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Long-range dependence induced by heavy tails is a widely reported feature of internet traffic. Long-range
dependence can be defined as the regular variation of the variance of the integrated process, and half the
index of regular variation is then referred to as the Hurst index. The infinite-source Poisson process (a
particular case of which is the M/G/∞ queue) is a simple and popular model with this property, when
the tail of the service time distribution is regularly varying. The Hurst index of the infinite-source Poisson
process is then related to the index of regular variation of the service times. In this paper, we present
a wavelet-based estimator of the Hurst index of this process, when it is observed either continuously or
discretely over an increasing time interval. Our estimator is shown to be consistent and robust to some form
of non-stationarity. Its rate of convergence is investigated.

Keywords: heavy tails; internet traffic; long-range dependence; Poisson point processes; semiparametric
estimation; wavelets

1. Introduction

We consider the infinite-source Poisson process with random transmission rate defined by

X(t) =
∑
�∈N

U�1{t�≤t<t�+η�}, t ≥ 0, (1.1)

where the arrival times {t�}�≥0 are the points of a unit-rate homogeneous Poisson process on the
positive half-line, independent of the initial conditions; and the durations and transmission rates
{(η�,U�)} are independent and identically distributed random variables with values in (0,∞)×R

and independent of the Poisson process and of the initial conditions. This process was considered
by Resnick and Rootzén [12] and Mikosch et al. [9], among others. The M/G/∞ queue is a spe-
cial case, for U� ≡ 1. An important motivation for the infinite-source Poisson process is to model
the instantaneous rate of the workload going though an internet link. Although overly simple
models are generally not relevant for internet traffic at the packet level, it is generally admitted
that rather simple models can be used for higher-level (the so-called flow level) traffic such as
TCP or HTTP sessions, one of them being the infinite-source Poisson process (see Barakat et
al. [1]). One way to empirically analyse internet traffic at the flow level using the infinite-source
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Poisson process would consist in retrieving all the variables {t�, η�,U�} involved in the observed
traffic during a given period of time, but this would require the collection of all the relevant in-
formation in the packets headers (such as source and destination addresses) for the purpose of
separating the aggregated workload into transmission rates at a pertinent level; see Duffield et
al. [3] for many insights into this problem.

It is well known that heavy tails in the durations {ηk} result in long-range dependence of the
process X(t). Long-range dependence can be defined by the regular variation of the autocovari-
ance of the process or more generally by the regular variation of the variance of the integrated
process:

var

(∫ t

0
X(s)ds

)
= L(t)t2H ,

where L is a slowly varying function at infinity and H > 1/2 is often refered to as the Hurst index
of the process. For the infinite-source Poisson process, the Hurst index H is related to the tail
index α of the durations by the relation H = (3 −α)/2. The long-range dependence property has
motivated many empirical studies of internet traffic and theoretical ones concerning its impact
on queuing (these questions are studied in the M/G/∞ case in Parulekar and Makowki [10]).

However, to the best of our knowledge, no statistical procedure to estimate H has been rig-
orously justified. It is the aim of this paper to propose an estimator of the Hurst index of the
infinite-source Poisson process, and to derive its statistical properties. We propose to estimate H

(or equivalently α) from a path of the process X(t) over a finite interval [0, T ], observed either
continuously or discretely. In practice this can be done by counting all the packets going through
some point of the network and then collecting local traffic rate measurements. Our estimator is
based on the so-called wavelet coefficients of a path. There is a wide literature on this methodol-
ogy for estimating long-range dependence, starting as long ago as Wornell and Oppenheim [13],
but we are not aware of rigorous results for non-Gaussian or non-stable processes. The main con-
tribution of this paper is thus the proof of the consistency of our estimator. We also investigate the
rate of convergence of the estimator in the case α > 1. If the process is observed continuously,
the rate of convergence is good. In the case of discrete observations, the rate is much smaller.
Also, the choice of the tuning parameters of the estimators is much more restricted in the latter
case, and practitioners should perhaps be aware of this; see Section 4.3 for details.

The process X is formally defined in Section 2. We state our assumptions and, using a point-
process representation of X, we establish some of its main properties. The wavelet coefficients
are defined and the scaling property of their variances is obtained in Section 3. The estimator is
defined and its properties are established in Section 4. The Appendix contains technical lemmas.

