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A note on a maximal Bernstein inequality
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We show somewhat unexpectedly that whenever a general Bernstein-type maximal inequality holds for
partial sums of a sequence of random variables, a maximal form of the inequality is also valid.
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1. Introduction and statement of main result

Let X1,X2, . . . , be a sequence of independent random variables such that for all i ≥ 1, EXi = 0
and for some κ > 0 and v > 0 for integers m ≥ 2, E|Xi |m ≤ vm!κm−2/2. The classic Bernstein
inequality (cf. [13], page 855) says that, in this situation, for all n ≥ 1 and t ≥ 0,

P

{∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ > t

}
≤ 2 exp

{
− t2

2vn + 2κt

}
.

Moreover (cf. [12], Theorem B.2), its maximal form also holds; that is, we have

P

{
max

1≤j≤n

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣ > t

}
≤ 2 exp

{
− t2

2vn + 2κt

}
.

It turns out that, under a variety of assumptions, a sequence of not necessarily independent ran-
dom variables X1,X2, . . . , will satisfy a generalized Bernstein-type inequality of the following
form: For suitable constants A > 0, a > 0, b ≥ 0 and 0 < γ < 2 for all m ≥ 0, n ≥ 1 and t ≥ 0,

P{|S(m + 1,m + n)| > t} ≤ A exp

{
− at2

n + btγ

}
, (1.1)

where, for any choice of 1 ≤ k ≤ l < ∞, we denote the partial sum S(k, l) = ∑l
i=k Xi. Here are

some examples.

Example 1. Let X1,X2, . . . , be a stationary sequence satisfying EX1 = 0 and VarX1 = 1. For
each integer n ≥ 1 set Sn = X1 + · · · + Xn and B2

n = Var(Sn). Assume that for some σ 2
0 > 0

we have B2
n ≥ σ 2

0 n for all n ≥ 1. Statulevičius and Jakimavičius [15] and Saulis and Statule-
vičius [14] prove that the partial sums satisfy (1.1) with constants depending on a Bernstein
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condition on the moments of X1 and the particular mixing condition that the sequence may ful-
fill. In fact, all values of 1 ≤ γ < 2 are attainable. Their Bernstein-type inequalities are derived
via a result of [1] relating cumulant behavior to tail behavior, which says that for an arbitrary
random variable ξ with expectation 0, whenever there exist γ ≥ 0, H > 0 and � > 0 such that
its cumulants �k(ξ) satisfy |�k(ξ)| ≤ (k!/2)1+γ H/�k−2 for k = 2,3, . . . , then for all x ≥ 0

P{±ξ > x} ≤ exp

{
− x2

2(H + (x/�1/(1+2γ ))(1+2γ )/(1+γ ))

}
. (1.2)

In Example 1, ξ = Sn/Bn and � = d
√

n for some d > 0.

Example 2. Doukhan and Neumann [4] have shown, using the result in (1.2), that if a sequence
of mean zero random variables X1,X2, . . . , satisfies a general covariance condition, then the
partial sums satisfy (1.1). Refer to their Theorem 1 and Remark 2, and also see [8].

Example 3. Assume that X1,X2, . . . , is a strong mixing sequence with mixing coefficients α(n),
n ≥ 1, satisfying for some c > 0, α(n) ≤ exp(−2cn). Also assume that EXi = 0 and for some
M > 0 for all i ≥ 1, |Xi | ≤ M . Theorem 2 of Merlevéde, Peligrad and Rio [9] implies that for
some constant C > 0 for all t ≥ 0 and n ≥ 1,

P{|Sn| > t} ≤ exp

(
− Ct2

nv2 + M2 + tM(logn)2

)
, (1.3)

with Sn = ∑n
i=1 Xi and where v2 = supi>0(Var(Xi) + 2

∑
j>i | cov(Xi,Xj )|) > 0.

To see how the last example satisfies (1.1), notice that for any 0 < η < 1 there exists a D1 > 0
such that for all t ≥ 0 and n ≥ 1,

nv2 + M2 + tM(logn)2 ≤ n(v2 + M2) + D1t
1+η. (1.4)

Thus (1.1) holds with γ = 1 + η for suitable A > 0, a > 0 and b ≥ 0.
For any choice of 1 ≤ i ≤ j < ∞ define

M(i, j) = max{|S(i, i)|, . . . , |S(i, j)|}.
We shall show, somewhat unexpectedly, that if a sequence of random variables X1,X2, . . . ,

satisfies a Bernstein-type inequality of the form (1.1), then, without any additional assumptions,
a modified version of it also holds for M(1 + m,n + m) for all m ≥ 0 and n ≥ 1.

