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Sequential Monte Carlo (SMC) methods are a class of techniques to sample approximately from any se-
quence of probability distributions using a combination of importance sampling and resampling steps. This
paper is concerned with the convergence analysis of a class of SMC methods where the times at which
resampling occurs are computed online using criteria such as the effective sample size. This is a popular
approach amongst practitioners but there are very few convergence results available for these methods. By
combining semigroup techniques with an original coupling argument, we obtain functional central limit
theorems and uniform exponential concentration estimates for these algorithms.

Keywords: random resampling; sequential Monte Carlo methods

1. Introduction

Sequential Monte Carlo (SMC) methods are a generic class of simulation-based algorithms to
sample approximately from any sequence of probability distributions. These methods are now
extensively used in engineering, statistics and physics; see [1,4,7,8] for many applications. Se-
quential Monte Carlo methods approximate the target probability distributions of interest by a
large number of random samples, termed particles, which evolve over time according to a com-
bination of importance sampling and resampling steps.

In the resampling steps, new particles are sampled with replacement from a weighted empir-
ical measure associated to the current particles; see Section 2.2 for more details. These resam-
pling steps are crucial and, without them, it is impossible to obtain time uniform convergence
results for SMC estimates. However, resampling too often has a negative effect as it decreases
the number of distinct particles. Hence, a resampling step should only be applied when neces-
sary. Consequently, in most practical implementations of SMC, the times at which resampling
occurs are selected by monitoring a criterion that assesses the quality of the current particle ap-
proximation. Whenever this criterion is above or below a given threshold, a resampling step is
triggered. This approach was originally proposed in [9] and has been widely adopted ever since
[1], Section 7.3.2.

For this class of adaptive SMC methods, the resampling times are computed online using
our current SMC approximation and thus are random. However, most of the theoretical results
on SMC algorithms assume resampling occurs at deterministic times; see [6] for an exception
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discussed later. The objective of this paper is to provide convergence results for this type of
adaptive SMC algorithm. This is achieved using a coupling argument. Under some assumptions,
the random resampling times converge almost surely as the number of particles goes to infinity
toward some deterministic (but not explicitly known) resampling times. We show here that the
difference, in probability, between the reference SMC algorithm based on these deterministic but
unknown resampling times and the adaptive SMC algorithm is exponentially small in the number
of particles. This allows us to straightforwardly transfer the convergence results of the reference
SMC algorithm to the adaptive SMC algorithm. In particular, we establish functional central
limit theorems and new exponential concentration estimates that improve over those presented
in [4], Section 7.4.3. Note that some exponential concentration estimates have also been estab-
lished in [1], Theorem 9.4.12, using different techniques and a weaker assumption. The constants
appearing in [1], Theorem 9.4.12, are not explicit so the comparison between these two results
is difficult. In a specific example, we found our bound to be significantly tighter but have not
established it in a general case.

The rest of the paper is organized as follows. In Section 2, we present the class of adaptive
SMC algorithms studied here and our main coupling result. A precise description of the se-
quence of distributions approximated by the reference SMC algorithm is given in Section 3 and
a theoretical analysis of the reference SMC algorithm is presented in Section 4. In particular,
we propose an original concentration analysis to obtain exponential estimates for SMC approxi-
mations. These results are used to obtain a concentration result for the empirical criteria around
their limiting values. The results above are used, in Section 5, to bound the differences between
the deterministic resampling times and their empirical approximations, up to an event with an
exponentially small probability. Finally, we analyze the fluctuations of adaptive SMC algorithms
in Section 6.

2. Adaptive SMC algorithms and main results

2.1. Notation and conventions

Let M(E), P (E) and Bb(E) denote, respectively, the set of bounded and signed measures,
the subset of all probability measures on some measurable space (E,E) and the Banach
space of all bounded and measurable functions f on E when equipped with norm ‖f ‖ =
supx∈E |f (x)|. Osc1(E) is the set of E -measurable functions f with oscillations osc(f ) =
sup(x,y)∈E2 {|f (x) − f (y)|} ≤ 1. μ(f ) = ∫

μ(dx)f (x) is the integral of a function f ∈ Bb(E),
w.r.t. a measure μ ∈ M(E). μ(A) = μ(1A) with A ∈ E and 1A the indicator of A. δa is the
Dirac measure. A bounded integral operator M from a measurable space (E,E) into another
(F,F ) is an operator f �→ M(f ) from Bb(F ) into Bb(E) such that the functions M(f )(x) =∫
F

M(x,dy)f (y) are measurable and bounded for any f ∈ Bb(F ). A bounded integral operator
M from (E,E) into (F,F ) also generates a dual operator μ �→ μM from M(E) into M(F ) de-
fined by (μM)(f ) := μ(M(f )). If constants are written with an argument, then they depend only
on this given argument. The tensor product of functions is written ⊗. For any generic sequence
{zn}n≥0, we denote zi:j = (zi, zi+1, . . . , zj ) for i ≤ j .
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2.2. Adaptive sequential Monte Carlo methods

SMC methods are a popular class of methods for sampling random variables distributed approx-
imately according to the Feynman–Kac path measures

η∗
n(fn) = γ ∗

n (fn)/γ
∗
n (1) with γ ∗

n (fn) = E(fn(X0:n)W0:n−1(X1:n−1)), (2.1)

η̂∗
n(fn) = γ̂ ∗

n (fn)/γ̂
∗
n (1) with γ̂ ∗

n (fn) = E(fn(X0:n)W0:n(X1:n)), (2.2)

where (Xn)n≥0 is a Markov chain on (En,En)n≥0 with transition kernels (Mn)n>0, (Gn)n>0 is a
sequence of non-negative potential functions on (En)n>0 and the importance weight function is
defined by

Wp,q :xp+1:q ∈ Ep+1 × · · · × Eq �→ Wp,q(xp+1:q) :=
∏

p<k≤q

Gk(xk). (2.3)

The basic SMC method proceeds as follows. Given N particles distributed approximately
according to η∗

n−1, these particles first evolve according to the transition kernel Mn. In a second
stage, particles with low relative Gn-potential value are killed and those with a larger relative
potential are duplicated. However, as noted in Section 1, resampling at each time step is wasteful
and should only be performed when necessary.

This has motivated researchers to introduce new resampling strategies where the resampling
step is only triggered when a criterion is satisfied; this is typically computed via the current
particle approximation (see Section 2.3). Such adaptive SMC algorithms proceed as follows. Let
tNn denote the nth resampling time of the adaptive SMC algorithm. After the nth resampling step,
assume we have the following empirical measure approximation of η̂∗N

tn
denoted

η̂∗N
tNn

(·) := 1

N

N∑
i=1

δŶ (N,i)
n

(·),

where Ŷ (N,i)
n := Ŷ

(N,i)

0:tNn . We propagate forward these N paths by generating Y
(N,i)

tNn +1:tNn+1
according

to the transition kernel MtNn +1:tNn+1
:= MtNn +1MtNn +2 · · ·MtNn+1

of the reference Markov chain ini-

tialized at Ŷ
(N,i)

tNn
, up to the first time (tNn+1) the importance weights of the N path samples given

by WtNn ,tNn+1
(Y

(N,i)

tNn +1:tNn+1
) become, in some sense, degenerate.

At time tNn+1 the weighted occupation measure of the system

η̃∗N

tNn+1
(·) :=

N∑
i=1

WtNn ,tNn+1
(Y

(N,i)

tNn +1:tNn+1
)∑N

j=1 WtNn ,tNn+1
(Y

(N,j)

tNn +1:tNn+1
)
δY (N,i)

n+1
(·)
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is a particle approximation of η̂∗
tNn+1

(·), where Y (N,i)
n+1 := (Ŷ (N,i)

n , Y
(N,i)

tNn +1:tNn+1
). After the resampling

step, this measure is replaced by an empirical measure

η̂∗N

tNn+1
(·) := 1

N

N∑
i=1

δŶ (N,i)
n+1

(·)

associated with N path particles Ŷ (N,i)
n+1 := Ŷ

(N,i)

0:tNn+1
that are resampled from η̃∗N

tNn+1
; see, for example,

[7] for alternative resampling schemes.

2.3. Some empirical criteria

Two well-known criteria used in the SMC literature to trigger the resampling mechanism are now
discussed. In both cases, the resampling times (tNn )n≥0 are random variables that depend on the
current SMC approximation.

