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In this work, we give a closed form and a recurrence relation for a family of time–space harmonic poly-
nomials relative to a Lévy process. We also state the relationship with the Kailath–Segall (orthogonal)
polynomials associated to the process.
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1. Introduction

Given a stochastic process X = {Xt, t ∈ R+} with finite moments of convenient order, a time–
space harmonic polynomial relative to X is a polynomial Q(x, t) such that the process Mt =
Q(Xt , t) is a martingale with respect to the filtration associated with X. Major examples are
the Hermite polynomials relative to a Brownian motion, the Charlier polynomials relative to
a Poisson process and the Laguerre polynomials relative to a Gamma process; for these and
other examples, see Feinsilver [2], Schoutens and Teugels [11], Schoutens [10] and Barrieu and
Schoutens [1].

Finding a family of time–space harmonic polynomials relative to a particular process is not
an easy task; see, for example, Schoutens [10]. Nevertheless, when we are dealing with a Lévy
process X that has moment generating function in a neighborhood of the origin, Sengupta [13]
mentions following Neveu [7] a general procedure based on the associated exponential martin-
gale (the left-hand side of (1) below). Specifically, that martingale is an analytic function (of u)
in some neighborhood of the origin and the corresponding Taylor expansion

exp{uXt }
E[exp{uXt }] =

∞∑
n=0

Rn(Xt , t)
un

n! (1)

has coefficients such that Rn(x, t) are time–space harmonic polynomials. However, when the
process does not have a finite moment generating function, this approach does not work; then,
Sengupta [13] uses a discretization procedure to extend the results proven by Goswami and
Sengupta [3], without explicitly showing the polynomials.

In this paper, using Itô’s formula in our proof, we give a closed form for a family of time–space
harmonic polynomials of a Lévy process with finite moments of all orders. From an interesting
property observed by Sengupta [13], it is deduced that these polynomials play the role of the
basic time–space harmonic polynomials because they span the set of all time–space harmonic
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polynomials. These results provide new insight into time- space harmonic polynomials and offer
a general method for computing such polynomials. Furthermore, the construction has a direct ex-
tension to the case where the underlying Lévy process has only a finite number of finite moments
and we are only interested in a few space–time harmonic polynomials. We also present some ex-
amples and study the relationship between time–space harmonic polynomials and the orthogonal
polynomials called Kailath–Segall polynomials (see Segall and Kailath [12] or Meyer [6]).

The time–space harmonic polynomials that we propose here are related to the polynomials
that give the moments of a random variable as functions of the cumulants. So we will start with
some results from the elementary theory of cumulants.

2. Moments and cumulants

Consider a random variable Y with finite moments of all orders. Denote by μn (resp. κn) its
moment (resp. its cumulant) of order n. It is well known that μn can be written as a polynomial
in κ1, . . . , κn, for example,

μ1 = κ1, μ2 = κ2
1 + κ2, μ3 = κ3

1 + 3κ1κ2 + κ3, . . . .

If Y has moment generating function in some open interval containing 0, a general expression
for μn can be deduced from the relationship between the moment generating function and the
cumulant generating function:

exp

{ ∞∑
n=1

κn

un

n!

}
=

∞∑
n=0

μn

un

n! . (2)

When Y does not fulfill the condition in the moment generating function, we can consider the
finite series up to the convenient order; see McCullagh [5], page 26, for the justification of this
procedure.

Through a direct examination of (2), Kendall and Stuart ([4], formula (3.33)) deduce that

μn = n!
n∑

m=1

∑ κ
r1
1

(1!)r1r1! · · · κ
rm
m

(m!)rmrm! , (3)

where the second summation is over all non-negative integers r1, . . . , rm such that
∑m

j=1 jrj = n.
Let �n(x1, . . . , xn), n ≥ 1, be the polynomial defined by the expression (3). That is, we have

μn = �n(κ1, . . . , κn). (4)

Also, write �0 = 1.
A recurrence formula follows from (2) for �n ([15], Proposition 5.1.7):

