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Given two independent samples of non-negative random variables with unknown distribution functions F

and G, respectively, we introduce and discuss two tests for the hypothesis that F is less than or equal to G

in increasing convex order. The test statistics are based on the empirical stop-loss transform, critical values
are obtained by a bootstrap procedure. It turns out that for the resampling a size switching is necessary. We
show that the resulting tests are consistent against all alternatives and that they are asymptotically of the
given size α. A specific feature of the problem is the behavior of the tests ‘inside’ the hypothesis, where
F �= G. We also investigate and compare this aspect for the two tests.

Keywords: bootstrap critical values; empirical stop-loss transform; increasing convex order; one-sided
two-sample tests.

1. Introduction

One of the basic problems of actuarial mathematics and mathematical finance is the comparison
of risks; see, for example, Kaas et al. (1994), Müller and Stoyan (2002) and Rolski et al. (1999).
In order to introduce the aspect that we will deal with suppose that the random variables X and Y

represent the loss associated with two insurance policies or other financial contracts; we assume
throughout the paper that the random variables are non-negative and that they have finite mean.
Clearly, if X ≤ Y then the comparison is a trivial task. However, the random quantities X and Y

will in general not be directly comparable, and indeed, the comparison of risk is normally based
on the respective distribution functions F and G of X and Y .

A classical partial order for distributions is the stochastic order: We say that F is less than or
equal to G in stochastic order and write F ≤st G (or, with some abuse of notation, X ≤st Y ) if

1 − F(x) ≤ 1 − G(x) for all x ≥ 0. (1.1)

Many interesting and useful results are known for this concept, especially for its statistical aspects
such as testing the hypothesis that F ≤st G; see, for example, Chapter 6 in Conover (1971) or
Kapitel 3,4 in Witting and Nölle (1970). However, in the context of risk comparison, stochastic
order is too restrictive and it does not capture the important notion that risk should also depend
on variability. For this and other reasons alternative notions of partial order for distributions have
been investigated extensively, and the increasing convex order has turned out to play a major role
in this application area. There are several equivalent definitions: We have F ≤icx G if

Ef (X) ≤ Ef (Y ) for all f ∈ Ficx, (1.2)
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where Ficx denotes the set of increasing convex functions f : R+ → R, or if

E(X − t)+ ≤ E(Y − t)+ for all t ≥ 0, (1.3)

see, for example, Theorem 1.5.7 in Müller and Stoyan (2002). Whereas (1.2) explains the ter-
minology, (1.3) has the obvious interpretation in terms of reinsurance and stop-loss contracts. In
fact, a straightforward application of Fubini’s theorem leads to yet another condition. For this,
we introduce the stop-loss transform SL(F ) or F SL associated with a distribution function F ,

SL(F )(t) = F SL(t) =
∫ ∞

t

(
1 − F(x)

)
dx for all t ≥ 0 (1.4)

(F SL is the integrated survival function; we prefer the notation SL(F ) whenever we want to
emphasize the operator interpretation of the transform). Then the following is equivalent to (1.2)
and (1.3):

F SL(t) ≤ GSL(t) for all t ≥ 0. (1.5)

Indeed, the increasing convex order is often called stop-loss order, especially in an actuarial con-
text. Obviously X ≤icx Y if X ≤st Y and EY < ∞; hence, for random variables with finite mean,
increasing convex order is less restrictive than stochastic order. Further, by Jensen’s inequality,
we always have X ≤icx Y if X ≡ EY . This captures the fact that in an actuarial application, a
fixed loss of magnitude c would always be preferable to a random loss with mean c. In stochastic
order distributions with the same mean are comparable only if they are identical.

When comparing actual risks an assertion such as X ≤icx Y may result from general consid-
erations or may be the consequence of some model assumption. Here we take the view that data
from previous contracts could serve as the basis for such a statement and we introduce two sta-
tistical tests that are applicable in this context. Such tests also have an obvious role in connection
with model checking.

Formally, we assume that we have two independent samples X1, . . . ,Xm and Y1, . . . , Yn,
where the X-variables are independent and have distribution function F and the Y -variables
are independent and have distribution function G, and we consider the one-sided composite
hypothesis F ≤icx G against the general alternative F �≤icx G. In the special case where the dis-
tributions F and G are discrete and are concentrated on a fixed finite set the likelihood ratio test
can be applied; this has been investigated in Liu and Wang (2003). Our approach in the general
case is based on the plug-in principle. Let 1A denote the indicator function associated with the
set A. Regarding the empirical distribution functions

Fm = 1

m

m∑
j=1

1[Xj ,∞) and Gn = 1

n

n∑
k=1

1[Yk,∞),

of the two samples X1, . . . ,Xm and Y1, . . . , Yn as suitable estimators for F and G, we are led
to estimate F SL and GSL by the respective empirical stop-loss transforms F SL

m and GSL
n . (We

note in passing that, as SL is one-to-one, F SL
m is the nonparametric likelihood estimator for F SL

in the same sense as Fn has this property as an estimator for F ; see, for example, Shorack and
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Wellner (1986), page 332f.) In view of the close relation of the present problem to the analogue
for the classical stochastic order (see also Sections 3.1 and 3.5 below) natural candidates for test
statistics are then the one-sided Kolmogorov–Smirnov test statistic for increasing convex order,

T KS
m,n = κm,n sup

t≥0

(
F SL

m (t) − GSL
n (t)

)
, (1.6)

and the one-sided Cramér–von Mises test statistic for increasing convex order,

T CvM
m,n = κm,n

∫ ∞

0

(
F SL

m (t) − GSL
n (t)

)+ dt, (1.7)

where we have used the abbreviation

κm,n :=
√

mn

m + n
(1.8)

for the multiplicative constants that are needed in order to obtain non-trivial limit distributions;
see Section 2.2 below. In contrast to the classical stochastic order situation these statistics are
not distribution-free, so a practical way to obtain critical values is needed. We propose to use the
bootstrap; as we will see, this leads to a problem-specific variant that is a consequence of the
nature of the hypothesis and that does not seem to arise in other situations where bootstrap tests
have been suggested.

We have used the comparison of risks as a general motivation, but even within an actuarial
context there are many different and specific applications of increasing convex order. An excel-
lent source is the recent book by Denuit et al. (2005), where this order is used in connection with
premium calculation, option pricing, the modeling of dependencies and the comparison of claim
frequencies. Another important application area is renewal theory, where the stop loss transform
of a lifetime distribution arises in connection with the stationary delay distribution and the limit
distribution of the forward and backward recurrence times. Renewal theory in turn is a basic
building block throughout the whole area of stochastic modeling.

In the next section we state our main results. Section 3 contains two examples and the results
of a small simulation study; we also look at the practical calculation of the test statistics and we
consider the relation to stochastic order in more detail. Proofs are collected in Section 4.