2. Basic properties of the model

2.1. Assumptions

We now introduce the complete assumption on the joint distribution of the transmissions rates
and durations.
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Assumption 1. (i) The random vectors {(η,U), (η�,U�), � ∈ Z} are independent with common
distribution ν on (0,∞) × R and independent of the homogeneous Poisson point process on the
real line with points {t�}�∈Z such that t� < t�+1 for all � and t−1 < 0 ≤ t0.

(ii) There exists a positive integer p∗ such that E[|U |p∗ ] < ∞.
(iii) There exist a real number α ∈ (0,2) and positive functions L0, . . . ,Lp∗ slowly varying at

infinity such that, for all t > 0 and p = 0, . . . , p∗,

Hp(t) := E
[|U |p1{η>t}

] = Lp(t)t−α. (2.1)

Since η > 0, the functions Hp are continuous at zero and Hp(0) = E[|U |p]. Condition (2.1)
is equivalent to saying that the functions Hp,p = 0,1, . . . , p∗, are regularly varying with index
−α. If α > 1 and p∗ ≥ 2, Assumption 1 and Karamata’s theorem imply the following asymptotic
equivalence:

E[U2{η − t}+] = E

[
U2

∫ ∞

v=t

1{v<η} dv

]
=

∫ ∞

v=t

H2(v)dv ∼ 1

α − 1
L2(t)t

1−α. (2.2)

Remark 2.1. Assumption 1 will be used with p∗ = 2 to prove the regular variation of the au-
tocovariance function of the process X and with p∗ = 4 to prove consistency of our estimators.
It can be related to the theory of multivariate regular variation (see, for instance, Maulik et al.
[7]). But the definitions of multivariate regular variation involve vague convergence and do not
necessarily ensure the convergence of moments required here.

Remark 2.2. We do not assume that U is non-negative. This allows us to consider applications
other than teletraffic modelling. For instance, the process X could be used to model the volatiliy
of some financial time series.

Remark 2.3. We will often have to separate the cases E[η] = ∞ and E[η] < ∞. These cases are
respectively implied by α < 1 and α > 1. If α = 1, the finiteness of E[η] depends on the precise
behaviour of L0 at infinity.

Example 2.1. Assumption 1 implies in particular that the tail of the distribution of η is regu-
larly varying with index α. This in turns implies Assumption 1 if U and η are independent and
E[|U |p∗ ] < ∞, in which case the functions Lp differ by a multiplicative constant.

Example 2.2. Assumption 1 also holds in the following case which is of interest in teletraffic
modelling. In a TCP/IP traffic context, η and U represent respectively the duration of a download
session and its intensity (bit rate). Then W := Uη represents the amount of transmitted data. We
assume that, for some u0 > 0, there exist two regimes, U ≥ u0 (xDSL/LAN/cable connection)
and U ∈ (0, u0) (RTC connection), such that the following statements hold:

• The distribution of W given U = u ≥ u0 is heavy-tailed and independent of u: P(W ≥
w|U = u) = L(w)w−α .

• The distribution of W given U = u ∈ (0, u0) is light-tailed uniformly with respect to u.
For instance, we assume expontially decaying tails, P(W ≥ w|U = u) ≤ exp(−βw−γ ), for
some β > 0 and γ > 0.
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An explicit example for two such regimes is obtained when the conditional density of W given
U = u is equal to αw−α−11{w≥1} if u ≥ u0 and exp(−w) if u < u0.

Concerning the distribution of U we only assume that:

• P(U ≥ u0) > 0, E[|U |−α−ε] < ∞ for some ε > 0, and E[|U |p∗ ] < ∞.

Then (2.1) holds for p ≤ p∗. Indeed,

E
[
Up1{η>t}1{U≥u0}

] = E
[
Up1{W>Ut}1{U≥u0}

]
= E

[
UpL(Ut)(Ut)−α1{U≥u0}

]
= L(t)t−α

E
[
Up−αL(Ut)/L(t)1{U≥u0}

]
. (2.3)

Since L is slowly varying at infinity, limt→∞ L(ut)/L(t) = 1, uniformly with respect to u in
compact sets of (0,+∞), and there exists t0 > 0 such that, for u ≥ u0, t ≥ t0,

L(ut)

L(t)
≤ (1 + α)uα/2;

see, for example, Resnick ([11], Proposition 0.8). Then, by the dominated convergence theorem,

lim
t→∞ E

[
Up−αL(Ut)/L(t)1{U≥u0}

] = E
[
Up−α1{U≥u0}

]
. (2.4)

Consider now the low-bit-rate regime. Since, for all x > 0, exp{−βxγ } ≤ Cx−α−ε for some
positive constant C, we have

E
[
Up1{η>t}1{U<u0}

] ≤ E
[
Up exp{−β(Ut)γ }1{U<u0}

] ≤ Ct−α−ε
E

[
Up−α−ε1{U<u0}

]
.