�n+1(x1, . . . , xn+1) =
n∑

j=0

(
n

j

)
�j (x1, . . . , xj ) xn+1−j . (5)
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Further,

∂�n(x1, . . . , xn)

∂xj

=
(

n

j

)
�n−j (x1, . . . , xn−j ), j = 1, . . . , n. (6)

From the Taylor expansion of �n(x1 +y, x2, . . . , xn) at y = 0, we obtain the following expression
that we will need later:

�n(x1 + y, x2, . . . , xn) =
n∑

j=0

(
n

j

)
�n−j (x1, . . . , xn−j ) yj . (7)

Interchanging the roles of x1 and y and evaluating the function at 0, we obtain

�n(x1, x2, . . . , xn) =
n∑

j=0

(
n

j

)
�n−j (0, x2, . . . , xn−j ) x

j

1 . (8)

Applying this formula to κ1, . . . , κn and using the fact that κ2, . . . , κn are the cumulants of both
Y and Y − EY gives the expression for the non-centered moment μn = E[Yn] (on the left) from
the centered moments E[(Y − EY)n−j ] and the powers of the expectation (EY)j . It is a classical
formula (see [4], formula (3.6)).

3. Time–space harmonic polynomials for a Lévy process

Let X = {Xt, t ≥ 0} be a Lévy process (meaning that X has stationary and independent incre-
ments and is continuous in probability and that X0 = 0), cadlag and centered, with moments of
all orders. Note that Senguta [13] does not assume the stationarity of the increments in the defi-
nition of a Lévy process. Denote by σ 2 the variance of the Gaussian part of X and by ν its Lévy
measure. For background on all these notions, we refer to Sato [9]. The existence of moments of
all orders of Xt implies that the Lévy measure ν has moments of all orders ≥ 2. Write

mn =
∫

R

xn ν(dx) for n ≥ 2.

Observe that, for n ≥ 3, mn is the cumulant of X1 of order n and m2 + σ 2 is the cumulant of
order 2.

Following Nualart and Schoutens [8], we introduce the square-integrable martingales (and
Lévy processes) called Teugels martingales, related to the powers of the jumps of the process:

Y
(1)
t = Xt,

Y
(n)
t =

∑
0<s≤t

(�Xt)
n − mnt, n ≥ 2,

where �Xs = Xs − Xs−. The predictable quadratic variation of Y (n) is〈
Y (n)

〉
t
= Cn t,
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where Cn is a constant.
In the next theorem, we define a time–space harmonic polynomial related to the Lévy

process X.

Theorem 1. Let X be a centered Lévy process with finite moments of all orders. Then, for every
n ≥ 1, the process

M
(n)
t = �n

(
Xt,−(m2 + σ 2)t,−m3t, . . . ,−mnt

)
is a martingale.

Proof. Let n ≥ 2. By Itô’s formula, using (6) and the fact that [X,X]ct = σ 2t , we have

M
(n)
t = n

∫ t

0
M

(n−1)
s− dXs −

(
n

2

)
(m2 + σ 2)

∫ t

0
M(n−2)

s ds

−
n∑

j=3

(
n

j

)
mj

∫ t

0
M

(n−j)
s ds + 1

2
n(n − 1)σ 2

∫ t

0
M(n−2)

s ds

+
∑

0<s≤t

(
�n

(
Xs− + �Xs,−(m2 + σ 2)s,−m3s, . . . ,−mns

)
(9)

− �n

(
Xs−,−(m2 + σ 2)s,−m3s, . . . ,−mns

)
− n�Xs �n−1

(
Xs−,−(m2 + σ 2)s,−m3s, . . . ,−mns

))
.

Applying (7) and rearranging terms, we obtain

�n

(
Xs− + �Xs,−(m2 + σ 2)s,−m3s, . . . ,−mns

) =
n∑

j=0

(
n

j

)
M

(n−j)
s− (�Xs)

j .