2. Main results

We first introduce some notation and list our general assumptions. Then we investigate the as-
ymptotic behavior of the test statistics, both for situations where the hypothesis is true and situ-
ations where it is not. Our variant of obtaining bootstrap critical values is the topic of the next
subsection. Finally, we combine these results into a description of the asymptotic behavior of the
overall procedure, that is, where the test statistics are used together with the bootstrap critical
values.
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2.1. Preliminaries

In our main results a particular class of stochastic processes will be important: For a distribu-
tion function H on R+, let BH = (BH (t))t≥0 be a centered Gaussian process with covariance
function ρH ,

ρH (s, t) =
∫ ∞

s

∫ ∞

t

(
H(u ∧ v) − H(u)H(v)

)
dudv (2.1)

for all s, t ≥ 0. Such a process can be obtained from a standard Brownian bridge B =
(B(t))0≤t≤1, which is a centered Gaussian process with covariance function

cov
(
B(s),B(t)

) = s ∧ t − s · t,

via

BH (t) =
∫ ∞

t

B(H(s))ds for all t ≥ 0. (2.2)

In particular, a process BH with the above properties exists if
∫

x2H(dx) < ∞ (the role of mo-
ment conditions will be considered in more detail in the proofs section). The representation (2.2)
could also informally be written as BH = SL(B ◦H). In view of the facts that, first,

√
m(Fm −F)

converges in distribution to B ◦F and, second, that SL is a linear operator it is not surprising that
processes of this type appear in the context of distributional asymptotics for empirical stop-loss
transforms.

The covariance structure of B ◦ H matches that of (1[Z,∞)(t))t≥0, where Z is a random vari-
able with distribution function H . This (or a simple direct calculation) yields the alternative
representation

ρH (s, t) = cov
(
(Z − s)+, (Z − t)+

)
for all s, t ≥ 0 (2.3)

for the covariance function of BH . In the proofs both (2.1) and (2.3) will be useful. We will also
occasionally find it useful to extend these processes to the compactified half-line by BH (∞) := 0;
a similar convention is used for the stop-loss transforms. Moment assumptions will imply that BH

exists (as already mentioned above); that the paths are continuous (and hence bounded) functions
on the compact set K := [0,∞], which is important in the Kolmogorov–Smirnov situation; or
that these paths are integrable functions on K , which is necessary in the Cramér–von Mises case.

Let F and G be distribution functions on R+ with finite mean and let (Xj )j∈N and (Yk)k∈N be
two independent sequences of independent random variables, where the Xj ’s have distribution
function F and the Yk’s have distribution function G. Our convergence results refer to statistics
Tm,n that depend on the first m of the X-variables and the first n of the Y -values, where we
generally assume that

min{m,n} → ∞,
m

m + n
→ τ ∈ [0,1]. (2.4)

We write Tm,n →distr T if Tm,n converges in distribution to T .
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In order to describe the behavior of the tests inside the hypothesis we need two more defini-
tions. Given F and G,

A(F,G) := {t ∈ [0,∞] :F SL(t) = GSL(t)} (2.5)

denotes the set where the two stop-loss transforms are equal. Our general conventions imply that
A(F,G) �= ∅. Let H := (1 − τ)F + τG, with τ as in (2.4). Then

γ (H) := sup{t ∈ [0,∞) :H(t) < 1} (2.6)

is the right end-point of the support of H . Finally, we generally assume that F and G are not
degenerate and that the significance level α is less than 1/2.

2.2. Asymptotic behavior of the test statistics

The first theorem in this subsection gives the limit distributions of T KS
m,n and T CvM

m,n in the case
where the hypothesis is true.

Theorem 1. Suppose that F ≤icx G and that G has a finite second moment. Then, with
H = (1 − τ)F + τG and BH as in Section 2.1,

T KS
m,n →

distr
T KS := sup

t∈A(F,G)

BH (t).

If
∫

x4+εG(dx) < ∞ for some ε > 0, then

T CvM
m,n →

distr
T CvM :=

∫
A(F,G)

B+
H (t)dt.

On the alternative we have the following behavior.

Theorem 2. Suppose that F �≤icx G. Then T KS
m,n and T CvM

m,n converge to ∞ with probability 1.

2.3. Bootstrap critical values

The step from a test statistic T to an actual statistical test φ = 1{T >c} requires a critical value
c = c(α) that depends on the chosen error bound α for the probability of wrongly rejecting the
hypothesis. For stochastic order, due to the strong invariance properties and their consequences,
the classical tests are level α tests even for finite sample sizes. In the present situation, however,
we have to content ourselves with asymptotics, aiming for a procedure that satisfies the error
bound asymptotically as the sample size(s) tend to infinity. At first, one might think of using
Theorem 1 in the special case F = G with the quantiles of the respective limit distribution as
critical values. However, these limit distributions depend on the unknown F ; also, it is not clear
what the consequences are if we are inside the hypothesis in the sense that F ≤icx G, but F �= G.
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In this context resampling methodology provides a practicable solution. Recall that Fm

and Gn are the empirical distribution functions associated with the samples X1, . . . ,Xm from F

and Y1, . . . , Yn from G. These random variables are the initial segments of two infinite se-
quences (Xj )j∈N and (Yk)k∈N of random variables defined on some background probability
space (	, A,P ); the almost sure statements below refer to P . Given the initial segments, let
ẐN,1, . . . , ẐN,N be a sample of size N := m + n from the (random) distribution function

Hm,n = n

m + n
Fm + m

m + n
Gn. (2.7)

Note the ‘size switching’: In contrast to many two-sample bootstrap tests in the literature the basis
for the resampling that we use here is a distribution that assigns higher probabilities to the values
from the smaller sample (this aspect will be further discussed in Section 3.2). The following
theorem shows that, with probability 1, the limit distribution for the respective test statistics is
the same as in Theorem 1 in the special case F = G (so that A(F,G) = [0,∞]).

Theorem 3. With ẐN,1, . . . , ẐN,N as above, let F̂N,m and ĜN,n be the empirical distribution
functions associated with ẐN,1, . . . , ẐN,m and ẐN,m+1, . . . , ẐN,N , respectively. Let

T̂ KS
m,n := κm,n sup

t≥0

(
F̂ SL

N,m(t) − ĜSL
N,n(t)

)
(2.8)

and

T̂ CvM
m,n := κm,n

∫ ∞

0

(
F̂ SL

N,m(t) − ĜSL
N,n(t)

)+ dt (2.9)

be the bootstrap versions of the Kolmogorov–Smirnov and the Cramér–von Mises test statistics.
Let BH be as in Section 2.1, with H = (1 − τ)F + τG. Then, with probability one,

T̂ KS
m,n →

distr
sup
t≥0

BH (t). (2.10)

If
∫

x4+εF (dx) < ∞ and
∫

x4+εG(dx) < ∞ for some ε > 0, then, again with probability one,

T̂ CvM
m,n →

distr

∫ ∞

0
B+

H (t)dt. (2.11)

The distributions of T̂ KS
m,n and T̂ CvM

m,n are functions of the data X1, . . . ,Xm, Y1, . . . , Yn. The fa-
miliar Monte Carlo procedure can be used to obtain approximations for the respective distribution
functions and quantiles.

2.4. The bootstrap tests

Let T KS and T CvM be as in Theorem 1, and suppose now that F = G. In particular, the supre-
mum and the integral are taken over the whole half-line. Let cKS(F,α) and cCvM(F,α) be the
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associated upper α-quantiles, that is,

cKS|CvM(F,α) := inf
{
q ≥ 0 :P(T KS|CvM > q) ≤ α

}
, (2.12)

and let ĉKS
m,n(α) and ĉCvM

m,n (α) be the corresponding bootstrap estimates, that is, the upper

α-quantiles for T̂ KS
m,n and T̂ CvM

m,n , respectively. We now consider the procedure that arises from
using the test statistics defined in Section 1 together with these critical values. The following the-
orem is the main result of the paper. Our proof will give a slightly stronger result; we concentrate
here on the statistically most relevant aspects. Let 
 denote the Lebesgue measure.