Using the assumption on U , since p ≥ 0, the rightmost expectation in the previous display is
finite and we obtain that

lim
t→∞ tαL−1(t)E

[
Up1{η>t}1{U<u0}

] = 0.

Together with (2.3) and (2.4), this implies that, as t → ∞, E[Up1{η>t}]tα ∼ L(t)E[Up−α ×
1{U≥u0}] hence is slowly varying and Assumption 1 holds.

2.2. Point-process representation and stationary version

Let N denote a Poisson point process on a set E endowed with a σ -field E with intensity measure
µ, that is, a random measure such that for any disjoint A1, . . . ,Ap in E , N (A1), . . . ,N (Ap) are
independent random variables with Poisson law with respective parameters µ(Ai), i = 1, . . . , p.
The main property of Poisson point processes that we will use is the following cumulant formula
(see, for instance, Resnick [11]: Chapter 3). For any positive integer p and functions f1, . . . , fp

such that
∫ |fi |dµ < ∞ and

∫ |fi |p dµ < ∞ for all i = 1, . . . , p, the pth-order joint cumulant
of N (f1), . . . ,N (fp) exists and is given by

cum(N (f1), . . . ,N (fp)) =
∫

f1 · · ·fp dµ. (2.5)



The infinite-source Poisson process 477

Let NS be the point processes on R × (0,∞) × R with points (t�, η�,U�)�∈Z, that is NS =∑
�∈Z

δt�,η�,U�
. Under Assumption 1(i), it is a Poisson point process with intensity measure Leb⊗

ν, where Leb is the Lebesgue measure on R. For t, u ∈ R, define

At = {(s, v) ∈ R × R+ | s ≤ t < s + v},
Bu = {λu | λ ∈ [1,∞)}.

We can now show that if E[η] < ∞, then one can define a stationary version for X and provide
its second-order properties.

Proposition 2.1. If Assumption 1(i) holds and E[η] < ∞, then the process

XS(t) =
∑
�∈Z

U�1{t�≤t<t�+η�} (2.6)

is well defined and strictly stationary. It has the point-process representation

XS(t) =
∫ ∞

0
NS(At × Bu)du −

∫ 0

−∞
NS(At × Bu)du. (2.7)

Let K0 = sup{� > 0 | t−� + η−� > 0}, Ũ� = U−� and η̃� = η−� + t−�. Then, for all t ≥ 0,

XS(t) =
K0∑
�=1

Ũ�1{t<η̃�} + X(t). (2.8)

If, moreover, p∗ ≥ 2, then XS has finite variance and

E[XS(t)] = E[Uη],

cov(XS(0),XS(t)) = E[U2(η − t)+] =
∫ ∞

t

H2(v)dv.

Remark 2.4. Note that if α > 1, then E[η] < ∞ and, by Karamata’s theorem,

cov(XS(0),XS(t)) ∼ 1

α − 1
L2(t)t

1−α, t → +∞.

Proof. The number of non-vanishing terms in the sum (2.6) is NS(At × R) and has a Poisson
distribution with mean E

∫
R

1At (s, η)ds = E[η]. Thus XS is well defined and stationary since
NS is stationary. The number of indices � > 0 such that t−� + η−� > 0 is NS(A0 × R), hence if
K0 is the largest of those �s, it is almost surely finite and

∑
t�<0

U�1{t�≤t<t�+η�} =
K0∑
�=1

Ũ�1{t<η̃�}.
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Hence (2.8).
The point-process representation (2.7) and formule (2.5) and (2.2) finally yield the given ex-

pressions for the mean and covariance. �

Relation (2.8) shows that the stationary version XS can be defined by changing the initial
condition of the system. More generally, one could consider any initial conditions, that is, any
process defined as on the right-hand side of (2.8) with K0 and η̃�, � > 0 finite. Since the initial
conditions almost surely vanish after a finite period, they have a negligible impact on the esti-
mation procedure. Thus, our result on X easily generalizes to any such initial conditions, and, in
particular, to the stationary version XS , when it exists.