Theorem 1. Assume that, for constants A > 0, a > 0, b ≥ 0 and γ ∈ (0,2), inequality (1.1)
holds for all m ≥ 0, n ≥ 1 and t ≥ 0. Then for every 0 < c < a there exists a C > 0 depending
only on A,a, b and γ such that for all n ≥ 1, m ≥ 0 and t ≥ 0,

P{M(m + 1,m + n) > t} ≤ C exp

{
− ct2

n + btγ

}
. (1.5)
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Remark 1. Notice that though c < a, c can be chosen arbitrarily close to a.

Remark 2. Theorem 1 was motivated by Theorem 2.2 of Móricz, Serfling and Stout [11], who
showed that whenever for a suitable positive function g(i, j) of (i, j) ∈ {1,2, . . .} × {1,2, . . .},
positive function φ(t) defined on (0,∞) and constant K > 0, for all 1 ≤ i ≤ j < ∞ and t > 0,

P{|S(i, j)| > t} ≤ K exp{−φ(t)/g(i, j)},
then there exist constants 0 < c < 1 and C > 0 such that for all n ≥ 1 and t > 0,

P{M(1, n) > t} ≤ C exp{−cφ(t)/g(1, n)}.
Earlier, Móricz [10] proved that in the special case when φ(t) = t2 one can choose c < 1 ar-
bitrarily close to 1 by making C > 0 large enough. This inequality is clearly not applicable to
obtain a maximal form of the generalized Bernstein inequality.

Remark 3. We do not know whether there exist examples for which (1.1) holds for some 0 <

γ < 1 and b > 0. However, since the proof of our theorem remains valid in this case, we shall
keep it in the statement.

Remark 4. The version of Theorem 1 obtained by replacing everywhere |S(m + 1,m + n)| by
S(m+1,m+n) and M(m+1,m+n) by M+(m+1,m+n) = maxm+1≤j≤n+m(S(m+1, j)∨0)

remains true with little change in the proof.

Remark 5. Theorem 1 also remains valid for sums of Banach space valued random variables
with absolute value | · | replaced by norm ‖ · ‖.

Remark 6. In statistics, maximal exponential inequalities are crucial tools to determine the exact
rate of almost sure pointwise and uniform consistency of kernel estimators of the density function
and the regression function. The literature in this area is huge. See, for instance, [2,3,5–7,16] and
the references therein. These results only treat the case of i.i.d. observations. Dependent versions
of our maximal Bernstein inequalities should be useful to determine exact rates of almost sure
consistency of kernel estimators based on data that possess a certain dependence structure. In
fact, some work in this direction has already been accomplished in Section 4.2 of [4]. To carry
out such an application in the present paper is well beyond its scope.

Theorem 1 leads to the following bounded law of the iterated logarithm.

Corollary 1. Under the assumptions of Theorem 1, with probability 1,

lim sup
n→∞

|S(1, n)|√
n log logn

≤ 1√
a

. (1.6)

Remark 7. In general, one cannot replace “≤” by “=” in (1.6). To see this, let Y , Z1,Z2, . . . be
a sequence of independent random variables such that Y takes on the value 0 or 1 with probabil-
ity 1/2 and Z1,Z2, . . . are independent standard normals. Now define Xi = YZi , i = 1,2, . . . . It
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is easily checked that assumption (1.1) is satisfied with A = 2, a = 1/2, b = 0 and γ = 1. When
Y = 1 the usual law of the iterated logarithm gives with probability 1,

lim sup
n→∞

|S(1, n)|/√n log logn = √
2 = 1/

√
a, (1.7)

whereas, when Y = 0 the above limsup is obviously 0. This agrees with Corollary 1, which says
that with probability 1 the limsup is ≤√

2. However, we see that with probability 1/2 it equals
√

2
and with probability 1/2 it equals 0.

Theorem 1 is proved in Section 2 and the proof of Corollary 1 is given in Section 3.

2. Proof of theorem

The case b = 0 is a special case of Theorem 1 of [10]. Therefore we shall always assume that
b > 0. Choose any 0 < c < a. We prove our theorem by induction on n. Notice that by the
assumption, for any integer n0 ≥ 1 we may choose C > An0 to make the statement true for all
1 ≤ n ≤ n0. This remark will be important, because at some steps of the proof we assume that n

is large enough. Also, since the constants A, a, b and γ in (1.1) are independent of m, we can
assume m = 0 without loss of generality in our proof.