Theorem 4. Let F and G be distribution functions with finite second moment, put S :=
A(F,G) ∩ [0, γ (H)). Then the limit

ψKS(α;F,G) := lim
m,n→∞P

(
T KS

m,n > ĉKS
m,n(α)

)
exists, and

ψKS(α;F,G) = α if F = G,

ψKS(α;F,G) ≤ α if F ≤icx G,

ψKS(α;F,G) = 0 if and only if F ≤icx G and S = ∅,

ψKS(α;F,G) = 1 if F �≤icx G.

If
∫

x4+εF (dx) < ∞ and
∫

x4+εG(dx) < ∞ for some ε > 0, then

ψCvM(α;F,G) := lim
m,n→∞P

(
T CvM

m,n > ĉCvM
m,n (α)

)
exists, and

ψCvM(α;F,G) = α if F = G,

ψCvM(α;F,G) ≤ α if F ≤icx G,

ψCvM(α;F,G) = 0 if and only if F ≤icx G and 
(S) = 0,

ψCvM(α;F,G) = 1 if F �≤icx G.

In words: The tests are asymptotically exact if the two distributions are the same; they are
asymptotically of the preassigned level; they are consistent inside the hypothesis (where the
meaning of ‘inside’ depends on the type of the test), and they are consistent against all alter-
natives. Whereas the Cramér–von Mises test requires a stronger moment assumption than the
Kolmogorov–Smirnov test, it is asymptotically of level zero on a larger subset of the hypothesis.
In particular, this ‘consistency inside the hypothesis’ can be used to distinguish between the two
tests.
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3. Examples, simulations and remarks

We first discuss the use of rank tests in Section 3.1. An example in Section 3.2 shows that the
size switching in the resampling part mentioned after (2.7) is important; this example also illus-
trates the different behavior of the two tests inside the hypothesis. In Section 3.3 we provide two
formulas that can be used to calculate the test statistics. Section 3.4 contains the result of a small
simulation study. In the last subsection we show that, from an abstract statistical point of view,
increasing convex order differs in an important way from the classical stochastic order.

3.1. Unsuitability of rank tests

What happens if we use the classical procedures designed for stochastic order, such as the
Wilcoxon test and the Kolmogorov–Smirnov test, in connection with increasing convex order?

We write Wei(β) for the Weibull distribution with parameter β > 0 and Exp(λ) for
the exponential distribution with parameter λ > 0; the respective distribution functions are
F(x) = 1 − exp(−xβ) and G(x) = 1 − exp(−λx), x ≥ 0. The stop-loss transforms (integrated
survival functions) of the Wei(2) and the Exp(1) distribution are

F SL(t) = √
π

(
1 − �

(√
2t

))
and GSL(t) = exp(−t), t ≥ 0,

where � denotes the distribution function for the standard normal distribution. Figure 1 shows
the two distribution functions on the left and the two stop-loss transforms on the right. Obvi-
ously, these distributions are not comparable in the usual stochastic order. However, we do have
F ≤icx G in view of the Karlin–Novikov criterion (the mean of F is less than or equal to the
mean of G and, for some t0, F(t) ≤ G(t) for all t ≤ t0 and F(t) ≥ G(t) for all t ≥ t0; see,
e.g., Theorem 3.2.4 in Rolski et al. (1999)).

Figure 1. Distribution functions (left) and stop-loss transforms (right) for Exp(1) (solid line) and Wei(2)

(dotted line).
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Suppose we use the one-sided Wilcoxon test for testing F ≤icx G against the one-sided al-
ternative G ≤icx F , and the one-sided Kolmogorov–Smirnov test (in its version designed for
stochastic order) for testing F ≤icx G against the general alternative F �≤icx G. The first test
rejects the hypothesis if Wm,n > cm,n, where Wm,n = ∑m

j=1
∑n

k=1 1{Xj >Yk} is the Wilcoxon–
Mann–Whitney test statistic and wm,n is the (1 − α)-quantile of Wm,n in the case where F = G.
From wm,n/(mn) → 1/2 and

1

mn

m∑
j=1

n∑
k=1

1{Xj >Yk} → πF,G

in probability with πF,G := P(X1 > Y1) = ∫
(1 − F(x))G(dx) it follows that P(Wm,n >

wm,n) → 1 as m,n → ∞ if πF,G > 1
2 . Since

πW(2),Exp(1) =
∫ ∞

0
exp(−x − x2)dx > 0.54 . . . > 1

2 ,

we arrive at the conclusion that in the case F = Wei(2) and G = Exp(1) (where the hypothesis
is true) the probability of an error of the first kind of the one-sided Wilcoxon test tends to 1 as
m,n → ∞.

The one-sided Kolmogorov–Smirnov test for stochastic order rejects the hypothesis if

sup
x≥0

(
Gn(x) − Fn(x)

)
> km,n,

where km,n is the (1 − α)-quantile of supx≥0(Gn(x) − Fn(x)) in the case where F = G. We
always have km,n → 0 and, with F = Wei(2) and G = Exp(1) again,

sup
x≥0

(
Gn(x) − Fn(x)

) → sup
x≥0

(
G(x) − F(x)

)
> 0

in probability as m,n → ∞. Thus, for this test, too, the probability of an error of the first kind
can become arbitrarily close to 1.

The two tests considered above are rank tests in the sense that the respective test statistics
depend on the data only via the ranks of the sample variables in the pooled sample. We have
seen that such tests may violate the bound α for the probability of wrongly rejecting the hy-
pothesis F ≤icx G if used in conjunction with the critical values designed for stochastic order.
Moreover, rank tests φm,n for increasing convex order that do respect the significance level α < 1
(asymptotically) may fail to detect that the hypothesis is wrong, in the sense that they cannot be
consistent against all alternatives. This follows from the fact that rank tests are invariant with
respect to continuous, strictly increasing transformations � of the data, that is,

EF,Gφm,n = E
F̃,G̃

φm,n, (3.1)

whenever F̃ , G̃ are the distribution functions of �(X),�(Y ), respectively, and X has distribu-
tion function F , Y has distribution function G. Indeed, if F , G and � are such that F ≤icx G,
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F̃ �≤icx G̃, we have the (asymptotic) upper bound α on the left-hand side of (3.1) because of the
bound on the probability of an error of the first kind, whereas consistency would require the
limit 1 on the right-hand side as m,n → ∞. An example for this situation can be obtained by
choosing F and G to be the distribution functions for the uniform distribution on the intervals
(0,1) and (7/16,9/16), respectively, together with �(x) = √

x. Then F ≤icx G follows with the
Karlin–Novikov criterion, and a straightforward calculation shows that

F̃ SL(0) =
∫

xF̃ (dx) = 93/2 − 73/2

12
> 2/3 =

∫
xG̃(dx) = G̃SL(0),

which implies that F̃ �≤icx G̃.

3.2. Size switching does matter

Suppose that the distributions of the X- and Y -variables are given by

P(Xj = 0) = P(Xj = 1) = 1
2 and P(Yk = 0) = 1 − P(Yk = 2) = 3

4 ,

respectively. The corresponding stop-loss transforms are

F SL(t) =
{

(1 − t)/2, 0 ≤ t ≤ 1,
0, t > 1,

and GSL(t) =
{

(2 − t)/4, 0 ≤ t ≤ 2,
0, t > 2.