Applying similar arguments as those used for showing Proposition 2.1, we obtain:

Proposition 2.2. The process X admits a point-process representation

X(t) =
∫ ∞

0
NS(A+

t × Bu)du −
∫ 0

−∞
NS(A+

t × Bu)du, (2.9)

where A+
t = At ∩ R

2+.
If Assumption 1 holds with p∗ ≥ 2, then the process X is non-stationary with expectation and

autocovariance function given, for s ≤ t , by

E[X(t)] = E[U(η ∧ t)],

cov(X(s),X(t)) = E[U2{s − (t − η)+}+] =
∫ t

t−s

H2(v)dv.

By the uniform convergence theorem for slowly varying functions, the following asymptotic
equivalence of the covariance holds. For any α ∈ (0,2) and all t > s > 0, as T → ∞,

cov(X(T t),X(T s)) ∼ CL2(T )T 1−α (2.10)

with C = ∫ s

t−s
v−α dv.

In accordance with the notation in use in the context of long-memory processes, we can define
the Hurst index of the process X as H = (3−α)/2, because the variance of the process integrated
between 0 and T increases as T 2H . If α < 1, then H > 1. This case has been considered, for
instance, by Resnick and Rootzén [12].

3. Wavelet coefficients

3.1. Continuous observation

Let ψ be a bounded real-valued function with compact support in [0,M] and such that∫ M

0
ψ(s)ds = 0. (3.1)
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For integers j ≥ 0 and k ∈ Z, define

ψj,k(s) = 2−j/2ψ(2−j s − k). (3.2)

The wavelet coefficients of the path are defined as

dj,k =
∫ ∞

0
ψj,k(s)X(s)ds (3.3)

(see, for example, Cohen [2]). Assume that a path of the process X is observed continuously
between times 0 and T . Since ψj,k has support in [k2j , (k + M)2j ], the coefficients dj,k can be
computed for all (j, k) such that T 2−j ≥ M and k = 0,1, . . . , T 2−j − M .

According to Lemma A.1, one may define, for all j and k,

dS
j,k =

∑
�∈Z

U�

∫ t�+ηl

t�

ψj,k(s)ds. (3.4)

As stated in Lemma A.1, if E[η] < ∞, we have dS
j,k = ∫ ∞

0 ψj,k(s)XS(s)ds. Nevertheless, even if

E[η] = ∞, the sequence of coefficients at a given scale j , {dS
j,k, k ∈ Z}, is stationary. Moreover,

the definition (3.4) yields:

Lemma 3.1. Let Assumption 1 hold with p∗ ≥ 2. We have

E[dS
j,k] = 0, var(dS

j,k) = L(2j )2(2−α)j , (3.5)

where

L(z) := zα

∫ ∞

0

∫ ∞

−∞

(∫ ∞

−∞

{∫ t+vz−1

t

ψ(s)ds

}2

dt

)
w2ν(dv, dw) (3.6)

is slowly varying as z → ∞. More precisely, we have the asymptotic equivalence

L(z) ∼ CLL2(z) as z → ∞, (3.7)

with CL = α
∫ ∞

0

∫ ∞
−∞{∫ x+y

x
ψ(s)ds}2 dx t−α−1 dt > 0.

The proof of (3.5) is a straightforward application of (2.5), and the proof of the asymptotic
equivalence (3.7) is obtained by standard arguments on slowly varying functions. A detailed
proof can be found in Faÿ et al. [4].

3.2. Wavelet coefficients in discrete time

Let φ be a bounded R → R function with compact support included in [−M + 1,1] and such
that ∑

k∈Z

φ(t − k) = 1, t ∈ R. (3.8)
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Let Iφ denote the operator defined on the set of functions x : R → R by

Iφ[x](t) =
∑
k∈Z

x(k)φ(t − k). (3.9)

The wavelet coefficients of x are then defined as the wavelet coefficients of Iφ[x].
From a computational point of view, it is convenient to chose φ and ψ to be the so-called father

and mother wavelets of a multiresolution analysis; see, for instance, Meyer [8]. The simplest
choice is to take φ and ψ to be associated with the Haar system, in which case M = 1, φ = 1[0,1)

and ψ = 1[0,1/2) − 1[1/2,1).
If the process X is observed discretely, we denote its wavelet coefficients by

dD
j,k =

∫
ψj,k(s)Iφ[X](s)ds. (3.10)

If we observe X(0),X(1), . . . ,X(T − 1), for some positive integer T , we can compute dD
j,k for

all j, k such that 0 ≤ k ≤ 2−j (T − M + 1) − M . Roughly, for 2j ≥ T/M , no coefficients can
be computed and if 2j < T/M the number of computable wavelet coefficients at scale 2−j is of
order T 2−j + 1 − M for j and T large.