• Squared coefficient of variation. After the resampling step at time tNn , the particles explore
the state space up to the first time (s = tNn+1) the squared coefficient of variation of the unnormal-
ized weights is larger than some prescribed threshold an

CN
tNn ,s

= 1

N

N∑
i=1

(
WtNn ,s

(
Y

(N,i)

tNn +1:s
)/ 1

N

N∑
j=1

WtNn ,s

(
Y

(N,j)

tNn +1:s
))2

− 1 ≥ an. (2.4)

This is equivalent to resampling when the effective sample size (ESS), defined as ESS = N(1 +
CN

tNn ,s
)−1, is below a prescribed threshold as proposed in [9].

• Entropy. After the resampling step at time tNn , the particles explore the state space up to
the first time (s = tNn+1) the relative entropy of the empirical particle measure w.r.t. its weighted
version is larger than some threshold an

CN
tNn ,s

:= − 1

N

N∑
i=1

logWtNn ,s

(
Y

(N,i)

tNn +1:s
) ≥ an. (2.5)

2.4. Statement of some results

The following section provides a guide of the major definitions and results in this paper; these
will be repeated at the relevant stages in the paper.

2.4.1. A limiting reference SMC algorithm

Let (tn)n≥0 be the deterministic sequence of time steps obtained by replacing the empirical cri-
teria CN

tNn ,s
by their limiting values Ctn,s as N ↑ ∞, that is, tn+1 := inf {tn < s: Ctn,s ≥ an}. In all
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situations, set tN0 = t0 = 0. For the criterion (2.4), the limiting criterion Ctn,s is given by

Etn,̂η∗
tn
(Wtn,s(Xtn+1:s)2)

Etn,̂η∗
tn
(Wtn,s(Xtn+1:s))2

− 1, (2.6)

whereas for (2.5) it is given by

−Etn,̂η∗
tn
(logWtn,s(Xtn+1:s)). (2.7)

Here, Etn,̂η∗
tn

is the expectation w.r.t. the law Ptn,̂η∗
tn

of the random path of variables that starts

at time tn at the end point Xtn = X̂tn of X̂n := X̂0:tn distributed according to η̂∗
tn

and evolves
according to the Markov kernels Mtn+1:s . In [3], the limiting expression for the normalized ef-
fective sample size N−1ESS has been established. An alternative entropy criterion has also been
proposed that can be applied when the potential functions (Gn)n>0 are not strictly positive on
(En)n>0.

2.4.2. An exponential coupling theorem

We give our main results, which hold under the following regularity condition:

(G) ∀n ≥ 1 q ′
n := sup

(x,y)∈(En)2

(
Gn(x)/Gn(y)

)
< ∞. (2.8)

We refer the reader to [4], Chapter 3, for a thorough discussion in the case where (G) does not
apply. To state our results, we first require the following definition.

Definition 2.1. Let Y (N)
n := (Y (N,1)

n , Y (N,2)
n , . . . , Y (N,N)

n ) and Ŷ (N)
n := (Ŷ (N,1)

n , Ŷ (N,2)
n , . . . ,

Ŷ (N,N)
n ) denote the N particles associated to the adaptive SMC algorithm resampling at

times (tNn )n≥0 and let X (N)
n := (X (N,1)

n , X (N,2)
n , . . . , X (N,N)

n ) and X̂ (N)
n := (X̂ (N,1)

n , X̂ (N,2)
n , . . . ,

X̂ (N,N)
n ) denote the N particles associated to the reference SMC algorithm resampling at times

(tn)n≥0. We also suppose that (X (N)
n , X̂ (N)

n ) and (Y (N)
n , Ŷ (N)

n ) coincide on every time interval
0 ≤ n ≤ m, once tNn = tn, for every 0 ≤ n ≤ m. This condition corresponds to the coupling of the
two processes on the event

⋂
0≤n≤m{tNn = tn}.

The first result is a non-asymptotic exponential concentration estimate. The probability mea-
sures ηN

n and ηn are introduced below. They can be thought of as analogues of η∗N
tn

and η∗
tn

; see
Section 3 for formal definitions.

Theorem 2.2. For any n ≥ 0, fn ∈ Osc1(E0 × · · ·×Etn), any N ≥ 1 and any 0 ≤ ε ≤ 1/2, there
exist c1 < ∞, 0 < c2(n) < ∞ such that we have the exponential concentration estimate

P
(|[ηN

n
− ηn](fn)| ≥ ε

) ≤ c1 exp{−Nε2/c2(n)}

for the empirical measures ηN
n

(·) = 1
N

∑N
i=1 δ

(X̂ (N,i)
n−1 ,X

(N,i)
tn−1+1:tn )

(·). In addition, under appropri-

ate regularity conditions on (Mk)k>0 and (Gk)k>0 given in Section 4.2.1 the above estimates
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are valid for the marginal measures associated to the time parameters tn−1 ≤ p ≤ tn for some
constant c2(n) = c2.

The second result is an exponential coupling theorem.

Theorem 2.3. Assume the threshold parameters (an)n≥0 are sampled realizations of a collection
of absolutely continuous random variables A = (An)n≥0. Then, for almost every realization of
the sequence (An)n≥0, (X (N)

n , X̂ (N)
n )n≥0 and (Y (N)

n , Ŷ (N)
n )n≥0 are such that, for every m ≥ 0 and

any N ≥ 1, there exist 0 < c1(m), c2(m) < ∞ and almost surely ε(m,A) ≡ ε(m) > 0 such that

P
(∃0 ≤ n ≤ m

(
Y (N)

n , Ŷ (N)
n

) �= (
X (N)

n , X̂ (N)
n

)|A) ≤ c1(m)e−Nε2(m)/c2(m).

Up to an event having an exponentially small occurrence probability, Theorem 2.3 allows
us to transfer many estimates of the reference SMC algorithm (X (N)

n , X̂ (N)
n )n≥0 resampling at

deterministic times to the adaptive SMC algorithm (Y (N)
n , Ŷ (N)

n )n≥0.
The proofs of Theorems 2.2 and 2.3 are detailed, respectively, in Sections 4.2.3 and 5.2.

3. Description of the models

3.1. Feynman–Kac distributions flow

We consider a sequence of measurable state spaces (Sn,Sn)n≥0, a probability measure η0 ∈
P (S0) and a sequence of Markov transitions Mn(xn−1,dxn) from Sn−1 into Sn for n ≥ 1. Let
(Xn)n≥0 be a Markov chain with initial distribution Law(X0) = η0 and elementary transitions
P(Xn ∈ dy|Xn−1 = x) = Mn(x,dy). Let (Gn)n≥0 be a sequence of non-negative and bounded
potential functions on Sn. To simplify the presentation, and to avoid unnecessary technicalities,
it is supposed Gn ∈ (0,1) for n ≥ 1 with

(G) qn := sup
(x,y)∈S2

n

(
Gn(x)/Gn(y)

)
< ∞. (3.1)

The Boltzmann–Gibbs transformation �n associated to Gn is the mapping

�n :μ ∈ P (Sn) �→ �n(μ) ∈ P (Sn) with �n(μ)(dx) := 1

μ(Gn)
Gn(x)μ(dx).

Notice that �n(μ) can be rewritten as a nonlinear Markov transport equation

�n(μ)(dy) = (μSn,μ)(dy) =
∫

Sn

μ(dx)Sn,μ(x,dy)

with Sn,μ(x,dy) := Gn(x)δx(dy) + (1 − Gn(x))Gn(y)μ(dy)/μ(Gn).

Let (ηn, η̂n)n≥0 be the flow of probability measures, both starting at η0 = η̂0, and defined for
any n ≥ 1 by the following recursion

∀n ≥ 0 ηn+1 = η̂nMn+1 with η̂n := �n(ηn) = ηnSn,ηn . (3.2)
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It can be checked that the solution (ηn, η̂n) of these recursive updating prediction equations have
the following functional representations:

ηn(fn) = γn(fn)/γn(1) and η̂n(fn) = γ̂n(fn)/γ̂n(1) (3.3)

with the unnormalized Feynman–Kac measures γn and γ̂n defined by the formulae

γn(fn) = E

[
fn(Xn)

∏
0<k<n

Gk(Xk)

]
and γ̂n(fn) = γn(fnGn). (3.4)

3.2. Feynman–Kac semigroups

To analyze SMC methods, we introduce the Feynman–Kac semigroup associated to the flow of
measures (γn)n≥0 and (ηn)n≥0. Let us start by denoting by Qn+1(xn,dxn+1) the bounded integral
operator from Sn into Sn+1 defined by

Qn+1(xn,dxn+1) = Gn(xn)Mn+1(xn,dxn+1).