Obviously, F ≤icx G and A(F,G) = {0}∪ [2,∞]. In Section 2.3 we based the resampling on the
distribution function

Hm,n := n

m + n
Fm + m

m + n
Gn.

We now investigate, for the above F and G, what the consequences are if we resample from

H 0
m,n := m

m + n
Fm + n

m + m
Gn

instead. This corresponds to the standard resampling scheme where each of the items from the
pooled sample is chosen with the same probability, so that the subsamples are represented pro-
portional to their size when using H 0

m,n. This procedure has been suggested in Chapter 3.7.2
of van der Vaart and Wellner (1996) in connection with the general hypothesis F = G, for ex-
ample, but of course, on the boundary F = G of the hypothesis F ≤icx G the size switching is
asymptotically irrelevant.

Let H = (1−τ)F +τG and H 0 := τF +(1−τ)G be the respective limits of these distribution
functions as m,n → ∞, where we again assume that (2.4) holds. Let BH be as in Section 2.1
and let similarly BH 0 = (BH 0(t))t≥0 be a centered Gaussian process with covariance function

ρH 0(s, t) =
∫ ∞

s

∫ ∞

t

H 0(u ∧ v)dudv − SL(H 0)(s)SL(H 0)(t).
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By Theorem 1 the test statistics T KS
m,n converge in distribution to

T KS = sup
t∈A(F,G)

BH (t) = B+
H (0),

where we have used the fact that BH vanishes on [2,∞]. By Theorem 3 the bootstrap estimators
using size-switched resampling converge in distribution to

T switch = sup
t≥0

BH (t)

with probability 1. The same arguments also work for standard resampling, leading to the distri-
butional limit

T prop = sup
t≥0

BH 0(t),

again with probability 1. Moreover, using the same arguments as in the proofs of Theorems 3
and 4 it can be shown that, with the H 0-based estimators ĉ

0,KS
m,n (α) for the critical values,

lim
m,n→∞P

(
T KS

m,n > ĉ0,KS
m,n (α)

) = P
(
T KS > cKS

0 (α)
)
,

where cKS
0 (α) is the upper α-quantile of the distribution of T prop.

In the present simple case, where the distributions are concentrated on just two values, and
using the fact that BH and BH 0 can both be constructed from a standard Brownian bridge B , the
limit processes essentially reduce to two-dimensional normal random variables. This enables us
to work out some details. In fact, with the temporary notation X := B(H(0)) = B((2 + τ)/4)

and Y := B(H(1)) = B((4 − τ)/4) we have that

BH (t) =
∫ ∞

t

B(H(s))ds =
{

(1 − t)X + Y, 0 ≤ t < 1,
(2 − t)Y, 1 ≤ t < 2,
0, t ≥ 2,

which gives T switch = X+ + Y+. As X and Y are jointly normal with σ 2
1 := var(X) = (4 −

τ 2)/16, σ 2
2 := var(Y ) = τ(4 − τ)/16 and cov(X,Y ) = τ(2 + τ)/16 we obtain, again with � the

standard normal distribution function, and with ρ := cov(X,Y )/(σ1σ2),

P(X+ + Y+ ≤ z) = �

(
z

σ1

)
−

∫ 0

−∞

(
1 − �

(
z − ρσ2t

σ2(1 − ρ2)1/2

))
�(dt)

−
∫ z/σ1

0

(
1 − �

(
z − (ρσ2 + σ1)t

σ2(1 − ρ2)1/2

))
�(dt)

for all z ≥ 0. Similarly, replacing τ by 1 − τ , we obtain T prop = X+
0 + Y+

0 , now with X0 :=
B(H 0(0)) = B((3 − τ)/4) and Y0 := B(H 0(1)) = B((3 + τ)/4).

Table 1 gives the numerical results for some α-values in the case τ = 3/4 (the entries in
columns 2–5 are rounded to four decimal points). The second and third columns contain the
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Table 1. Critical values and error probabilities

α cKS(α) cKS
0 (α) P

(
T KS > cKS(α)

)
P

(
T KS > cKS

0 (α)
)

0.100 1.0134 0.8069 0.0999 0.1537
0.050 1.3004 1.0202 0.0500 0.0984
0.025 1.5495 1.2079 0.0250 0.0633

limiting critical values based on size-switched and proportional resampling, respectively, that is,
the upper α-quantiles cKS(α) of the distribution of T switch and the upper α-quantiles cKS

0 (α) of
the distribution of T prop. In columns 4 and 5 we have the corresponding asymptotic probabilities
of rejection. The error bound is clearly violated for each of the α-values in the proportional case.
Due to the fact that T KS = B+

H (0) = (X + Y)+ and T switch = X+ + Y+ it is not surprising that
in the case of size-switched resampling the limiting power is close to the given level for small α:
Conditionally on X+ +Y+ being large, we have X,Y ≥ 0 and hence (X +Y)+ = X+ +Y+ with
high probability.

Turning to the behavior of the Cramér–von Mises test for increasing convex order we first
note that T CvM = ∫

A(F,G)
B+

H (t)dt = 0. The limiting critical values are the upper α-quantiles of∫ ∞
0 B+

H (t)dt for size-switched resampling and
∫ ∞

0 B+
H 0(t)dt for proportional resampling. Since

these quantiles are positive for each α ∈ (0,1/2), the limiting power of the Cramér–von Mises
test is 0 for both resampling schemes. With F and G as above we therefore also have an example
for the different behavior of the two tests inside the hypothesis.

3.3. Alternative expressions for the test statistics

The definitions given in (1.6) and (1.7) result from applying the plug-in principle. From a prac-
tical point of view it is desirable to have alternative expressions that avoid the use of integrals.
Suppose that the set

{0,X1, . . . ,Xm,Y1, . . . , Yn}
has l different values and denote these, in increasing order, by Z1, . . . ,Zl .

Proposition 1. Let fj := f (Zj ) for j = 1, . . . , l, where

f (t) := 1

m

m∑
j=1

max(Xj , t) − 1

n

n∑
k=1

max(Yk, t),

and let J and K be the complementary set of numbers j = 1, . . . , l − 1 such that fj �= fj+1 and
fj = fj+1, respectively. Then

T KS
m,n = κm,n max

1≤j≤l−1
f +

j
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and

T CvM
m,n = κm,n

(∑
j∈J

1

2

f +2
j+1 − f +2

j

fj+1 − fj

(Zj+1 − Zj ) +
∑
j∈K

f +
j (Zj+1 − Zj )

)
.

Clearly, these expressions can directly be used to implement the procedures on a computer.

3.4. Simulations

In order to obtain an impression of the performance of the tests we present the results of a sim-
ulation study. For each pair F and G of distributions chosen for the first and the second sample,
respectively, an approximation of the power of the tests based on T KS

m,n and T CvM
m,n was obtained

empirically by simulations with 1000 replications. For each of these samples we used 1000 re-
samples to get the corresponding approximate critical values. The test statistics were calculated
with the formulas given in Section 3.3.