Then, the jumps part given in the expression for M
(n)
t is

∑
0<s≤t

n∑
j=2

(
n

j

)
M

(n−j)
s− (�Xs)

j =
n∑

j=2

(
n

j

)∫ t

0
M

(n−j)
s− dX

(j)
s

=
n∑

j=2

(
n

j

)∫ t

0
M

(n−j)
s−

(
dY

(j)
s + mj ds

)
.

Therefore, after some cancellations, (9) can be written as

M
(n)
t =

n∑
j=1

(
n

j

)∫ t

0
M

(n−j)
s− dY

(j)
s . (10)
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Finally, since, for every t ≥ 0, we have E[∫ t

0 M
(k)2
s− d〈Y (j)〉s] < ∞ for k ≥ 0 and j ≥ 1, all the

stochastic integrals on the right-hand side of (10) are martingales. �

Corollary 2. Let X be a centered Lévy process with finite moments of all orders. Define the
polynomials

Qn(x, t) = �n

(
x,−(m2 + σ 2)t,−m3t, . . . ,−mnt

)
, n ≥ 1,

and Q0(x, t) = 1. Then,

(a) Qn(x, t), n ≥ 1, are time–space harmonic polynomials relative to X;
(b) Qn(x, t), n ≥ 1, satisfy the recurrence relation

Qn+1(x, t) = xQn(x, t) − n(m2 + σ 2)tQn−1(x, t)

−
n∑

j=2

(
n

j

)
mj+1tQn−j (x, t);

(c) an explicit expression for M
(n)
t as a polynomial in Xt is

M
(n)
t = Qn(Xt , t)

(11)

=
n∑

j=0

(
n

j

)
�n−j

(
0,−(m2 + σ 2)t,−m3t, . . . ,−mn−j t

)
X

j
t , n ≥ 1;

(d) if X is non-degenerate, then the family {Qn(x, t), n ≥ 1} spans the set of all space–time
harmonic polynomials relative to X.

Proof. The recurrence in (b) is deduced from (5). Property (c) is obtained from (8). Finally,
for (d), note that, from the properties stated in Section 2, the family {Qn(x, t), n ≥ 1} satisfies
the properties (i) to (iv) of Sengupta [13], page 953. On the other hand, if X is non-degenerate,
then the support of Xt is unbounded (see [9], Theorem 24.3). Therefore the proof of Theorem 6
from Sengupta [13] can be applied to this family. �

Remark 3. 1. Assume that X is non-degenerate. Let Xn
t + pn−1(t)X

n−1
t + · · · + p0(t) be a

time–space harmonic polynomial relative to X, where pj (t) are ordinary polynomials in t . For-
mula (2.2) of Goswami and Sengupta [3] can be transferred to our context. Then, the coefficients
of the polynomial must satisfy

pi(s) =
n∑

j=i

(
j

i

)
pj (t)μj−i (t − s), 0 ≤ i ≤ n, 0 ≤ s ≤ t,

where μr(t) = E[Xr
t ]. Applying this property to Qn(x, t), from (11) and the fact that μr(t) =
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�r(0, (m2 + σ 2)t,m3t, . . . ,mr t), it follows that

�k

(
0,−(m2 + σ 2)s,−m3s, . . . ,−mks

)
=

k∑
�=0

(
k

�

)
�k−�

(
0,−(m2 + σ 2)t,−m3t, . . . ,−mk−�t

)
× ��

(
0, (m2 + σ 2)(t − s),m3(t − s), . . . ,m�(t − s)

)
, 0 ≤ s ≤ t.

2. When the Lévy process X has only a finite number of finite moments, say up to order k, then
Theorem 1 is still true up to the polynomial of degree [k/2] + 1, where [a] denotes the integer
part of a.

4. Examples

4.1. Brownian motion

Let {Wt, t ≥} be a standard Brownian motion and consider Xt = Wt . Then, σ = 1 and ν = 0, so
mn = 0 for all n ≥ 2. The time–space harmonic polynomials are

Qn(x, t) = �n(x,−t,0, . . . ,0),

which satisfy the recurrence relation

Qn+1(x, t) = xQn(x, t) − ntQn−1(x, t), n ≥ 1.