Assume the statement holds up to some n ≥ 2. (The constant C will be determined in the
course of the proof.)

Case 1: Fix a t > 0 for which

tγ ≤ αn (2.1)

for some 0 < α < 1 to be specified later. (In any case, we assume that αn ≥ 1.) Using an idea
of [11], we may write for arbitrary 1 ≤ k ≤ n, 0 ≤ q ≤ 1 and p + q = 1 the inequality

P{M(1, n + 1) > t}
≤ P{M(1, k) > t} + P{|S(1, k)| > pt} + P{M(k + 1, n + 1) > qt}.

Let

u = n + tγ b(qγ − q2)

1 + q2
.

Notice that

t2

u + btγ
= q2t2

n − u + bqγ tγ
. (2.2)

Set

k = 
u�. (2.3)
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Using the induction hypothesis and (1.1) we obtain

P{M(1, n + 1) > t}
(2.4)

≤ C exp

{
− ct2

k + btγ

}
+ A exp

{
− ap2t2

k + bpγ tγ

}
+ C exp

{
− cq2t2

n − k + bqγ tγ

}
.

Notice that we chose k to make the first and third terms in the right-hand side of (2.4) almost
equal, and since by (2.3)

t2

k + btγ
≤ q2t2

n − k + bqγ tγ
,

the first term is greater than or equal to the third.
First we handle the second term in (2.4), showing that for 0 ≤ t ≤ (αn)1/γ ,

exp

{
− ap2t2

k + bpγ tγ

}
≤ exp

{
− ct2

n + 1 + btγ

}
.

For this we need to verify that for 0 ≤ t ≤ (αn)1/γ ,

ap2

k + bpγ tγ
>

c

n + 1 + btγ
, (2.5)

which is equivalent to

ap2(n + 1 + btγ ) > c(k + bpγ tγ ).

Using that

k = 
u� ≤ u + 1 = 1 + 1

1 + q2
[n + b(qγ − q2)tγ ],

it is enough to show

n

(
ap2 − c

1 + q2

)
+ tγ

(
ap2b − cbpγ − cb

1 + q2
(qγ − q2)

)
+ ap2 − c > 0.

Note that if the coefficient of n is positive, then we can choose α in (2.1) small enough to make
the above inequality hold, even if the coefficient of tγ is negative. So in order to guarantee (2.5)
(at least for large n) we only have to choose the parameter p so that ap2 − c > 0 – which implies
that

ap2 − c

1 + q2
> 0 (2.6)

holds – and then select α small enough.
Next we treat the first and third terms in (2.4). By the remark above, it is enough to handle the

first term. Let us examine the ratio of C exp{−ct2/(k + btγ )} and C exp{−ct2/(n + 1 + btγ )}.
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Notice again that since u + 1 ≥ k,

n + 1 − k ≥ n − u = n − n + b(qγ − q2)tγ

1 + q2

= q2n − b(qγ − q2)tγ

1 + q2

≥ n
q2 − αb(qγ − q2)

1 + q2

=: c1n.

At this point we need that 0 < c1 < 1. Thus we choose α small enough so that

q2 − αb(qγ − q2) > 0. (2.7)

Also, using t ≤ (αn)1/γ , we get the bound

(n + 1 + btγ )(k + btγ ) ≤ n2(1 + αb)2 =: c2n
2,

which holds if n is large enough. Therefore, we obtain for the ratio

exp

{
−ct2

(
1

k + btγ
− 1

n + 1 + btγ

)}
≤ exp

{
−cc1t

2

c2n

}
≤ e−1,

whenever cc1t
2/(c2n) ≥ 1, that is, t ≥ √

c2n/(cc1). Substituting back into (2.4), for t ≥√
c2n/(cc1) and t ≤ (αn)1/γ we obtain

P{M(1, n + 1) > t}

≤
(

2

e
C + A

)
exp{−ct2/(n + 1 + btγ )} ≤ C exp{−ct2/(n + 1 + btγ )},

where the last inequality holds for C > Ae/(e − 2).
Next assume that t <

√
c2n/(cc1). In this case, choosing C large enough, we can make the

bound > 1, namely

C exp

{
− ct2

n + 1 + btγ

}
≥ C exp

{
−cc2n

cc1n

}
= Ce−c2/c1 ≥ 1,

if C > ec2/c1 .
Case 2: Now we must handle the case t > (αn)1/γ . Here we apply the inequality

P{M(1, n + 1) > t} ≤ P{M(1, n) > t} + P{|S(1, n + 1)| > t}.
Using assumption (1.1) and the induction hypothesis, we have

P{M(1, n + 1) > t} ≤ C exp

{
− ct2

n + btγ

}
+ A exp

{
− at2

n + 1 + btγ

}
.