Throughout, the sample sizes are m,n ∈ {30,50}, and the significance level is α = 0.05.
The distributions F and G are chosen from the families of exponential distributions Exp(λ),
Weibull distributions Wei(β), uniform distributions unif(a, b) on finite intervals (a, b), gamma
distributions �(θ) with shape parameter θ > 0 and scale parameter 1, and shifted Pareto distri-
butions Par(η) with parameter η > 0 and distribution function 1 − (1 + x)−η for x ≥ 0. Taking
into account the relationships

unif(1/4,3/4) ≤icx unif(0,1) ≤st unif(0,2) ≤icx Exp(1),

�(1/2) ≤st Exp(1) ≤st �(2),

Wei(2) ≤icx Exp(1),

Exp(4/3) ≤st Exp(1),

Exp(4) ≤icx Par(5),

three groups of pairs of distributions are considered. Table 2 collects the results, where a nu-
merical value such as 0.062 in the upper left corner means that 62 of the 1000 samples have
led to a rejection; the entries therefore approximate the power of the respective test, here the
Kolmogorov–Smirnov test of the hypothesis that F ≤icx G in the case that the samples are both
uniformly distributed on the unit interval.

The first group, lines 1–6 of the numerical values in Table 2, represents the boundary of the
hypothesis, that is, cases where F = G. The two tests behave here essentially in the same way.
The given level α = 0.05 is exceeded slightly for sample sizes m > n and the tests are nearly
conservative for sample sizes m < n.

In the second group, lines 7–10, pairs from the interior of the hypothesis are considered, where
F ≤icx G and F �= G. For the first, third and fourth pairs of distributions it holds that 0 ∈ A(F,G)

and
∫
A(F,G)

B+
Hτ

(t)dt = 0. Thus, the limiting power of the Kolmogorov–Smirnov type test is
positive and that of the Cramér–von Mises type test is 0. For the second pair of distributions
A(F,G) is empty and the limiting power of both tests is 0. Roughly, this behavior is reflected
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Table 2. Estimated powers of the tests; significance level α = 0.05

Distributions m = 50, n = 30 m = 30, n = 50 m = 50, n = 50

F G T KS T CvM T KS T CvM T KS T CvM

unif(0,1) unif(0,1) 0.062 0.065 0.048 0.048 0.049 0.050
unif( 1

4 , 3
4 ) unif( 1

4 , 3
4 ) 0.058 0.059 0.048 0.044 0.063 0.063

Exp(1) Exp(1) 0.085 0.099 0.040 0.027 0.056 0.052
Wei(2) Wei(2) 0.060 0.070 0.054 0.049 0.054 0.057
�(2) �(2) 0.070 0.090 0.042 0.034 0.057 0.060
�( 1

2 ) �( 1
2 ) 0.065 0.093 0.037 0.023 0.071 0.064

unif( 1
4 , 3

4 ) unif(0,1) 0.060 0.012 0.054 0.008 0.052 0.001
Wei(2) Exp(1) 0.035 0.005 0.011 0.000 0.016 0.001
unif(0,2) Exp(1) 0.090 0.044 0.068 0.011 0.078 0.013
Exp(4) Par(5) 0.091 0.088 0.043 0.021 0.055 0.037
unif(0,1) unif( 1

4 , 3
4 ) 0.309 0.371 0.187 0.251 0.337 0.378

Exp(1) Wei(2) 0.393 0.549 0.208 0.270 0.394 0.517
Wei(2) Exp( 4

3 ) 0.284 0.117 0.272 0.061 0.346 0.087
Exp( 4

3 ) Wei(2) 0.017 0.056 0.013 0.017 0.015 0.036
�(2) Exp(1) 0.974 0.887 0.970 0.819 0.991 0.926
Exp(1) �( 1

2 ) 0.812 0.642 0.806 0.493 0.892 0.634

by the empirical power values. Results obtained for the special cases F = �(1/2), G = Exp(1)

and F = Exp(1), G = �(2) are not shown in the table; here the empirical power value was found
to be 0 for each combination of sample sizes.

The third group in lines 11–16 represents the alternative. None of the two tests turns out to be
superior to the other one.

All in all, the simulations indicate that the asymptotic results in Section 2 lead to a feasible
solution for test problems concerning increasing convex order even for relatively small sample
sizes. From a practical point of view and especially with respect to implementation aspects, nu-
merical stability, etc., our experience shows that the procedures are solid and uncomplicated. Of
course, the resampling requires considerable computational effort, but with the current standard
of hardware and software this is not really an issue. For example, we have done the entire simu-
lation within the statistical environment R (see http://cran.r-project.org), which makes it possible
to implement the procedures in less than 70 lines of code. For a specific data set with n = m = 50
and 1000 bootstrap resamples about 9 seconds were needed to calculate the test statistics and the
critical value on a personal computer with an Intel Core 2 Duo processor running at 2.13 GHz.
Of course, the time required could be shortened considerably by implementing the procedures
directly in a programming language such as C.

3.5. Invariance considerations

One of the attractive properties of the classical tests for stochastic order, such as the Wilcoxon
test and the Kolmogorov–Smirnov test mentioned in Section 3.1, is the fact that the distribution

http://cran.r-project.org
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of the test statistics does not depend on F if F is continuous and F = G. As a result, exact
critical values for finite sample sizes can be obtained. Also, stochastic order relates well to the
ordering of real numbers: X ≤st Y implies the existence of a pair X′, Y ′ of random variables with
X′ =distr X, Y ′ =distr Y and X′ ≤ Y ′.

At the heart of these properties is the fact that the full group of all continuous and bijective (and
hence strictly increasing) transformations � : R+ → R+ leaves the hypothesis F ≤st G invariant
in the sense that

X ≤st Y ⇐⇒ �(X) ≤st �(Y). (3.2)

Such a strong property is not available in the present situation. Indeed, as the following theorem
shows, only rescaling by positive constants leaves the hypothesis F ≤icx G invariant in the above
sense.

Theorem 5. Suppose that � : R+ → R+ is continuous and bijective, and such that

X ≤icx Y ⇐⇒ �(X) ≤icx �(Y) (3.3)

for all bounded random variables X and Y . Then, for some α > 0,

�(x) = αx for all x ≥ 0.

Hence the possibilities to reduce the test problem via invariance are limited. Of course, as we
have already mentioned in Section 1, the increasing convex order has many properties that make
it a suitable tool in connection with comparing risks; see also Chapter III in Kaas et al. (1994) or
Section 1.5 in Müller and Stoyan (2002).

Whereas Theorem 5 may be regarded as a negative result as far as data reduction is concerned,
it does say that the comparison of risks by increasing convex order will not be influenced by a
change in monetary units, for example. It is straightforward to check that the tests in Section 2.4
are scale invariant in the sense that multiplying the data by a fixed positive constant does not
affect the final decision, so our procedures respect the underlying symmetry of the problem.

3.6. Outlook

There are two aspects of our investigations that may be of interest in other situations, too. First,
whereas consistency against alternatives is a property that is routinely investigated in connection
with the asymptotic analysis of statistical tests, a similar property for the hypothesis is not usually
considered. In the context of increasing convex order we have seen that this property can be used
to distinguish between competing procedures, much in the same way as in a situation where
there are different sets of alternatives on which two tests are consistent. Of course, efficiency
considerations are then the logical next step; we plan to do this in a separate paper.

The other aspect, one that we have already pointed out repeatedly, is the fact that in order
to obtain asymptotically correct critical values by resampling the resampling scheme has to be
adapted to the hypothesis of interest – the standard procedure of generating artificial data by
choosing values uniformly at random from the available observations may simply be wrong.
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4. Proofs

Our main tool in connection with distributional asymptotics is the Hoffmann–Jørgensen theory
of weak convergence, as described and developed in van der Vaart and Wellner (1996).