Remark 3.1. Observe that the choice of time units is unimportant here. Indeed, in Assumption 1,
changing the time units simply amounts to adapting the slowly varying functions Lk and the rate
of the arrival process {tk}. Clearly these adaptations do not modify our results since precise
multiplicative constants are not considered.

3.3. Averaged observations

We describe now a third observation scheme for which our results can easily be extended. Sup-
pose that T is a positive integer and that we observe local averages of the trajectory

X(k) :=
∫ k+1

k

X(t)dt =
∫

X(t)φH (t − k)dt, k = 0,1, . . . , T − 1,

where φH := 1[0,1] is the Haar wavelet. Let Iφ denote the operator on locally integrable functions
x defined by

Iφ[x](t) =
∑
k∈Z

(∫
x(s)φH (s − k)ds

)
φ(t − k).

For this observation scheme, as in Section 3.2, one may compute the wavelet coefficients of the
function Iφ[X] at all scale and location indices (j, k) such that 0 ≤ k ≤ 2−j (T − M + 1) − M . If
φ = φH and ψ is the Haar mother wavelet, ψ = 1[0,1/2) − 1[1/2,1), then the wavelet coefficients
of Iφ[X] are precisely the continuous wavelet coefficients defined in (3.3). For any other choice
of φ and ψ , this is no longer true. We will not treat this case, but all our results can be extended
at the cost of further technicalities.
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4. Estimation

Tail index estimation methods do not seem appropriate here for estimating the parameter α. In-
deed, α is the tail index of the unobserved durations {ηk}, whereas the observed process X(t)

always has finite variance (E[|X(t)|p] < ∞ if and only if E[|Up|] < ∞ and the marginal distri-
bution of X(t) is Poisson if U = 1 almost surely). But as shown by Proposition 2.2, α is related
to the second-order properties of the process: the coefficient H = (3 − α)/2 can be viewed as its
Hurst index, that is, H governs the rate of decay of the autocovariance function of the process.
Therefore it seems natural to use an estimator of the Hurst index.

4.1. The estimator

Lemma 3.1 provides the rationale for a minimum contrast estimator of α which is related to
the local Whittle estimator; cf. Künsch [6]. Let dj,k denote the wavelet coefficients which are
actually available; these may be obtained from continuous-time (dj,k = dj,k) or discrete-time
(dj,k = dD

j,k) observations. Let 
 be a set of indices (j, k) of available wavelet coefficients.
Denote the mean scale index over 
 by

δ := 1

#


∑
(j,k)∈


j.

The reduced local Whittle contrast function is

Ŵ (α′) = log

( ∑
(j,k)∈


d2
j,k

2(2−α′)j

)
+ δ log(2)(2 − α′). (4.1)

The local Whittle estimator of α is then defined as

α̂ := arg min
α′∈(0,2)

Ŵ (α′). (4.2)

In order to simplify the proof of our result, we henceforth take 
 to be of the form


 = {(j, k);J0 < j ≤ J1,0 ≤ k ≤ nj − 1},

with J = max{j ;2j ≤ (T − M + 1)/(M + 1)}, nj = 2J−j and integers J0 and J1 such that

0 < J0 < J1 ≤ J. (4.3)

The sequence of integers J depends on T in such a way that 2J 
 T . Note that the dependence
of the sequences J , J0, J1, nj etc. on T is suppressed in our notation.
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4.2. Consistency

Our estimator is consistent in the potentially unstable case, that is when α is not assumed to be
in (1,2), provided that the assumptions on the functions φ and ψ are strengthened. We assume
that ∫ ∞

−∞
sψ(s)ds = 0, (4.4)

and there exist constants a and b such that, for all t ∈ R,∑
k∈Z

kφ(t − k) = a + bt. (4.5)

These conditions are not satisfied by the Haar wavelet, but hold for any Daubechies wavelets;
see Cohen [2].