Let (Qp,n)0≤p≤n be the corresponding linear semigroup defined by Qp,n = Qp+1 Qp+2 · · · Qn

with the convention Qn,n = I , the identity operator. Note that Qp,n is alternatively defined by

Qp,n(fn)(xp) = E

[
fn(Xn)

∏
p≤k<n

Gk(Xk)
∣∣Xp = xp

]
. (3.5)

Using the Markov property, it follows that

γn(fn) = E

[
E

[
fn(Xn)

∏
p≤k<n

Gk(Xk)
∣∣Xp

] ∏
0<k<p

Gk(Xk)

]
= γp(Qp,n(fn)).

The last assertion shows that (Qp,n)0≤p≤n is the semigroup associated with the unnormalized
measures (γn)n≥0. Denote its normalized version by

Pp,n(fn) := Qp,n(fn)

Qp,n(1)
. (3.6)

Finally, denote by (�p,n)0≤p≤n the nonlinear semigroup associated to the flow of normalized
measures (ηn)n≥0: �p,n = �n ◦ · · · ◦ �p+2 ◦ �p+1 with the convention �n,n = I , the identity
operator and �n(μ) = μ(Gn−1 Mn)/μ(Gn−1), μ ∈ P (Sn−1). Note that (�p,n)0≤p≤n can be al-
ternatively defined in terms of (Qp,n)0≤p≤n using

�p,n(ηp)(fn) = γp Qp,n(fn)

γp Qp,n(1)
= ηp Qp,n(fn)

ηp Qp,n(1)
. (3.7)
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3.3. Path space and excursion models

Let (Xn)n≥0 be a Markov chain taking values in some measurable state spaces En with elemen-
tary transitions Mn(xn−1,dxn) and initial distribution η0 = Law(X0). In addition, introduce a
sequence of non-negative potential functions (Gn)n>0 on the state spaces (En)n>0. To simplify
the presentation, it is assumed that Gn ∈ (0,1) ∀n > 0.

We associate to an increasing sequence of time parameters (tn)n≥0 the excursion-valued ran-
dom variables X0 for n = 0 and Xtn−1+1:tn for n ≥ 1. We also define the random path sequences

Xn := X0:tn ∈ E′
tn

with the convention E′
n := E0 × · · · × En. Note that (Xn)n≥0 forms a Markov chain

Xn+1 := (Xn,Xtn+1:tn+1) (3.8)

taking values in the excursion spaces Sn := E′
tn

. Now adopting the potential functions

∀n ≥ 1 Gn(Xn) := Wtn−1:tn (Xtn−1+1:tn ) (3.9)

in (3.4), we readily find that

γn(fn) = E

[
fn(Xn)

∏
0<k<n

Gk(Xk)

]
= E[fn(X0:tn )W0:tn−1(X1:tn−1)].

By definition of the potential functions Gn of the excursion Feynman–Kac model (3.9), it is
easily proved that the condition (G) (equation (3.1)) is satisfied as soon as (G) introduced in
(2.8) holds true. More precisely, it holds that (G) implies (G) with

qn ≤ M − sup

{
Wtn−1:tn (xtn−1+1:tn )
Wtn−1:tn (ytn−1+1:tn )

} (
≤

∏
tn−1<k≤tn

q ′
k

)
,

where the essential supremum M − sup {·} is taken over all admissible paths xtn−1+1:tn and
ytn−1+1:tn of the underlying Markov chain (Xn)n≥0.

3.4. Functional criteria

In Section 3.3, we have assumed that an increasing sequence of time parameters (tn)n≥0 was
available. We now introduce the functional criteria used to build this sequence. To connect the
empirical criteria with their limiting functional versions, the latter need to satisfy some weak
regularity conditions that are given below.

Definition 3.1. We consider a sequence of functional criteria

∀n ≥ 0, ∀p ≤ q H(n)
p,q :μ ∈ P (E′

q) �→ H(n)
p,q(μ) ∈ R+



260 P. Del Moral, A. Doucet and A. Jasra

satisfying the following Lipschitz type regularity condition∣∣H(n)
p,q(μ1) − H(n)

p,q(μ2)
∣∣ ≤ δ

(
H(n)

p,q

)∫
|[μ1 − μ2](h)|H(n)

p,q(dh) (3.10)

for some collection of bounded measures H
(n)
p,q on Bb(E

′
q) such that

δ
(
H(n)

p,q

) :=
∫

osc(h)H(n)
p,q(dh) < ∞.

We illustrate this construction with the pair of functional criteria discussed in Section 2.4.1.
When we consider (2.6), the functional

H(n)
p,q(μ) = μ

([
Wp,q

μ(Wp,q)
− 1

]2)
(3.11)

coincides with the squared coefficient of variation of the weights w.r.t. μ. When we consider
(2.7), the functional

H(n)
p,q(μ) = Ent(dμ|Wp,qdμ) := −μ(logWp,q) (3.12)

measures the relative entropy distance between μ and the updated weighted measure. Under the
condition (G) stated in (3.1), it is an elementary exercise to check that the above pair of criteria
satisfy (3.10). In the first case (3.11), we can take H

(n)
p,q = c[δW 2

p,q
+ δWp,q ] for some constant c

sufficiently large. In the second case (3.12), we can take H
(n)
p,q = cδWp,q , again for some c large

enough.

3.5. Resampling times construction

We now explain how to define the sequence of resampling times (tn)n≥0. This requires introduc-
ing the measure Pη,(p,n) ∈ P (E′

n) defined for any pair of integers 0 ≤ p ≤ n and any η ∈ P (E′
p)

by

Pη,(p,n)(dx0:n) := η(dx0:p)Mp+1(xp, dxp+1) · · ·Mn(xn−1, dxn)

∈ P
(
E′

p × (Ep+1 × · · · × En)
) = P (E′

n), (3.13)

where dx0:n denotes an infinitesimal neighborhood of a path sequence x0:n ∈ E′
n.

Given H(n)
p,q , with n ≥ 0 and 0 ≤ p ≤ q , we define an increasing sequence of deterministic time

steps (tn)n≥0 and a flow of Feynman–Kac measures (ηn, η̂n) by induction as follows. Suppose
that the resampling time tn is defined as well as (ηn, η̂n) ∈ P (E′

tn
)2. The resampling time tn+1

is defined as the first time (s > tn) the quantity H(n)
tn,s(Pη̂n,(tn,s)) hits the set In = [an,∞); that is,

tn+1 := inf {tn < s: H(n)
tn,s(Pη̂n,(tn,s)) ∈ In}. Given tn+1, we set

ηn+1 = Pη̂n,(tn,tn+1) and η̂n+1 = �n+1(ηn+1) (3.14)
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with the Boltzmann–Gibbs transformation �n+1 associated with the potential function Gn+1 =
Wtn,tn+1 .

By definition of the Markov transition Mn+1 of the excursion model Xn defined in Section 3.3,
it can be checked that

ηn+1 = Pη̂n,(tn,tn+1) = η̂nMn+1. (3.15)

This yields the recursion ((3.14) and (3.15)) �⇒ ηn+1 = �n(ηn)Mn+1. Hence the flow of mea-
sures ηn and η̂n coincide with the Feynman–Kac flow of distributions defined in (3.3) with the
Markov chain and potential function (Xn, Gn) on excursion spaces defined in (3.8) and (3.9). The
SMC approximation of these distributions is studied in Section 4.

3.6. Some applications

In this section, we examine the inductive construction of the deterministic resampling times
(tn)n≥0 introduced in Section 3.5 for the criteria (2.6) and (2.7).

• Squared coefficient of variation. In this case, we have

H(n)
tn,s

(
Pη̂n,(tn,s)

) = En,̂ηn(Wtn,s(Xtn+1:s)2)

En,̂ηn(Wtn,s(Xtn+1:s))2
− 1.

The mappings s �→ H(n)
tn,s(Pη̂n,(tn,s)) are generally increasing. One natural way to control these

variances is to choose an interval In := [an,∞), with an > 0, then

tn+1 := inf{tn < s: En,̂ηn(Wtn,s(Xtn+1:s)2) ≥ [1 + an]En,̂ηn(Wtn,s(Xtn+1:s))2}.
• Entropy. This criterion allows us to control an entropy-like distance between the free motion

trajectories and the weighted Feynman–Kac measures. To be more precise, set

H(n)
tn,s

(
Pη̂n,(tn,s)

) = Ent
(
Pη̂n,(tn,s)|Qη̂n,(tn,s)

) = −En,̂ηn(logWtn,s(Xtn+1:s))

with the weighted measures Qη,(p,n) defined by

Qη,(p,n)(dx0:n) = Pη,(p,n)(dx0:n) × Wp,n(xp+1:n).