It is then clear that they coincide with the monic Hermite polynomials H̃n(x, t) (we follow the
notation of Schoutens [10], Chapter 5) defined by

exp{ux − tu2/2} =
∞∑

n=0

H̃n(x, t)
un

n!

or, equivalently,

H̃n(x, t) =
(

t

2

)n/2

Hn

(
x/

√
2t

)
,

where Hn(t) is the classical Hermite polynomial given by

exp{2ux − u2} =
∞∑

n=0

Hn(x)
un

n! .
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4.2. Poisson process

Let {Nt, t ≥ 0} be a Poisson process of intensity 1 and Xt = Nt − t the compensated process.
The Lévy measure of X is a Dirac delta measure at point 1, hence mn = 1, n ≥ 2. Then,

Qn(x, t) = �n(x,−t, . . . ,−t),

and the recurrence relation is

Qn+1(x, t) = xQn(x, t) − t

n∑
j=1

(
n

j

)
Qn−j (x, t).

Now, consider the monic Charlier polynomials C̃n(x, t) (also with Schoutens’ notation [10],
Chapter 5), defined by

e−ut (1 + u)x =
∞∑

n=0

C̃n(x, t)
un

n! .

It is well known that C̃n(Nt , t) = C̃n(Xt + t, t) is a martingale. Write

Cn(x, t) = 1

n! C̃n(x + t, t).

Then (see, e.g., [10], Theorem 8),∫ t

0
Cn(Xs−, s)dXs = Cn+1(Xt , t). (12)

Corollary 2(d) guarantees that the polynomial Cn(x, t) is a linear combination of the polynomials
Qj(x, t). To specify the relationship between both families of polynomials, we shall recursively

construct the numbers λ
(n)
1 , . . . , λ

(n)
n such that

Qn(x, t) =
n∑

j=1

λ
(n)
j Cj (x, t).

First,

Q1(x, t) = x = C1(x, t),

so λ
(1)
1 = 1. Assume that λ

(1)
1 , λ

(2)
1 , λ

(2)
2 , . . . , λ

(n−1)
1 , . . . , λ

(n−1)
n−1 are known. Then, from (10),

Qn(Xt , t) =
n∑

j=1

(
n

j

)∫ t

0
Qn−j (Xs−, s)dY

(j)
s .
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For the compensated Poisson process, all the Teugels martingales are equal, that is Y
(n)
t = Xt,

and using (12), we have

Qn(Xt , t) =
n−1∑
j=1

(
n

j

) n−j∑
k=1

λ
(n−j)
k Ck+1(Xt , t) + C1(Xt , t)

=
n−1∑
k=1

Ck+1(Xt , t)

n−k∑
j=1

(
n

j

)
λ

(n−j)
k + C1(Xt , t).

It follows that λ
(n)
1 = 1 and

λ
(n)
k+1 =

n−1∑
j=k

(
n

j

)
λ

(j)
k , k = 1, . . . , n − 1.

4.3. Sum of two independent Lévy processes

Let {Yt , t ≥ 0} and {Zt , t ≥ 0} be two independent centered Lévy processes with moments of all
orders, and put X = Y + Z. Since the cumulant of order j of a sum of two independent random
variables is the sum of the respectives cumulants of that order, the following convolution-type
formula is deduced from (4):

�n(y1 + z1, . . . , yn + zn) =
n∑

j=0

(
n

j

)
�j (y1, . . . , yj )�n−j (z1, . . . , zn−j ).

Hence,

QX
n (x, t) =

n∑
j=0

(
n

j

)
QY

j (y, t)QZ
n−j (z, t),

where x = y + z.
This result covers, for example, the process Xt = Wt + Nt − t, where {Wt, t ≥ 0} is a stan-

dard Brownian motion and {Nt, t ≥ 0} is a Poisson process of intensity 1, both processes being
independent. The polynomials corresponding to X are then convolutions between the Hermite
polynomials and the polynomials studied in the previous example.