4.1. Proof of Theorem 1

For each t ≥ 0, let φt : R+ → R be defined by φt (x) := (x − t)+, and let F := {φt : t ≥ 0}. Then
F is a Vapnik–C̆ervonenkis class of index 2, see Lemma 2.6.16 in van der Vaart and Wellner
(1996), and hence satisfies the uniform entropy condition. The function φ0 is an envelope for F .
Obviously, as in the transition from (1.3) to (1.5),

F SL
m (t) =

∫
φt (x)Fm(dx), GSL

n (t) =
∫

φt (x)Gn(dx) for all t ≥ 0.

We now consider the empirical processes UF
m = (Um(φ))φ∈F and UG

n = (UG
n (φ))φ∈F associated

with X1, . . . ,Xm and Y1, . . . , Yn, respectively,

UF
m (φ) := √

m

(∫
φ dFm −

∫
φ dF

)
, UG

n (φ) := √
n

(∫
φ dGn −

∫
φ dG

)

for all φ ∈ F . The processes can be regarded as functions on the underlying probability space
with values in 
∞(F ), the Banach space of bounded real functions on F endowed with the supre-
mum norm. We avoid the technical difficulties arising from the non-separability of 
∞(F ) by
noting that, for every distribution function L with finite first moment, t �→ ∫

φt dL is a bounded
and continuous function on [0,∞), and that this function can be extended continuously to the
compactified half-line [0,∞] by ∞ �→ 0, again endowed with the supremum norm. Hence the
empirical processes (and their distributional limits) all take values in a subspace of 
∞(F ) that
is a homeomorphic image of C0([0,∞]), the space of continuous functions f : [0,∞] → R with
the property f (∞) = 0. This subspace is closed and separable, and the empirical processes above
are measurable with respect to the corresponding Borel σ -field. Indeed, we will freely switch be-
tween the representation of the ‘time parameter’ of the processes as an element φ of F or as an
element t of K := [0,∞].

By assumption, the envelope function is square integrable with respect to F and G. Hence the
function class F is F -Donsker and G-Donsker, so that

UF
m →

distr
BF , UG

n →
distr

BG as m,n → ∞, (4.1)

where BF = (BF (φ))φ∈F and BG = (BG(φ))φ∈F are centered Gaussian processes with covari-
ance functions

ρF (φs,φt ) =
∫ ∞

s

∫ ∞

t

F (u ∧ v)dudv − F SL(s)F SL(s),

ρG(φs,φt ) =
∫ ∞

s

∫ ∞

t

G(u ∧ v)dudv − GSL(s)GSL(s),
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respectively, for all s, t ≥ 0; see Sections 2.1, 2.5 and 2.6 in van der Vaart and Wellner (1996).
We now define the stochastic processes Vm,n, m,n ∈ N, by

Vm,n := κm,n(F
SL
m − GSL

n )

=
√

n

m + n
UF

m −
√

m

m + n
UG

n + κm,n(F
SL − GSL). (4.2)

Note that, so far, the hypothesis F ≤icx G has not been used. By the independence of the sub-
samples, and using (2.4), we obtain√

n

m + n
UF

m −
√

m

m + n
UG

n →
distr

√
1 − τBF − √

τBG =: B̃,

where B̃ is again a centered Gaussian process, with covariance function

ρ̃ = (1 − τ)ρF + τρG.

Now let BH be as in Section 2.1. A straightforward calculation shows that

ρH (s, t) = ρ̃(s, t) + τ(1 − τ)
(
F SL(s) − GSL(s)

)(
F SL(t) − GSL(t)

)
.

In particular, when restricted to the (compact, non-empty) set A(F,G), the processes BH and B̃

have the same distribution.
We want to apply the continuous mapping theorem to obtain the limit distributions for

T KS
m,n = sup

t≥0
Vm,n(t), T CvM

m,n =
∫ ∞

0
V +

m,n(t)dt

in the case that F ≤icx G. Intuitively, it is clear that for the supremum or the positive part the val-
ues outside A(F,G) are asymptotically irrelevant, as the last term in the basic equation (4.2) will
tend to −∞ for t /∈ A(F,G) in view of κm,n → ∞. A formally correct argument for T KS

m,n uses
the Skorokhod almost sure representation together with the first part of the following auxiliary
result.

Lemma 1. Let fn, gn (n ∈ N), g, h be continuous real functions on K = [0,∞] such that
fn = gn + cnh, where (cn)n∈N is a sequence of non-negative real numbers with limn→∞ cn = ∞.
Assume further that h ≤ 0, that A := {h = 0} �= ∅ and that gn converges uniformly to g. Then

lim
n→∞ sup

t∈K

fn(t) = sup
t∈A

g(t). (4.3)

and, for all r < ∞,

lim
n→∞

∫
[0,r]

f +
n (t)dt =

∫
[0,r]∩A

g+(t)dt. (4.4)



116 L. Baringhaus and R. Grübel

Proof. As the restriction of gn to the compact set A converges uniformly to the restriction of g

to A we have

lim
n→∞ sup

t∈A

gn(t) = sup
t∈A

g(t).

Clearly,

lim inf
n→∞ sup

t∈K

fn(t) ≥ sup
t∈A

g(t).

Suppose now that (tn)n∈N ⊂ K is such that fn(tn) = supt∈K fn(t). We can find a subsequence
(nk)k∈N ⊂ N such that tnk

→ t0 ∈ K and

lim sup
k→∞

fnk
(tnk

) = lim sup
n→∞

sup
t∈K

fn(t).

A uniformly convergent sequence of continuous functions is equicontinuous, hence

lim
k→∞gnk

(tnk
) = lim

k→∞gnk
(t0) = g(t0).

If t0 /∈ A then [t0 − ε, t0 + ε] ∩ A = ∅ for some ε > 0, and we would obtain fnk
(tnk

) → −∞ as
supt0−ε≤t≤t0+ε h(t) < 0 in view of the continuity of h. This shows that t0 ∈ A, and hence

sup
t∈A

g(t) ≥ g(t0) = lim sup
k→∞

gnk
(tnk

)

≥ lim sup
k→∞

fnk
(tnk

) = lim sup
n→∞

sup
t∈K

fn(t)

≥ lim inf
n→∞ sup

t∈K

fn(t) ≥ sup
t∈A

g(t),

which proves (4.3).
For the proof of (4.4) we note that we have f +

n (t) = g+
n (t) → g+(t) for t ∈ A and that

f +
n (t) → 0 for t /∈ A. In view of the uniform convergence of gn to g and f +

n ≤ g+
n we have

a constant upper bound for the sequence. As we integrate over a finite interval we can now use
dominated convergence. �

For the proof of the Cramér–von Mises part of the theorem we temporarily abbreviate A(F,G)

to A. Using (4.4) together with an almost sure representation in the same way as we have used
(4.3) for the proof of the Kolmogorov–Smirnov part we obtain

T CvM
m,n (r) :=

∫
[0,r]

V +
m,n(t)dt →

distr
T CvM(r) :=

∫
A∩[0,r]

B+
H (t)dt

for all r < ∞. For the tails of the integrals we need another auxiliary result.