If we choose an interval In := [an,∞), with an > 0, then the resampling time tn+1 coincides
with the first time the entropy distance goes above the level an; that is,

tn+1 := inf
{
tn < s: Ent

(
Pη̂n,(tn,s)|Qη̂n,(tn,s)

) ≥ an

}
.

4. Convergence analysis of the reference SMC algorithm

4.1. A reference SMC algorithm

The SMC interpretation of the evolution equation (3.2) is the Markov chain

X (N)
n = (

X (N,1)
n , X (N,2)

n , . . . , X (N,N)
n

) ∈ SN
n
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with elementary transitions

P
(

X (N)
n+1 ∈ B1 × · · · × BN |X (N)

n

) =
∫

B1×···×BN

N∏
i=1

Kn+1,ηN
n

(
X (N,i)

n , dxi
n+1

)
, (4.1)

where Bi ∈ Sn+1 for every i ∈ {1, . . . ,N} and

Kn+1,ηN
n

= Sn,ηN
n

Mn+1 and ηN
n (·) := 1

N

N∑
j=1

δX (N,j)
n

(·). (4.2)

This integral decomposition shows that the SMC algorithm has a similar updating/prediction
nature as the one of the ‘limiting’ Feynman–Kac model. More precisely, the deterministic two-
step updating/prediction transitions in distribution spaces

ηn
Sn,ηn−−−→ η̂n = ηnSn,ηn = �n(ηn)

Mn+1−−−−→ ηn+1 = η̂nMn+1 (4.3)

have been replaced by a two-step resampling/mutation transition in a product space

X (N)
n ∈ SN

n

resampling−−−−−−→ X̂ (N)
n ∈ SN

n

mutation−−−−−→ X (N)
n+1 ∈ SN

n+1
. (4.4)

In our context, the SMC algorithm keeps track of all the paths of the sampled particles and the
corresponding ancestral lines are denoted by X̂ (N,i)

n = X̂
(N,i)
0:tn and X (N,i)

n = X
(N,i)
0:tn ∈ Sn , where

we recall that Sn = E′
tn

. By definition of the reference Markov model Xn given in (3.8), every path

particle X (N,i)
n+1 ∈ S

n+1 keeps track of the selected excursion X̂ (N,i)
n ∈ Sn and it evolves from its

terminal state X̂
(N,i)
tn,tn

with (tn+1 − tn) elementary moves using the Markov transition Mtn+1:tn+1 .
More formally, we have that

X (N,i)
n+1 = (

X̂
(N,i)
0:tn ,X

(N,i)
tn+1:tn+1

) = (
X̂ (N,i)

n ,X
(N,i)
tn+1:tn+1

)
.

From this discussion, it is worth mentioning a further convention that the particle empirical mea-
sures ηN

n+1(·) = 1
N

∑N
i=1 δ

(X̂ (N,i)
n ,X

(N,i)
tn+1:tn+1

)
(·) are the terminal values at time s = tn+1 of the flow

of random measures

tn ≤ s ≤ tn+1 �→ PN
η̂N
n ,(tn,s)

(·) = 1

N

N∑
i=1

δ
(X̂ (N,i)

n ,X
(N,i)
tn+1:s )

(·). (4.5)

4.2. Concentration analysis

4.2.1. Introduction

This section is concerned with the concentration analysis of the empirical measures ηN
n associ-

ated with (4.2) around their limiting values ηn defined in (3.3). Our concentration estimates are
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expressed in terms of

qp,n = sup
(x,y)∈S2

p

Qp,n(1)(x)

Qp,n(1)(y)
and β(Pp,n) := sup

f ∈Osc1(Sn)

osc(Pp,n(f ))

with Qp,n as in (3.5) and Pp,n in equation (3.6). These parameters can be expressed in terms
of the mixing properties of the Markov transitions Mn; see [4], Chapter 4. Under appropriate
mixing type properties we can prove that the series

∑n
p=0 qα

p,nβ(Pp,n) is uniformly bounded
w.r.t. the final time horizon n for any parameter α ≥ 0. Most of the results presented in this
section are expressed in terms of these series. As a result, these non-asymptotic results can be
converted into time uniform convergence results. To get a flavor of these uniform estimates,
assume that the Markov transitions Mk satisfy the following regularity property.

(M)m There exists an m ∈ N and a sequence (δp)p≥0 ∈ (0,1)N such that

∀p ≥ 0, ∀(x, y) ∈ S2
p Mp,p+m(x, ·) ≥ δp Mp,p+m(y, ·)

with Mp,p+m := Mp+1Mp+2 · · · Mp+m.
We also introduce the following quantities:

∀k ≤ l rk,l := sup
∏

k≤p<l

Gp(xp)

Gp(yp)

(
≤

∏
k≤p<l

qp

)

with the collection of constants (qn)≥1 introduced in (3.1). In the above displayed formula, the
supremum is taken over all admissible pairs of paths with elementary transitions Mp .

Under the condition (M)m we have for any n ≥ m ≥ 1, and p ≥ 1,

qp,p+n ≤ δ−1
p rp,p+m and β(Pp,p+n) ≤

�n/m�−1∏
k=0

(
1 − δ2

p+km+1r
−1
p+km+1,p+(k+1)m

)
. (4.6)

The proof of these estimates relies on semigroup techniques; see [4], Chapter 4, for details.
Several contraction inequalities can be deduced from these results. To understand this more
closely, assume that (M)m is satisfied with m = 1, δ = ∧

n δn > 0 and q = ∨
n≥1 qn. In this

case, qp,p+n ≤ δ−1q and β(Pp,p+n) ≤ (1 − δ2)n imply that

∀α ≥ 0
n∑

p=0

qα
p,nβ(Pp,n) ≤ qα/δ(2+α).

More generally, assume (M)m is satisfied for some m ≥ 1 and that the parameters δp and rk,l

are such that∧
p

δp := δ > 0,
∨
p

rp,p+m := r < ∞ and
∨
p

rp+1,p+m := r < ∞. (4.7)
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In this situation, qp,p+n ≤ δ−1r and β(Pp,p+n) ≤ (1 − δ2r−1)�n/m� and therefore

∀α ≥ 0
n∑

p=0

qα
p,nβ(Pp,n) ≤ mrrα/δ(2+α). (4.8)

See [4], Chapter 3, for a discussion of when (M)m holds. We also mention that this mixing
condition is never met for Xn = (Xp)0≤p≤tn on Sn = E′

tn
discussed in Section 3.3. Nevertheless,

under appropriate conditions on the Markov transitions Mk , it is satisfied for the time marginal
model associated with the excursion valued Markov chain model on

∏
tn−1<p≤tn

Ep . For instance,

if ∀k ≥ 1, ∀(x, y) ∈ (Ek)
2, Mk(x, ·) ≥ δ′Mk(y, ·) for some δ′ > 0, then condition (M)m is met

with m = 1 and δp = δ′.

4.2.2. Some Lm-mean error bounds

At this point, it is convenient to observe that the local sampling errors induced by the mean
field particle model are expressed in terms of the collection of local random field models defined
below.

Definition 4.1. For any n ≥ 0 and any N ≥ 1, let V N
n be the collection of random fields defined

by the following stochastic perturbation formulae

ηN
n = ηN

n−1 Kn,ηN
n−1

+ 1√
N

V N
n

(⇐⇒ V N
n := √

N [ηN
n − ηN

n−1 Kn,ηN
n−1

]). (4.9)

For n = 0, the conventions K0,ηN−1
(x,dy) = η0(dy) and ηN

−1 K0,ηN−1
= η0 are adopted.

In order to quantify high-order Lm-mean errors we need the following Khinchine type inequal-
ity for martingales with symmetric and independent increments. This is a well-known result.