4.4. Gamma process

Let {Gt, t ≥ 0} be a Gamma process, that is, a Lévy process such that Gt has distribution Gamma
with mean t and scale parameter equal to 1. Consider Xt = Gt − t. The Lévy measure is

ν(dx) = e−x

x
1(0,∞)(x)dx
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and the cumulants of X1 of order n ≥ 2 are

mn =
∫ ∞

0
xn−1e−x dx = (n − 1)!.

The polynomials are then

Qn(x, t) = �n

(
x,−t, . . . ,−(n − 1)! t)

and the recurrence relation is

Qn+1(x, t) = xQn(x, t) − n! t
n−1∑
j=0

1

j ! Qj(x, t).

We are going to prove, in agreement with the results of Schoutens and Teugels [11] (see also
[10]), that Qn(x, t) is related to the Laguerre polynomials. First, we compute the generating
function of the polynomials Qn(x, t). Applying the general formula (2) to this specific case, for
u in a neighborhood of zero of radius ρ ∈ (0,1),

∞∑
n=0

Qn(x, t)
un

n! =
∞∑

n=0

�n

(
x,−t, . . . ,−(n − 1)!t)un

n!

= exp

{
xu − t

∞∑
n=2

un

n

}
= exp{u(x + t) + t log(1 − u)}
= (1 − u)t exp{u(x + t)}.

Second, using the relationship between Laguerre and Charlier polynomials, the generating func-
tion of the Laguerre polynomials can be written as (see [10], page 47)

(1 − u)t exp{ux} =
∞∑

n=0

(−1)nL(t−n)
n (x)un.

Then,

Qn(x, t) = (−1)nn!L(t−n)
n (x + t).

Note that Schoutens [10] proves that L
(t−n)
n (Gt ) is a martingale, which is equivalent to the fact

that Qn(Xt , t) is a martingale.

4.5. Compound Poisson process with lognormal jumps

The final example deals with a Lévy process with finite moments of all orders, but without
moment generating function. Let {Nt, t ≥ 0} be a Poisson process of intensity 1 and {Yn, n ≥ 1}
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a sequence of i.i.d. random variables with lognormal distribution of parameters μ = 0 and σ = 1,
independent of the Poisson process. Consider the centered compound Poisson process

Xt =
Nt∑

j=1

Yj − e1/2t,

with the convention that the sum is 0 when Nt = 0. As for all λ > 0, E[exp{λ|X1|}] = ∞, it
follows that X1 does not have finite moment generating function. The Lévy measure is the law
of Y1 and the cumulants of X1 of order ≥ 2 are the moments of a lognormal law,

mn = E[Yn
1 ] = en2/2, n ≥ 2.

The polynomials are then

Qn(x, t) = �n(x,−te2, . . . ,−ten2/2)

and the recurrence relation is

Qn+1(x, t) = xQn(x, t) − t

n∑
j=1

(
n

j

)
e(j+1)2/2 Qn−j (x, t).

5. Polynomials for a Lévy process with moment generating
function

In this section, we study a general procedure (proposed by Sengupta [13]) for finding time–space
harmonic polynomials related to a Lévy process with finite moment generating function in an
open neighborhood of zero. We will prove that the resulting polynomials are the same as those
obtained in Section 3.

Assume that X1 has moment generating function in an open interval of the origin. Then,

E[euXt ] = exp

{
1
2 tσ 2u2 + t

∫
R

(eux − 1 − ux)dν(x)

}
is analytic for u ∈ (−δ, δ), for some δ > 0, and it is known that (fixed u)

Lt(u) := exp{uXt }
E[exp{uXt }]

(13)

= exp

{
uXt − 1

2
tσ 2u2 − t

∫
R

(eux − 1 − ux)dν(x)

}
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is a martingale. On the other hand, for fixed ω ∈ 
 and t > 0, as a function of u, Lt(u) is also
analytic in (−δ, δ) and can be expanded as

Lt(u) =
∞∑

n=0

Rn(Xt , t)
un

n! . (14)

Each coefficient Rn(Xt , t) is a polynomial (in Xt and t ) that is a martingale (see the proof of
a similar result in [10], page 46). Therefore, searching for a family of time–space harmonic
polynomials is reduced to computing Rn(x, t). This concludes the general procedure. However,
we can go one step further since the condition that X1 has moment generating function in an
open interval of the origin is equivalent (see Remark 4 below) to the condition that for some
λ > 0, ∫

{|x|>1}
exp{λ|x|}ν(dx) < ∞.