Lemma 2. If EX4+ε
1 < ∞ for some ε > 0, then

∫ ∞
0 ρF (t, t)1/2 dt < ∞.
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Proof. Using (2.3) we obtain

ρF (t, t) = var
(
(X − t)+

) ≤ E
(
(X − t)+

)2

≤
∫ ∞

t

x2F(dx) ≤ 1

t2+ε
EX4+ε

for all t > 0. This shows that
∫ ∞

1 ρF (t, t)1/2 dt < ∞, and the assertion follows in view of the fact
that ρF is bounded (indeed, ρF (t, t) ≤ EX2). �

The moment assumption in the second part of the theorem and Lemma 2 together imply∫ ∞
0 ρ(t, t)1/2 dt < ∞ for ρ = ρF , ρ = ρG and ρ = ρH (it is a straightforward consequence

of (1.2) that finiteness of some moment of order γ > 1 for G implies the same for F if F ≤icx G).
It follows from

ET CvM =
∫

A

EB+
H (t)dt = 1√

2π

∫
A

ρH (t, t)1/2 dt < ∞

that T CvM is finite with probability one. Clearly, T CvM(r) → T CvM almost surely as r → ∞.
In order to obtain a uniform bound for the difference between T CvM

m,n (r) and T CvM
m,n we first note

that 0 ≤ V +
m,n(t) ≤ Ṽ +

m,n(t), where

Ṽ +
m,n(t) :=

√
n

m + n
UF

m −
√

m

m + n
UG

n .

Clearly, EṼm,n(t) = 0 and var(Ṽm,n(t)) ≤ ρF (t, t)+ρG(t, t), and hence EV +
m,n(t) ≤ (ρF (t, t)+

ρG(t, t))1/2 for all t ∈ A. Suppose now that ε > 0 and δ > 0 are given. We can then choose an
r > 0 such that ∫ ∞

r

(
ρF (t, t) + ρG(t, t)

)1/2 dt < εδ,

and Markov’s inequality gives

lim sup
m,n→∞

P
(|T CvM

m,n (r) − T CvM
m,n | > ε

) ≤ 1

ε

∫ ∞

r

(
ρF (t, t) + ρG(t, t)

)1/2 dt < δ.

From this, the second assertion of the theorem now follows on using Theorem 4.2 in Billingsley
(1968).

4.2. Proof of Theorem 2

The first two terms on the right-hand side of (4.2) are stochastically bounded. If F ≤icx G does
not hold, then F SL(t) > GSL(t) for all t in some non-empty interval (a, b) ⊂ R. As κm,n → ∞,
we therefore obtain

sup
t≥0

Vm,n(t) → ∞,

∫ ∞

0
V +

m,n(t)dt → ∞
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with probability one.

4.3. Proof of Theorem 3

We mimic the proof of Theorem 1 and give a somewhat condensed argument. With F as in
Section 4.1, let ÛF

N,m = (ÛF
N,m(φ))φ∈F and ÛG

N,n = (ÛG
N,n(φ))φ∈F ,

ÛF
N,m(φ) := √

m

(∫
φ dF̂N,m −

∫
φ dFm

)
,

ÛG
N,n(φ) := √

n

(∫
φ dĜN,n −

∫
φ dGn

)
,

be the empirical processes associated with the two parts of the resample. We need a statement
analogous to (4.1), where now everything is conditional on the sequences (Xj )j∈N and (Yk)k∈N.
Due to the size switching we cannot directly work with multiplier central limit theorems as, for
example, in Chapter 3.6 of van der Vaart and Wellner (1996). Instead we base our proof on a
central limit theorem for empirical processes where the base distribution varies with the sample
size.

Lemma 3. With probability one,

ÛF
N,m →

distr
BH , ÛG

N,n →
distr

BH as m,n → ∞.

Proof. It is obviously enough to prove the first part. Translated to the present situation the con-
ditions (2.8.6) and (2.8.5) in Chapter 2.8.3 of van der Vaart and Wellner (1996) become

lim sup
m,n→∞

E
(
Ẑ2

N,11{ẐN,1>ε
√

m}
) = 0 for all ε > 0

and

lim
m,n→∞ sup

s,t≥0

∣∣var
(
φs(ẐN,1) − φt (ẐN,1)

)1/2 − var
(
φs(Z1) − φt (Z1)

)1/2∣∣ = 0,

where Z1 is a random variable with distribution H . Again this is to be interpreted in the sense
that it should hold with probability one, conditionally on the sequences (Xj )j∈N and (Yk)k∈N.

For the first condition we can simply use the strong law of large numbers, together with the
assumption that F and G have finite second moments.

The second condition will follow from

lim
m,n→∞ sup

t≥0

∣∣Eφt(ẐN,1) − Eφt(Z1)
∣∣ = 0 (4.5)

and

lim
m,n→∞ sup

s,t≥0

∣∣Eφt(ẐN,1)φs(ẐN,1) − Eφt(Z1)φs(Z1)
∣∣ = 0. (4.6)
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Obviously,

Eφt(ẐN,1) − Eφt(Z1) = n

N

1

m

m∑
j=1

(Xj − t)+ − (1 − τ)E(X1 − t)+

+ m

N

1

n

n∑
k=1

(Yk − t)+ − τE(Y1 − t)+

and

Eφt(ẐN,1)φs(ẐN,1) − Eφt(Z1)φs(Z1)

= n

N

1

m

m∑
j=1

(Xj − t)+(Xj − s)+ − (1 − τ)E(X1 − t)+(X1 − s)+

+ m

N

1

n

n∑
k=1

(Yk − t)+(Yk − s)+ − τE(Y1 − t)+(Y1 − s)+.

From this (4.5) and (4.6) follow as F and F2 := {φsφt : s, t ≥ 0} are easily seen to have finite
bracketing numbers and thus are Glivenko–Cantelli classes; see Theorem 2.4.1 in van der Vaart
and Wellner (1996). Now that we have checked the conditions the desired statement follows with
Theorem 2.8.9 in van der Vaart and Wellner (1996). �

In analogy to (4.2) we now define the stochastic processes V̂N,m,n by

V̂N,m,n :=
√

n

m + n
ÛF

N,m −
√

m

m + n
ÛG

N,n.

By the conditional independence of the subsamples, and using (2.4) again, we obtain from
Lemma 3 that V̂N,m,n →distr BH with probability one. Because of

T̂ KS
m,n = sup

t≥0
V̂N,m,n(t)

the first part of the theorem now follows on using the continuous mapping theorem.
In the Cramér–von Mises case we start with a decomposition of the integral, as in the proof

of Theorem 1. For the compact part we can again use the continuous mapping theorem. For the
other part of the integral we need a bound for the conditional variances: We have

var
(
V̂N,m,n(t)

) ≤ ρFm(t, t) + ρGn(t, t),

and, as in the proof of Lemma 2,

∫ ∞

0
ρFm(t, t)1/2 dt ≤ 1

m

m∑
j=1

X2
j + 1

m

m∑
j=1

X4+ε
j

∫ ∞

1
t−1−(ε/2) dt



120 L. Baringhaus and R. Grübel

and ∫ ∞

0
ρGn(t, t)

1/2 dt ≤ 1

n

n∑
k=1

Y 2
k + 1

n

n∑
k=1

Y 4+ε
k

∫ ∞

1
t−1−(ε/2) dt,

so we can use the strong law of large numbers to obtain an almost sure upper bound that does
not depend on m and n.

4.4. Proof of Theorem 4

We need the following properties of the limit distributions of the test statistics in the case that we
are on the boundary of the hypothesis.