Lemma 4.2 (Khinchine’s inequality). Let L

n := ∑

0≤p≤n 
p be a real-valued martingale with
symmetric and independent increments (
n)n≥0. For any integer m ≥ 1 and any n ≥ 0, we have

E(|L

n |m)1/m ≤ b(m)E([L
]m′/2

n )1/m′
with [L
]n :=

∑
0≤p≤n


2
p, (4.10)

where m′ stands for the smallest even integer m′ ≥ m and (b(m))m≥1 is the collection of con-
stants given below:

b(2m)2m := (2m)m2−m and b(2m + 1)2m+1 := (2m + 1)(m+1)√
m + 1/2

2−(m+1/2) (4.11)

with (2m)m = (2m)!/(2m − m)!.



Adaptive SMC 265

Proposition 4.3. For any N ≥ 1, m ≥ 1, n ≥ 0 and any test function fn ∈ Bb(Sn) we have the
almost sure estimate

E
(|V N

n (fn)|m|F (N)
n−1

)1/m ≤ b(m)osc(fn), (4.12)

where (F (N)
n )n≥0 is the filtration generated by the N -particle system.

Proof. By construction, we have

V N
n (fn) =

N∑
i=1



(N)
n,i (fn),



(N)
n,i (fn) := 1√

N

[
fn

(
X (N,i)

n

) − Kn,ηN
n−1

(fn)
(

X (N,i)
n−1

)]
.

Given X (N)
n−1, let (Y (N,i)

n )1≤i≤N be an independent copy of (X (N,i)
n )1≤i≤N . It can be checked that



(N)
n,i (fn) = E

(
1√
N

[
fn

(
X (N,i)

n

) − fn

(
Y (N,i)

n

)]∣∣F (N)
n

)
.

This yields the formula V N
n (fn) = E(L

(N)
n,N (fn)|F (N)

n ), where L
(N)
n,N (fn) is the terminal value of

the martingale sequence defined by

i ∈ {1, . . . ,N} �→ L
(N)
n,i (fn) := 1√

N

i∑
j=1

[
fn

(
X (N,j)

n

) − fn

(
Y (N,j)

n

)]
.

Then as

E
(|V N

n (fn)|m|F (N)
n−1

)1/m = E
(∣∣E(

L
(N)
n,N (fn)|F (N)

n

)∣∣m∣∣F (N)
n−1

)1/m

≤ E
(∣∣L(N)

n,N (fn)
∣∣m∣∣F (N)

n−1

)1/m
,

one may apply Khinchine’s inequality to conclude. �

The proof of the following lemma is rather technical and is provided in the Appendix.

Lemma 4.4. For any 0 ≤ p ≤ n, any η,μ ∈ P (Sp) and any fn ∈ Osc1(Sn), we have the first-
order decomposition for the nonlinear semigroup �p,n defined in (3.7):

[�p,n(μ) − �p,n(η)](fn) = 2qp,nβ(Pp,n)[μ − η](Up,n,η(fn)) + Rp,n(μ,η)(fn),

where

|Rp,n(μ,η)(fn)| ≤ 4q3
p,nβ(Pp,n)|[μ − η](Vp,n,η(f ))| × |[μ − η](Wp,n,η(fn))|

with Up,n,η(f ), Vp,n,η(f ), Wp,n,η(f ) a collection of functions in Osc1(Sp) whose values only
depend on the parameters (p,n, η).
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We now present a bias estimate and some Lm bounds of independent interest.

Theorem 4.5. For any n ≥ 0, fn ∈ Osc1(Sn) and any N ≥ 1,

N |E(ηN
n (fn)) − ηn(fn)| ≤ σ1,n with σ1,n := 4

n∑
p=0

q3
p,nβ(Pp,n).

In addition, for any m ≥ 1 we have

√
NE

(|[ηN
n − ηn](fn)|m

)1/m ≤ 1√
N

b(2m)2σ1,n + b(m)σ2,n

with σ2,n := 2
∑n

p=0 qp,nβ(Pp,n).

Proof. Using Lemma 4.4, we have the telescoping sum decomposition

WN
n := √

N [ηN
n − ηn]

= √
N

n∑
p=0

[�p,n(η
N
p ) − �p,n(�p(ηN

p−1))] = I N
n + J N

n

with ηN
−1(f ) := f and the pair of random measures (I N

n , J N
n ) given for any fn ∈ Osc1(Sn) by

I N
n (fn) := 2

n∑
p=0

qp,nβ(Pp,n)V
N
p

(
Up,n,�p(ηN

p−1)
(fn)

)
,

J N
n (fn) := √

N

n∑
p=0

Rp,n(η
N
p ,�p(ηN

p−1))(fn).

Now, observe that

E(WN
n (fn)) = E(J N

n (fn)). (4.13)

Using Proposition 4.3, for any fn ∈ Osc1(Sn) it can be checked that E(|I N
n (fn)|m)1/m ≤

b(m)σ2,n. In a similar way, we find that

√
NE(|J N

n (fn)|m)1/m ≤ b(2m)2σ1,n. (4.14)

The first part of the proof then follows from (4.13) and (4.14); the remainder of the proof is now
clear. �

4.2.3. A concentration theorem

The following concentration theorem is the main result of this section.
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Theorem 4.6. For any n ≥ 0, fn ∈ Osc1(Sn), N ≥ 1 and any 0 ≤ ε ≤ 1/2,

P
(|[ηN

n − ηn](fn)| ≥ ε
) ≤ 6 exp

(
− Nε2

8σ1,n

)
, (4.15)

where the constant σ1,n is as in Theorem 4.5.
In addition, suppose (M)m is satisfied for some m ≥ 1 and condition (4.7) holds true for some

δ > 0 and some finite constants (r, r). In this situation, for any value of the time parameter n, for
any fn ∈ Osc1(Sn), N ≥ 1 and for any ρ ∈ (0,1), the probability that

|[ηN
n − ηn](fn)| ≤ 4r

δ2

√
2mrr

Nδ
log

(
6

ρ

)
is greater than (1 − ρ).

Proof. We use the same notation as in the proof of Theorem 4.5. Recall that b(2m)2m = E(X2m)

for every centered Gaussian random variable with E(X2) = 1 and

∀s ∈ [0,1/2) E(exp {sX2}) =
∑
m≥0

sm

m!b(2m)2m = 1√
1 − 2s

.

Using (4.14), for any fn ∈ Osc1(Sn) and 0 ≤ s < 1/(2σ1,n), it follows that

E
(
exp

{
s
√

N J N
n (fn)

}) ≤
∑
m≥0

(sσ1,n)
m

m! b(2m)2m = 1√
1 − 2sσ1,n

. (4.16)

To simplify the presentation, set

f N
p,n := Up,n,�p(ηN

p−1)
(fn) and αp,n := 2qp,nβ(Pp,n),

where Up,n,η(·) was introduced in Lemma 4.4. By the definition of V N
p

V N
p (f N

p,n) = 1√
N

N∑
i=1

(
f N

p,n

(
X (N,i)

p

) − Kp,ηN
p−1

(f N
p,n)

(
X (N,i)

p−1

))
.

Recalling that E(etX) ≤ et2c2/2 for every real-valued and centered random variable X with
|X| ≤ c (e.g., [4], Lemma 7.3.1), we prove that

E
(
exp {tαp,nV

N
p (f N

p,n)}|X (N)
p−1

)
=

N∏
i=1

∫
Sp

Kp,ηN
p−1

(
X (N,i)

p−1 ,dx
)
e
(tαp,n/

√
N)(f N

p,n(x)−K
p,ηN

p−1
(f N

p,n)(X (N,i)
p−1 )) ≤ exp (t2α2

p,n/2).
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Iterating the argument, we find that

E
(
et I N

n (fn)
) = E

(
exp

{
t

n∑
p=0

αp,nV
N
p (f N

p,n)

})
≤ exp

(
t2σ 2

n

2

)
(4.17)

with σ 2
n := 4

∑n
p=0 q2

p,nβ(Pp,n)
2.

From these upper bounds, the proof of the exponential estimates now follows standard argu-
ments. Indeed, for any 0 ≤ s < 1/(2σ1,n) and any ε > 0, by (4.16) we have

P
(√

N J N
n (fn) ≥ ε

) ≤ 1√
1 − 2sσ1,n

exp {−εs}.

Replacing ε by εN and choosing s = 3/(8σ1,n) yields

P
(

J N
n (fn)/

√
N ≥ ε

) ≤ 2 exp {−εN/(3σ1,n)}.

To estimate the probability tails of I N
n (fn), we use (4.17) and the fact that ε > 0 and t ≥ 0

P
(

I N
n (fn) ≥ ε

) ≤ exp

{
−

(
εt − t2

2
σ 2

n

)}
.

