ [0,1), allowing dependence and independence of the margins in a simple and continuous
manner. We refer again to McNeil et al. [23].

The simulations as described above were now done for various values of �. To attain more
reliable estimates for the value at risk and the expected shortfall, we simulated not only once
but 50 times and took the average. Additionally, these values were also computed for the case
in which only the univariate PT approach is applied and the t copula kept unchanged. This
procedure allows us to identify the effect the multivariate PT approach has on the mentioned risk
measures.

In the following we state our results from the simulation series with � = 0.7, which models
the case of relative high dependence but not complete dependence between the business lines.
Although a graphical analysis of the used GPD copulas suggested that the degree of dependence
in the upper tail was increasing with � getting larger, there was no observable trend in the es-
timates of the value at risk and the expected shortfall. Further research is necessary to derive
criteria for the optimal choice of � or, more generally, of the GPD copula underlying V and the
copula threshold y.

We now start with the presentation of the results. For simplicity, we identify the business lines
Commercial banking and Retail banking with the cases i = 1 and i = 2, respectively. The random
vector X from above models the combined random losses for these two business lines over one
year, that is, X = (L(1),L(2)). The value at risk and the expected shortfall of L(1), L(2) and
L = L(1) + L(2) were computed using their empirical counterparts

V̂AR(α) = F̂−1(α),

where F̂ is the empirical distribution function of L(1), L(2) or L, respectively, and

ÊS(α) = 1

n(1 − α)

n∑
i=1

li1[V̂AR(α),∞)(li ),

where li is the ith realization of L(1), L(2) or L, respectively. By 1B we denote the indicator
function of a set B , that is, 1B(x) = 1 if x ∈ B and 1B(x) = 0 otherwise.

Table 4 gives the means of 50 independent simulations resulting from the multivariate PT
approach, whereas Table 5 makes use of the univariate approach only. Since the marginal dis-
tributions are the same in both cases, namely F ∗

1 ,F ∗
2 , the value at risk estimates concerning

L(1),L(2) nearly coincide across both tables. It is apparent that the respective values for L, the
total loss, are only slightly different.

Table 4. Estimated value at risk and expected shortfall, GPD copula

V̂AR(α) ÊS(α)

α 95% 99% 99.5% 99.9% 95% 99% 99.5% 99.9%

L(1) 13 638 32 899 49 650 159 442 46 436 154 758 270 036 1038 077
L(2) 12 586 45 370 84 386 390 127 93 365 381 142 702 350 2880 672
L 26 578 75 518 127 042 533 701 135 581 512 781 930 472 3746 889
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Table 5. Estimated value at risk and expected shortfall, t copula

V̂AR(α) ÊS(α)

α 95% 99% 99.5% 99.9% 95% 99% 99.5% 99.9%

L(1) 13 638 32 667 49 196 153 322 37 674 111 075 182 956 608 755
L(2) 12 590 45 601 83 414 392 673 71 288 270 821 482 058 1774 252
L 25 428 75 674 131 267 533 710 105 122 366 904 637 184 2261 144

On the other hand, the empirical expected shortfalls attain clearly higher values if the upper
tail of the t copula is substituted by a GPD. This behavior is independent of the α level and holds
for the losses in the single business lines as well as for the total loss in our simulation. This is
remarkable since the corresponding estimates for the value at risk are in both cases nearly the
same, indicating that there are some extreme high losses that occur very rarely.

Clearly, with underlying estimated GPD shape parameters ξ(1) = 0.82 and ξ(2) = 1.02, the
theoretical expected shortfall exists only for i = 1 but not for i = 2. The significant increases
for ÊS(α) in line L(1) and L(2) in Table 4 should, therefore, only be due to the high volatility
of the empirical expected shortfall, whereas the significant increase in line L should be caused
by the substituted GPD copula as well. This example of real operational loss data might be
considered as a warning, not to underestimate the effects of rare events that nevertheless might
occur simultaneously.

In cases of no existing theoretical expected shortfall, Moscadelli [28] suggests the risk measure
median shortfall (MS) that is defined regardless of the values of the shape parameter ξ . If the
respective distribution function is continuous, the median shortfall has the representation

MS(α) = VAR

(
1 + α

2

)
,

see Biagini and Ulmer [5], pages 749–750. In addition to our previous results, Table 6 states the
estimates for the median shortfall, which we computed as M̂S(α) = V̂AR((1 + α)/2).

Unlike the expected shortfall, the median shortfall as a robust measure is not as heavily
influenced by extreme values in the upper tail. Therefore, the median shortfall estimates for
L(1),L(2) are closer to each other than the expected shortfall estimates if we compare the t

copula case with the GPD copula case. However, the values for the median shortfall of L at the

Table 6. Estimated median shortfall

M̂S(α), t copula M̂S(α), GPD copula

α 95% 99% 99.5% 99.9% 95% 99% 99.5% 99.9%

L(1) 19 829 49 196 78 678 243 938 19 829 49 650 80 292 313 246
L(2) 21 494 83 414 162 438 793 252 21 600 84 386 162 866 782 938
L 40 340 131 267 234 910 962 458 42 463 127 042 229 260 1085 283
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Figure 1. 104 random deviates of (L(1),L(2)) based on the original t copula (left) and on the GPD copula
(right).

99.9% level do clearly differ, indicating a small number of extreme high losses in the upper tail
– in accordance with our considerations on the expected shortfall, see page 472.

To give visual insight into these results, Figure 1 compares the realizations of X = (L(1),L(2))

graphically. The graphics were taken from a single simulation that contributed to the results
in Table 4 and Table 5. Although the t copula itself is already heavily tailed, the substitution
of its upper part by a GPD puts even more weight on observations that are very high in both
components. (Recall Corollary 2.2.) The latter type of modelling, therefore, represents a higher
risk of an extraordinarily high total loss over a one-year time horizon. This can be seen on the
point in the upper right corner in the right scatterplot of Figure 1, which represents a fictive
total loss of 6275 000, whereas the highest total loss in the respective pure t copula scenario is
3313 000.

5. Conclusions

In the present paper we extended the well known univariate PT approach to higher dimensions.
This was motivated by Theorem 2.1 and Corollary 2.2, which show that it is not sufficient to
apply the univariate approach to the marginal distributions of a random vector if the upper tail
of its distribution is to be modelled adequately. It is, therefore, necessary to approximate the
underlying copula by a multivariate GPD.

The multivariate PT approach that was introduced in (9) offers a wide range of scenarios to be
modelled because it depends basically only on some random vector whose components need to be
bounded and to have expectation one; see Proposition 2.4. As a consequence we also mentioned
a natural way to map the set of copulas to the set of multivariate GPDs that was useful for our
simulation studies to obtain a one-parametric model.

Because the values in a simulation are random, simulations occur that produce no values that
are high in both components. (This is depending on the sample size, too.) Fixing this disad-
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vantage is subject to further research and could probably be achieved by making additional re-
strictions on the GPD copula random vector in (9). Furthermore, goodness-of-fit testing of the
compound GPD copula is required.

Nevertheless, the multivariate PT approach is a powerful and suitable tool to adequately model
multivariate distributions in their upper tails. This ensures that the probability of very rare events
that occur simultaneously and have a high effect if they occur is not underestimated. The high
empirical expected shortfalls in Table 4 might be considered as a warning.
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