Lemma 4. If F = G, with F and G as in Theorem 1, then the distribution functions of T KS

and T CvM are strictly increasing on [0,∞) and continuous on (0,∞).

Proof. Proposition 2 in Beran and Millar (1986) states that the distribution of the norm
supt≥0 |BH (t)| has a density and a strictly increasing distribution function on [0,∞). Thus for
each a > 0 we have

P

(
sup
t≥0

BH (t) < a

)
≥ P

(
sup
t≥0

|BH (t)| < a

)
> 0.

From Theorem 1 and the remark on page 854 in Tsirelson (1975) we deduce that the assertion of
the proposition is true in the Kolmogorov–Smirnov case.

To obtain the corresponding assertion in the Cramér–von Mises case we argue as follows:
Using Lemma 2 we obtain

E

∫ ∞

0
|BH (t)|dt =

∫ ∞

0
E|BH (t)|dt =

√
2

π

∫ ∞

0
ρH (t, t)1/2 dt < ∞,

hence the process BH has integrable sample paths with probability one. Thus we can regard BH

as a random element with values in a certain closed separable subspace of the Banach space
L1([0,∞),dt). Again by Proposition 2 in Beran and Millar (1986) the distribution of the norm∫ ∞

0 |BH (t)|dt has a density and a strictly increasing distribution function on [0,∞). By the
Hahn–Banach theorem there exists a sequence of functions (en)n∈N ⊂ L∞([0,∞),dt) such that∫ ∞

0
|BH (t)|dt = sup

n≥1

∫ ∞

0
BH (t)en(t)dt.

Noting that B+
H (t) = 1

2 (|BH (t)| + BH (t)) we can then write

∫ ∞

0
B+

H (t)dt = 1
2 sup

n≥1

∫ ∞

0
BH (t)

(
en(t) + 1

)
dt.



Two-sample tests for increasing convex order 121

The random variables 1
2

∫ ∞
0 BH (t)(en(t) + 1)dt , n ∈ N, have centered normal distributions.

Since

P

(
sup
n≥1

1
2

∫ ∞

0
BH (t)

(
en(t) + 1

)
dt < a

)
= P

(∫ ∞

0
B+

H (t)dt < a

)

≥ P

(∫ ∞

0
|BH (t)|dt < a

)
> 0

for each a > 0 we can again apply the results in Tsirelson (1975) to see that the second assertion
of the lemma is also true. �

Theorem 3 and the fact that the distribution function of the limit is strictly increasing together
imply the convergence of the quantiles, that is,

ĉKS
m,n(α) → cKS(H,α), ĉCvM

m,n (α) → cCvM(H,α) (4.7)

almost surely. From this, the last statement, the consistency on the full alternative, follows on
using Theorem 2.

Suppose now that F ≤icx G; let us temporarily write FKS and FCvM for the true limiting dis-
tribution functions of the test statistics and F̃KS and F̃CvM for the limiting distribution functions
for the bootstrap estimators for the distributions of the test statistics. In both cases the limits
can be obtained via the supremum or integral of the process BH , over the whole of R+ for F̃KS
and F̃CvM and over the subset A(F,G) of R+ for FKS and FCvM. Since F and G are assumed to
be non-degenerate, we have that the supremum and the integral of the process BH over R+ are
bounded from below by BH (0) and

∫ ∞
0 BH (t)dt , which shows that F̃KS and F̃CvM are bounded

from below in stochastic order by non-degenerate centered normal distributions. This implies that
the quantiles cKS(H,α) and cCvM(H,α) are positive due to our general assumption that α < 1/2.

On the boundary of the hypothesis we have H = F = G, and FKS = F̃CvM and FCvM = F̃CvM.

Hence, using the continuity of FKS and FCvM on (0,∞)

lim
m,n→∞P

(
T KS

m,n > ĉKS
m,n(α)

) = α

and

lim
m,n→∞P

(
T CvM

m,n > ĉCvM
m,n (α)

) = α,

which is the respective first statement in the theorem for the two tests.
For the proof of the remaining assertions we first note that var(BH (t)) = 0 for t ≥ γ (H), so

we may restrict the supremum or integral to S = A(F,G)∩[0, γ (H)). The distribution functions
FKS and FCvM have a jump of size 1 at 0 if S = ∅ or 
(S) = 0 respectively, so that in this case

lim
m,n→∞P

(
T KS

m,n > ĉKS
m,n(α)

) = 0

and

lim
m,n→∞P

(
T CvM

m,n > ĉCvM
m,n (α)

) = 0.
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On the other hand, if S �= ∅ and 
(S) > 0 we argue as in the proof of Lemma 4 to obtain that
the distribution functions FKS and FCvM are strictly increasing on [0,∞) and continuous on the
interval (0,∞). From this and FKS ≤st F̃KS and FCvM ≤st F̃CvM it follows with Theorem 1 that
the limits

ψKS(α;F,G) = lim
m,n→∞P

(
T KS

m,n > ĉKS
m,n(α)

) = 1 − FKS
(
cKS(H,α)

) ≤ α

and

ψCvM(α;F,G) = lim
m,n→∞P

(
T CvM

m,n > ĉCvM
m,n (α)

) = 1 − FCvM
(
cCvM(H,α)

) ≤ α

exist and are positive.

4.5. Proof of Proposition 1

The function

f (t) := F SL
m (t) − GSL

n (t)

= 1

m

m∑
j=1

(Xj − t)+ − 1

n

n∑
k=1

(Yk − t)+

= 1

m

m∑
j=1

max(Xj , t) − 1

n

n∑
k=1

max(Yk, t)

is linear on the intervals [Zj ,Zj+1), that is, of the form

f (t) = αj + βj t, t ∈ [Zj ,Zj+1), j = 1, . . . , l − 1,

with certain real αj and βj . Putting fj = f (Zj ), j = 1, . . . , l, we have

T KS
m,n = κm,n max

1≤j≤L−1
f +

j .

Further, with J and K as in the statement of the proposition, we obtain the representation

T CvM
m,n = κm,n

(∑
j∈J

1

2

f +2
j+1 − f +2

j

fj+1 − fj

(Zj+1 − Zj ) +
∑
j∈K

f +
j (Zj+1 − Zj )

)
.

4.6. Proof of Theorem 5

Let Y be a bounded random variable and put X ≡ EY ; then X ≤icx Y by Jensen’s inequality.
Hence if � satisfies (3.3) we must have �(EY) ≤ E�(Y) for all bounded random variables Y .
From this property it easily follows, by taking Y to be concentrated on two values, that � is
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convex. Now let � be the inverse of � . Obviously, if (3.3) holds for � , then it also holds for �,
so that � has to be convex, too. Now suppose that, for some x1, x2 ∈ R+, α ∈ (0,1),

�
(
αx1 + (1 − α)x2

)
< α�(x1) + (1 − α)�(x2).

Then, with yi := �(xi), i = 1,2, and using the fact that � is strictly increasing,

α�(y1) + (1 − α)�(y2) < �
(
αy1 + (1 − α)y2

)
,

which is a contradiction. Hence, � must satisfy

�
(
αx1 + (1 − α)x2

) = α�(x1) + (1 − α)�(x2)

for all x1, x2 ∈ R+ and all α ∈ (0,1). From the general assumptions on � it follows that
�(0) = 0. Taken together these properties imply that �(x) = x�(1) for all x ≥ 0.
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