Now, choosing t = ε/σ 2
n and replacing ε by

√
Nε, we obtain

∀ε > 0 P
(

I N
n (f )/

√
N ≥ ε

) ≤ exp

(
−Nε2

2σ 2
n

)
.

Using the decomposition

[ηN
n − ηn] = I N

n /
√

N + J N
n /

√
N

we find that for any parameter α ∈ [0,1]
P
([ηN

n − ηn](fn) ≥ ε
) ≤ P

(
I N

n (fn)/
√

N ≥ αε
) + P

(
J N

n (fn)/
√

N ≥ (1 − α)ε
)
.

From previous calculations,

P
([ηN

n − ηn](fn) ≥ ε
) ≤ exp

(
−Nε2α2

2σ 2
n

)
+ 2 exp

(
−Nε(1 − α)

3σ1,n

)
. (4.18)

Now, choose α = (1 − ε)(≥ 1/2), then α2 ≥ 1/4 and

P
([ηN

n − ηn](fn) ≥ ε
) ≤ exp

(
−Nε2

8σ 2
n

)
+ 2 exp

(
− Nε2

3σ1,n

)

≤ 3 exp

(
− Nε2

8(σ1,n ∨ σ 2
n )

)
.
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It remains to observe that qp,n ≥ 1 and β(Pp,n) ≤ 1 �⇒ σ 2
n ≤ σ1,n and

|[ηN
n − ηn](fn)| ≥ ε ⇐⇒ [ηN

n − ηn](fn) ≥ ε or [ηN
n − ηn](fn) ≤ −ε

⇐⇒ [ηN
n − ηn](fn) ≥ ε or [ηN

n − ηn](−fn) ≥ ε

so that

P
(|[ηN

n − ηn](fn)| ≥ ε
) ≤ P

([ηN
n − ηn](fn) ≥ ε

) + P
([ηN

n − ηn](−fn) ≥ ε
)
.

The end of the proof of (4.15) is now easily completed. We now assume that the mixing condition
(M)m is satisfied for some m ≥ 1 and condition (4.7) holds true for some δ > 0 and some finite
constants (r, r). By (4.8) the following uniform concentration estimate holds

sup
n≥0

P
(|[ηN

n − ηn](fn)| ≥ ε
) ≤ 6 exp

(
− Nε2δ5

32mrr3

)
.

The proof of the theorem is concluded by choosing ε := 1√
N

4r

δ2

√
2mrr

δ
log 6

ρ
. �

Remark 4.7. Returning to the end of the proof of Theorem 4.6, the exponential concentration
estimates can be marginally improved by choosing, in (4.18), the parameter α = αn(ε) ∈ [0,1]
such that an(ε)α

2 = bn(1 − α), with an(ε) := ε

2σ 2
n

, bn = 1
3σ1,n

and σ 2
n := 4

∑n
p=0 q2

p,nβ(Pp,n)
2.

Elementary manipulations yield

αn(ε) = bn

2an(ε)

(√
1 + 4an(ε)

bn

− 1

)

= σ 2
n

3σ1,n

1

ε

(√
1 + 6σ1,n

σ 2
n

ε − 1

)
(−→ε↓0 1)

and therefore

∀ε ≥ 0 P
(|(ηN

n − ηn)(f )| ≥ ε
) ≤ 6 exp

(
−N

ε2

2σ 2
n

α2
n(ε)

)
.

For small values of ε, this bound improves that in Section 7.4.3 of [4], which is of the form

∀ε ≥ 0 P
(|(ηN

n − ηn)(f )| ≥ ε
) ≤ (

1 + ε
√

N
)

exp

(
−N

ε2

2σ̃ 2
n

)
with

σ̃ 2
n := 4

(
n∑

p=0

qp,nβ(Pp,n)

)2

≥ σ 2
n .
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4.3. Approximating the criteria

By construction, the particle occupation measures PN
η̂n,(tn,s) approximate the measures Pη̂n,(tn,s)

introduced in (3.13); that is, in some sense, PN
η̂N
n ,(tn,s)

�N↑∞ Pη̂n,(tn,s). Conversely, observe

that PN
η̂N
n ,(tn,s)

, respectively Pη̂n,(tn,s), are the marginals of the measures ηN
n+1, respectively

ηn+1, w.r.t. the (s − tn) + 1 first coordinates. In other words, the measures PN
η̂N
n ,(tn,s)

, respec-

tively Pη̂n,(tn,s), are the projections of the measures ηN
n+1, respectively ηn+1, on the state space

E′
s = E′

tn
× (Etn+1 × · · · × Es).

For instance, the following proposition is essentially a direct consequence of Theorem 4.6.

Proposition 4.8. For any N ≥ 1, n ≥ 0, tn ≤ s ≤ tn+1 and any ε > 0, the concentration inequal-
ity:

P
(∣∣H(n)

tn,s

(
PN

η̂N
n ,(tn,s)

) − H(n)
tn,s

(
Pη̂n,(tn,s)

)∣∣ ≥ ε
) ≤ (

1 + ε
√

N/2
)

exp

(
−Nε2

c(n)

)
holds for some finite constant c(n) < ∞ whose values only depend on the time parameter. In
addition, when the measures H

(n)
tn,s have a finite support, the concentration inequality

P
(∣∣H(n)

tn,s

(
PN

η̂N
n ,(tn,s)

) − H(n)
tn,s

(
Pη̂n,(tn,s)

)∣∣ ≥ ε
) ≤ c1(n) exp

(
− Nε2

c2(n)

)
also holds, with a pair of finite constants c1(n), c2(n) < ∞.

Proof. By [4], Theorem 7.4.4, for any N ≥ 1, p ≥ 1, n ≥ 0 and any test function fn ∈ Osc1(E
′
tn
)

sup
N≥1

√
NE

(|ηN
n (fn) − ηn(fn)|p

)1/p ≤ b(p)c(n)

with some finite constant c(n) < ∞ and with the collection of constants b(p) defined in (4.11).
These estimates clearly imply that for any tn ≤ s ≤ tn+1, and any test function hn ∈ Osc1(E

′
s),

sup
N≥1

√
NE

(∣∣PN
η̂N
n ,(tn,s)

(hn) − Pη̂n,(tn,s)(hn)
∣∣p)1/p ≤ b(p)c(n).

Under (3.10) on the criteria type functionals H(n)
tn,s and using the generalized integral Minkowski

inequality, it can be concluded that

sup
N≥1

√
NE

(∣∣H(n)
tn,s

(
PN

η̂N
n ,(tn,s)

) − H(n)
tn,s

(
Pη̂n,(tn,s)

)∣∣p)1/p ≤ b(p)c(n)δ
(
H

(n)
tn,s

)
.

The proof of the exponential estimate follows exactly the same lines of arguments as the ones
used in the proof of Corollary 7.4.3 in [4]; thus it is omitted. The last assertion is a direct conse-
quence of Theorem 4.6. �
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4.4. An online adaptive SMC algorithm

The above proposition shows that the functional criteria H(n)
tn,s(Pη̂n,(tn,s)) can be approximated by

H(n)
tn,s(P

N
η̂N
n ,(tn,s)

), up to an exponentially small probability. Therefore, as we cannot compute the

deterministic resampling times (tn), it is necessary to approximate the reference particle model:

Definition 4.9. The particle systems Y (N) = (Y (N,i)), Ŷ (N) = (Ŷ (N,i)), Y
(N,i)
s,t and Ŷ

(N,i)
s,t are

defined as X (N) = (X (N,i)), X̂ (N) = (X̂ (N,i)), and X
(N,i)
s,t and X̂

(N,i)
s,t by replacing in the induc-

tive construction of the deterministic sequence (tn)n≥0 the measures Pη̂n,(tn,s) by their current

N -particle approximation measures P
N

η̂N
n ,(tNn ,s)(·) := 1

N

∑N
i=1 δ

(Ŷ (N,i)
n ,Y

(N,i)

tNn +1:s )
(·). Here η̂N

n (·) =
1
N

∑N
i=1 δŶ (N,i)

n
(·) denotes the updated occupation measure of the particle system Ŷ (N)

n . We also
assume that both models are constructed in such a way that they coincide on every time interval
0 ≤ n ≤ m, once the random times tNn = tn, for every 0 ≤ n ≤ m.