1060 P. Kevei and D.M. Mason

We will show that the right-hand side ≤ C exp{−ct2/(n + 1 + btγ )}. For this it is enough to
prove

exp

{
−ct2

(
1

n + btγ
− 1

n + 1 + btγ

)}
+ A

C
exp

{
− t2(a − c)

n + 1 + btγ

}
≤ 1. (2.8)

First assume that γ ≤ 1. Using the bound following from t > (αn)1/γ , we get

t2

(n + btγ )(n + btγ + 1)
≥ t2

(α−1 + b)(2α−1 + b)t2γ
=: t2−2γ c3 ≥ c3.

We have that the right-hand side of (2.8) for a ≥ c is less than

e−cc3 + A

C
≤ 1

for C large enough.
For 1 < γ < 2 we have to use a different argument. For t large enough (i.e., for n large enough,

since t > (αn)1/γ ) we have

exp

{
− ct2

(n + btγ )(n + btγ + 1)

}
≤ exp{−cc3t

2−2γ } ≤ 1 − cc3t
2−2γ

2
.

We also have for C > A,

A

C
exp

{
− t2(a − c)

n + 1 + btγ

}
≤ exp

{
−t2−γ a − c

2α−1 + b

}
.

It is clear that since a > c, for t large enough, that is, for n large enough,

cc3t
2−2γ

2
> exp

{
−t2−γ a − c

2α−1 + b

}
.

The proof is complete.

3. Proof of corollary

Choose any λ > 1 and set mr = 
λr� for r = 1,2, . . . . Now, using inequality (1.5), we get

P
{
M(1,mr) >

√
c−1mr+1 log logmr

}
≤ C exp

{
− mr+1 log logmr

mr + b(c−1mr+1 log logmr)γ/2

}
.

Since as r → ∞
mr+1 log logmr

mr + b(c−1mr+1 log logmr)γ/2
= (

1 + o(1)
)
λ log r,
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it is readily checked that for r0 large enough so that log logmr0 > 0,

∞∑
r=r0

P
{
M(1,mr) >

√
c−1mr+1 log logmr

}
< ∞

and thus, since mr+1/mr = λ+o(1), we get by the Borel–Cantelli lemma that with probability 1

lim sup
r→∞

M(1,mr)√
mr log logmr

≤
√

λc−1. (3.1)

Next we see that for all r ≥ r0

max
mr≤n<mr+1

|S(1, n)|√
n log logn

≤ M(1,mr+1)√
mr log logmr

.

Thus by (3.1), with probability 1,

lim sup
r→∞

max
mr≤n<mr+1

|S(1, n)|√
n log logn

≤ lim sup
r→∞

M(1,mr+1)√
mr log logmr

= lim sup
r→∞

M(1,mr+1)√
mr+1 log logmr+1

√
mr+1 log logmr+1√

mr log logmr

≤ λ
√

c−1.

Hence, since λ > 1 can be chosen arbitrarily close to 1 and c < a arbitrarily close to a, we have
proved (1.6).
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[15] Statulevičius, V.A. and Jakimavičius, D.A. (1988). Estimates for semiinvariants and centered moments
of stochastic processes with mixing. I. Litovsk. Mat. Sb. 28 112–129; translation in Lithuanian Math. J.
28 67–80. MR0949647

[16] Stute, W. (1982). A law of the logarithm for kernel density estimators. Ann. Probab. 10 414–422.
MR0647513

Received February 2010 and revised June 2010

http://www.ams.org/mathscinet-getitem?mr=2330724
http://www.ams.org/mathscinet-getitem?mr=1744994
http://www.ams.org/mathscinet-getitem?mr=2195639
http://www.ams.org/mathscinet-getitem?mr=1955344
http://www.ams.org/mathscinet-getitem?mr=2218558
http://www.ams.org/mathscinet-getitem?mr=0515130
http://www.ams.org/mathscinet-getitem?mr=0672303
http://www.ams.org/mathscinet-getitem?mr=2117923
http://www.ams.org/mathscinet-getitem?mr=0838963
http://www.ams.org/mathscinet-getitem?mr=1171883
http://www.ams.org/mathscinet-getitem?mr=0949647
http://www.ams.org/mathscinet-getitem?mr=0647513

	Introduction and statement of main result
	Proof of theorem
	Proof of corollary
	Acknowledgements
	References