Hence, the integral
∫

R
(eux − 1 − ux)dν(x) is analytic in a neighborhood of 0 and can be ex-

panded as the power series
∑∞

n=2
un

n! mn. Substituting the integral by the power series in (13), we
obtain

Lt(u) = exp

{
uXt − 1

2
tu2(σ 2 + m2) − t

∞∑
n=3

un

n! mn

}
. (15)

Then, from (14), (15) and the exponential formula (2), we can identify the convenient μn and kn

and obtain

Rn(Xt , t) = �n

(
Xt,−t (σ 2 + m2),−tm3, . . . ,−tmn

) = Qn(Xt , t).

Remark 4. The hypothesis that the random variable X1 has finite generating function in some
open neighborhood of zero means that there exists λ > 0 such that

E[exp{λ|X1|}] < ∞. (16)

The function exp{λ|x|} is submultiplicative and therefore (16) is equivalent to∫
{|x|>1}

exp{λ|x|}ν(dx) < ∞

(see [9], Theorem 25.3 and Proposition 25.4). It is worth noting that this last condition is equiv-
alent to the hypothesis assumed by Nualart and Schoutens [8].
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6. Time–space harmonic polynomials and orthogonal
polynomials

Another interesting family of polynomials relative to a Lévy process X with moments of all
orders is defined in the following way. Consider the iterated integrals

P
(0)
t = 1, P

(1)
t = Xt, . . . ,P

(n)
t =

∫ t

0
P

(n−1)
s− dXs. (17)

These processes are related to the variations of X,

X
(1)
t = Xt, X

(2)
t = [X,X]t , X

(n)
t =

∑
s≤t

(�Xs)
n, n ≥ 3, (18)

through the Kailath–Segall formula

P
(n)
t = 1

n

(
P

(n−1)
t X

(1)
t − P

(n−2)
t X

(2)
t + · · · + (−1)n+1P

(0)
t X

(n)
t

)
(19)

(see Segall and Kailath [12] or Meyer [6]).
It follows that P

(n)
t is a polynomial in X

(1)
t , . . . ,X

(n)
t , is called the Kailath–Segall polynomial

of order n. Denote this polynomial by Pn(x1, . . . , xn), that is,

P
(n)
t = Pn

(
X

(1)
t , . . . ,X

(n)
t

)
and set P0 = 1. The translation of (19) to the polynomials Pn(x1, . . . , xn) produces the recurrence
relation

Pn(x1, . . . , xn)

(20)

= 1

n

(
Pn−1(x1, . . . , xn−1)x1 − Pn−2(x1, . . . , xn−2)x2 + · · · + (−1)n+1P0xn

)
.

On the other hand, since the iterated integrals of different order of a Lévy process are orthog-
onal,

E
[
P

(n)
t P

(m)
t

] = 1

n! Cntnδnm, (21)

orthogonality of the polynomials Pn(X
(1)
1 , . . . ,X

(n)
t ) follows. However, only when the underly-

ing process is a Brownian motion or a Poisson process is Pn(X
(1)
1 , . . . ,X

(n)
t ) a polynomial of the

form Xn
t + a1(t)X

n−1
t + · · · + an(t), with aj (t) being ordinary polynomials in t (see Solé and

Utzet [14]). In light of (11), this is a major difference from time–space harmonic polynomials.
In general, both families of polynomials are related by the polynomial �n. Specifically,

Pn(x1, . . . , xn) = 1

n! �n

(
x1,−x2,2!x3, . . . , (−1)n−1(n − 1)!xn

)
because, by (5), this polynomial satisfies the recurrence relation (20).
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