It is emphasized that the measures P
N

η̂N
n ,(tNn ,s) differ from the reference empirical measures

PN
η̂N
n ,(tn,s)

in (4.5). Indeed, the reference measures PN
η̂N
n ,(tn,s)

are built using the deterministic times

tn based on the functional criteria H(n−1)
tn−1,s

(Pη̂n−1,(tn−1,s)), whilst the empirical measures P
N

η̂N
n ,(tNn ,s)

are inductively constructed using random times tNn based on H(n−1)

tNn−1,s
(P

N

η̂N
n−1,(t

N
n−1,s)

).

By construction, for the pair of functional criteria discussed in Section 3.6, we have that

H(n)

tNn ,s
(P

N

η̂N
n ,(tNn ,s)) = CN

tNn ,s
, where CN

tNn ,s
are the empirical criteria discussed in Section 2.3.

5. Asymptotic analysis

5.1. A key approximation lemma

To go one step further in our discussion, it is convenient to introduce the following collection of
events.

Definition 5.1. For any δ ∈ (0,1), m ≥ 0, an ∈ R and N ≥ 1, we denote by 
N
m(δ, (an)0≤n≤m),

the collection of events defined by:


N
m(δ, (an)0≤n≤m) := {∀0 ≤ n ≤ m,∀tn ≤ s ≤ tn+1

∣∣H(n)
tn,s

(
PN

η̂N
n ,(tn,s)

) − H(n)
tn,s

(
Pη̂n,(tn,s)

)∣∣ ≤ δ
∣∣H(n)

tn,s

(
Pη̂n,(tn,s)

) − an

∣∣}.
The proof of the following result is straightforward and hence omitted.
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Lemma 5.2. On the event 
N
m(δ, (an)0≤n≤m), for any n ≤ m and for any tn ≤ s ≤ tn+1, we have

H(n)
tn,s

(
Pη̂n,(tn,s)

)
> an �⇒ H(n)

tn,s

(
PN

η̂N
n ,(tn,s)

)
> an.

Proposition 5.3. Assume that the threshold parameters an are chosen so that H(n)
tn,s(Pη̂n,(tn,s)) �=

an, for any n ≥ 0. In this situation, for any δ ∈ (0,1), m ≥ 0 and N ≥ 1, we have⋂
0≤n≤m

{tNn = tn} ⊃ 
N
m(δ, (an)0≤n≤m).

Proof. This result is proved by induction on m ≥ 0. Under our assumptions, for m = 0 we have
tN0 = t0 = 0. Thus, by our coupling construction the pair of particle models coincide up to the
time (tN1 ∧ t1). Therefore, we have

∀s < (tN1 ∧ t1) PN

η̂N
0 ,(t0,s)

= P
N

η̂N
0 ,(tN0 ,s).

By Lemma 5.2, on the event 
N
m(δ, (an)0≤n≤m) we have tN1 = t1. This proves the inclusion for

m = 0 and m = 1. Suppose the result is true at rank m. Thus, on the event 
N
m(δ, (an)0≤n≤m)

it is the case that tNn = tn, for any 0 ≤ n ≤ m. By our coupling construction, the pair of particle
models coincide up to (tNm+1 ∧ tm+1); that is,

tNm = tm and ∀s < (tNm+1 ∧ tm+1) PN
η̂N
m ,(tm,s)

= P
N

η̂N
m ,(tNm ,s).

Once again, by Lemma 5.2, on the event 
N
m+1(δ, (an)0≤n≤m+1) it also follows that tNm+1 =

tm+1. �

5.2. Randomized criteria

The situation where the threshold parameters coincide with the adaptive criteria values
H(n)

tn,s(Pη̂n,(tn,s)) = an cannot be dealt with using our analysis. This situation is more involved
since it requires us to control both the empirical approximating criteria and the particle approx-
imation. It should be noted, however, that this is not a difficulty in many applications where the
probability of this event is zero. Nonetheless, to avoid this technical problem, one natural strategy
is to introduce randomized criteria thresholds. We further assume that the parameters (an)n≥0
are sampled realizations of a collection of absolutely continuous random variables (An)n≥0.
The main simplification of these randomized criteria comes from the fact that the parameters
εm := inf0≤n≤m inftn≤s≤tn+1 |H(n)

tn,s(Pη̂n,(tn,s)) − an| are strictly positive for almost every realiza-
tion An = an of the threshold parameters.

Theorem 5.4. For almost every realization of the random threshold parameters, and for any
δ ∈ (0,1), we have the following exponential estimates:

P
(∃0 ≤ n ≤ m tNn �= tn|(An)0≤n≤m

) ≤ c1(m)

(
1 + δεm

√
N

2

)
exp

(−Nδ2ε2
m/c2(m)

)
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for some constants c1(m), c2(m) < ∞. In addition, when the measures H
(n)
tn,s have a finite sup-

port, for any δ ∈ (0,1/(2εm)),

P
(∃0 ≤ n ≤ mtNn �= tn|(An)0≤n≤m

) ≤ c1(m) exp
(−Nδ2ε2

m/c2(m)
)

holds for a possibly different pair of finite constants c1(m), c2(m) < ∞.

Proof. Using Proposition 4.8, we obtain the rather crude estimate

P
(

 − 
N

m(δ, (An)0≤n≤m)|(An)0≤n≤m = (an)0≤n≤m

)
≤

m∑
n=0

tn+1∑
s=tn

P
(∣∣H(n)

tn,s

(
PN

η̂n,(tn,s)

) − H(n)
tn,s

(
Pη̂n,(tn,s)

)∣∣ ≥ δ
∣∣H(n)

tn,s

(
Pη̂n,(tn,s)

) − an

∣∣)

≤
m∑

n=0

tn+1∑
s=tn

P
(∣∣H(n)

tn,s

(
PN

η̂n,(tn,s)

) − H(n)
tn,s

(
Pη̂n,(tn,s)

)∣∣ ≥ δεm

)
≤ c1(m)

(
1 + δεm

√
N/2

)
exp

(−Nδ2ε2
m/c2(m)

)
for a pair of finite constants c1(m), c2(m) < ∞. The final line is a direct consequence of Propo-
sition 4.8 and an application of Proposition 5.3 completes the proof. �

We conclude that for almost every realization (An)0≤n≤m = (an)0≤n≤m the pair of particle
models (X (N)

n , X̂ (N)
n )0≤n≤m and (Y (N), Ŷ (N)

n )0≤n≤m only differ on events 
−
N
m(δ, (an)0≤n≤m)

with exponentially small probabilities:

P
(∃0 ≤ n ≤ m

(
Y (N), Ŷ (N)

n

) �= (
X (N)

n , X̂ (N)
n

)|(An)0≤n≤m = (an)0≤n≤m

)
≤ c1(m)

(
1 + δεm

√
N/2

)
exp

(−Nδ2ε2
m/c2(m)

)
.

6. A functional central limit theorem

6.1. A direct approach

In this section some direct consequences of the exponential coupling estimates are discussed. For
almost every realization (An)0≤n≤m = (an)0≤n≤m and for any test function fn ∈ Osc1(E

′
tn
) the

following decomposition holds (writing ηN
n for the online adaptive approximation introduced in

Definition 4.9):
√

N [ηN
n − ηn] = √

N [ηN
n − ηn] + √

N [ηN
n − ηN

n ]1
−
N
m(δ,(an)0≤n≤m)

with

E
(√

N [ηN
n − ηN

n ](fn)1
−
N
m(δ,(an)0≤n≤m)

) ≤ √
NP(
 − 
N

m(δ, (an)0≤n≤m))︸ ︷︷ ︸
N↑∞−→0

.
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Thus we can conclude directly that, for almost every realization (An)0≤n≤m = (an)0≤n≤m, the
random fields

W
N

n := √
N [ηN

n − ηn] and WN
n := √

N [ηN
n − ηn]

converge in law, as N ↑ ∞, to the same centered Gaussian random field Wn.

6.2. Functional central limit theorems

To demonstrate the impact of this functional fluctuation result we provide a brief discussion
on the proof of the multivariate central limit theorem. We first recall the functional fluctuation
theorem of the local errors associated with the mean field particle approximation introduced in
(4.9). This result was initially presented in [5] and extended in [4].

Theorem 6.1. For any fixed time horizon n ≥ 0, the sequence (V N
p )0≤p≤n converges in law, as N

tends to infinity, to a sequence of n independent, Gaussian and centered random fields (Vp)0≤p≤n

with, for any fp,gp ∈ Bb(E
′
p), and 1 ≤ p ≤ n,

E(Vp(fp)Vp(gp)) = ηp−1 Kp,ηp−1

([fp − Kp,ηp−1(fp)][gp − Kp,ηp−1(gp)]). (6.1)

Using arguments similar to those in the proof of Lemma 4.4, we obtain the decomposition
formula:

[�n(μ) − �n(η)](f ) = (μ − η)Dn,η(f ) + Rn(μ,η)(f )

with the signed measure Rn(μ,η) given by

Rn(μ,η)(f ) := − 1

μ(Gn,η)
[μ − η]⊗2(Gn,η ⊗ Dn,η(f )

)
with Gn,η := Gn−1/η(Gn−1),

Dn,η(f )(x) := Gn,η(x) × Mn

(
f − �n(η)(f )

)
(x).

Definition 6.2. Denote by Dp,n the semi-group associated to the integral operators Dn :=
Dn,ηn−1 ; that is, Dp,n := Dp+1 · · ·Dn−1Dn. For p = n, we use the convention Dn,n = Id, the
identity operator.

The semigroup Dp,n can be explicitly described in terms of the semigroup Qp,n via

Dp,n(f ) = Qp,n

ηp(Qp,n(1))

(
f − ηn(f )

)
.

The next lemma provides a first-order decomposition of the random fields WN
n in terms of the

local fluctuation errors. Its proof is in the Appendix. Note that Rp can be understood in the proof.
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Lemma 6.3. For any N ≥ 1 and any 0 ≤ p ≤ n, we have

WN
n =

n∑
p=0

V N
p Dp,n + RN

n with RN
n := √

N

n−1∑
p=0

Rp+1(η
N
p ,ηp)Dp+1,n. (6.2)

Using the Lm-mean error estimates presented in Section 4.2.2, it is easily proved that the
sequence of remainder random fields RN

n in (6.2) converge in law, in the sense of finite dis-
tributions, to the null random field as N ↑ ∞. Therefore the fluctuations of WN

n follow from
Theorem 6.1.

Corollary 6.4. For any fixed time horizon n ≥ 0, the sequence of random fields (WN
n )n≥0 con-

verges in law, as N ↑ ∞, to a sequence of Gaussian and centered random fields (Wn)n≥0, where
∀n ≥ 0 Wn = ∑n

p=0 VpDp,n.

6.3. On the fluctuations of weighted occupation measures

We end this article with some comments on the fluctuations of weighted occupation measures
on path spaces. Returning to the online adaptive particle model, given (tNn , tNn+1) = (tn, tn+1) the

N -particle measures ηN
n+1 = 1

N

∑N
i=1 δ

(Ŷ (N,i)
n ,(Y

(N,i)

tNn +1
,Y

(N,i)

tNn +2
,...,Y

(N,i)

tN
n+1

))
can be used to approximate

the flow of updated Feynman–Kac path distributions (̂ηn+1,s )tn≤s≤tn+1 given for any bounded
test function fn+1 ∈ Bb(Sn+1) by

s ∈ [tn, tn+1] �→ η̂n+1,s (fn+1) ∝ E[fn+1(X0:tn+1)W0:s(X1:s)].
Indeed, if we choose

T
(1)
n+1(fn+1)(x0:tn+1) := fn+1(x0:tn+1)Wtn:s(xtn+1:s),

then in some sense

η̂N
n+1,s (fn+1) := ηN

n+1(T
(1)
n+1(fn+1))

ηN
n+1(T

(1)
n+1(1))

�N↑∞ η̂n+1,s(fn+1) := ηn+1(T
(1)
n+1(fn+1))

ηn+1(T
(1)
n+1(1))

,

where ηn+1 is the flow of Feynman–Kac measures on path spaces introduced in Section 3.3.
Since the adaptive interaction time is taken such that tNn+1 = tn+1, it holds that

1

N

N∑
i=1

δŶ (N,i)
n+1

�N↑∞ η̂n+1,tn+1 = η̂n+1.

In other words, if the marginal type functions are chosen such that

T
(0)
n+1(fn+1)(x0:tn+2) := fn+1(x0:tn+1)
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so

ηn+2
(
T

(0)
n+1(fn+1)

) = η̂n+1(fn+1) ∝ E[fn+1(X0:tn+1)W0:tn+1(X1:tn+1)],

ηN
n+2

(
T

(0)
n+1(fn+1)

) = 1

N

N∑
i=1

fn+1
(

Ŷ (N,i)
n+1

) �N↑∞ ηn+2
(
T

(0)
n+1(fn+1)

)
.

From the previous discussion, for almost every realization (An)0≤n≤m = (an)0≤n≤m, a central
limit theorem (CLT) is easily derived for the collection of random fields

Ŵ
N,(0)
n+1 (fn+1) := √

N
[
ηN

n+2

(
T

(0)
n+1(fn+1)

) − ηn+2
(
T

(0)
n+1(fn+1)

)]
,

Ŵ
N,(1)
n+1,s(fn+1) := √

N [̂ηN
n+1,s (fn+1) − η̂n+1,s(fn+1)]

as well as for the mixture of random field sequences

ŴN
n+1,s = 1tNn ≤s<tNn+1

Ŵ
N,(1)
n+1,s + 1s=tNn+1

Ŵ
N,(0)
n+1 . (6.3)

The fluctuation analysis of these random fields relies on the functional CLT stated in Corol-
lary 6.4. In particular, the fluctuations of the random fields (6.3) depend on those of a pair of
random fields.

6.4. Related work

Reference [6] is the only published paper discussing a convergence result for an adaptive SMC
scheme. The authors establish a CLT using an inductive proof w.r.t. deterministic time periods.
They avoid the degenerate situation where the threshold parameter coincides with the limiting
functional criterion. More recently, this problem has also been addressed in [2], Chapter 4. How-
ever, the author does not account for the randomness of the resampling times in his analysis.

Appendix

Proof of Lemma 4.4. Via (3.7), for any f ∈ Bb(Sn+1) we find that

[�p,n(μ) − �p,n(η)](f ) = 1

μ(Gp,n,η)
(μ − η)Dp,n,η(f ),

Dp,n,η(f )(x) := Gp,n,η(x) × Pp,n

(
f − �p,n(η)(f )

)
(x),

where Gp,n,η := Qp,n(1)/η(Qp,n(1)) and Pp,n(f ) = Qp,n(f )/Qp,n(1). Now, since η(Gp,n,η) =
1, it follows that

[�p,n(μ) − �p,n(η)] = (μ − η)Dp,n,η + Rp,n(μ,η),

Rp,n(μ,η)(f ) := − 1

μ(Gp,n,η)
[μ − η]⊗2(Gp,n,η ⊗ Dp,n,η(f )

)
.
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Using the fact that

Dp,n,η(f )(x) = Gp,n,η(x)

∫
[Pp,n(f )(x) − Pp,n(f )(y)]Gp,n,η(y)η(dy)

we find

∀f ∈ Osc1(Sn) ‖Dp,n,η(f )‖ ≤ qp,nβ(Pp,n).

Finally, for any f ∈ Osc1(Sn) observe that

|Rp,n(μ,η)(f )| ≤ (4q3
p,nβ(Pp,n))

∣∣[μ − η]⊗2(Gp,n,η ⊗ Dp,n,η(f )
)∣∣

with Gp,n,η := Gp,n,η/2qp,n and Dp,n,η(f ) := Dp,n,η(f )/2qp,nβ(Pp,n) ∈ Osc1(Sp). �

Proof of Lemma 6.3. The lemma is proved by induction on n. For n = 0, it follows that WN
n =

V N
0 = √

N [ηN
0 − �0(η

N
−1)], with �0(η

N
−1) = η0. Assuming the formula at n

WN
n+1 = V N

n+1 + √
N [�n+1(η

N
n ) − �n+1(ηn)]

= V N
n+1 + WN

n Dn+1 + √
NRn+1(η

N
n , ηn)

= V N
n+1 +

n∑
p=0

V N
p Dp,n+1 + √

N

n−1∑
p=0

Rp+1(η
N
p ,ηp)Dp+1,n+1 + √

NRn+1(η
N
n , ηn).

Letting Dn+1,n+1 = I , it follows that (6.2) is satisfied at rank (n + 1) due to

V N
n+1 +

n∑
p=0

V N
p Dp,n+1 =

n+1∑
p=0

V N
p Dp,n+1,

n−1∑
p=0

Rp+1(η
N
p ,ηp)Dp+1,n+1 + Rn+1(η

N
n , ηn) =

n∑
p=0

Rp+1(η
N
p ,ηp)Dp+1,n+1.

�
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