Theorem 4.1. Let Assumption 1 hold with p∗ ≥ 4. Assume that J0 and J1 depend on T in such
a way that

lim
T →∞J0 = lim

T →∞(J1 − J0) = ∞, (4.6)

lim sup
T →∞

J0/J < 1/α, (4.7)

lim sup
T →∞

J1/J < 1/(2 − α). (4.8)

Then α̂ is a consistent estimator of α. Moreover if α ∈ (1,2), then conditions (4.4), (4.5) and (4.8)
are not necessary for the same result to hold.

Remark 4.1. Conditions (4.6), (4.7) and (4.8) are satisfied by the choice J0 = �J/2� and J1 =
�J/2 + log(J )�.

Proof of Theorem 4.1. For clarity of notation, we denote
∑

j = ∑J1
j=J0+1, 
j := {k : (j, k) ∈


} and #
j = nj . Elementary computations give

δ = J0 + 2 + (J0 − J1)/(2
J1−J0 − 1) (4.9)

so that δ − (J0 + 2) → 0 under (4.6). By Karamata’s representation theorem, the slowly varying
function L defined in (3.6) can be written as

L(z) = c
(
1 + r(z)

)
exp

{∫ z

1

�(s)

s
ds

}
,

with c > 0 and limz→∞ �(z) = limz→∞ r(z) = 0. Define L0(z) = c exp{∫ z

1 s−1�(s)ds}, r∗(z) =
supz′≥z |r(z′)| and �∗(z) = supz′≥z |�(z′)|. The functions r∗ and �∗ are non-increasing and tend
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to zero at infinity. We now introduce some notation that will be used throughout the proof:

W(α′) = log

(∑
j

2(α′−α)j njL(2j )

)
+ δ log(2)(2 − α′),

W0(α
′) = log

(∑
j

2(α′−α)j njL0(2
j )

)
+ δ log(2)(2 − α′),

wj,0(α
′) := 2(α′−α)j njL0(2j )∑

j ′ 2(α′−α)j ′
nj ′L0(2j ′

)
, wj (α

′) := 2(α′−α)j njL(2j )∑
j ′ 2(α′−α)j ′

nj ′L(2j ′
)
,

vj = L(2j )2(2−α)j , �j = n−1
j

nj −1∑
k=0

{v−1
j (dj,k)

2 − 1},

E(α′) :=
∑
j

wj (α
′)�j .

We have

W(α′) − W0(α
′) = log

(
1 +

∑
j 2(α′−α)j njL0(2j )r(2j )∑

j 2(α′−α)j njL0(2j )

)
.

Here the fraction inside the logarithm is bounded by r∗(2J0), thus, for J large enough,

sup
α′

|W(α′) − W0(α
′)| ≤ Cr∗(2J0).

Standard algebra yields

W ′
0(α

′) = log 2
∑
j

wj,0(α
′)(j − δ)

W ′′
0 (α′) = log2(2)

∑
j

wj,0(α
′)
(

j −
∑
j ′

wj ′,0(α
′)j ′

)2

.

By Lemma A.8, under (4.6),

lim
T →∞W ′

0(α) = 0, lim
T →∞W ′′

0 (α) = 2.

Thus, there exist η > 0 and ζ > 0 such that

lim inf
T →∞ inf

α′∈(α−η,α+η)
W ′′

0 (α′) > ζ.

This implies that, for large T and some positive constant c,

W(α̂) − W(α) ≥ W ′
0(α) log(2)(α̂ − α) + c(α̂ − α)2 − 2r∗(2J0). (4.10)
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Since W ′
0(α) → 0 and |α̂ − α| ≤ 2, this implies that, for all ε > 0,

lim sup
T →∞

P
(
(α̂ − α)2 > ε

) ≤ lim sup
T →∞

P
(
W(α̂) − W(α) ≥ cε

)
. (4.11)

Write

Ŵ (α′) = W(α′) + log{1 + E(α′)},
W(α̂) − W(α) = Ŵ (α̂) − Ŵ (α) − log{1 + E(α̂)} + log{1 + E(α)}

≤ 2 sup
α′∈(0,2)

| log{1 + E(α′)}|. (4.12)

Consistency will follow from (4.11) and (4.12) provided that we can prove that
supα′∈(0,2) |E(α′)| = oP (1). If α > 1, take ε ∈ (0, (α −1)/2) such that lim supJ0/J < 1/(α +ε),
which is possible by assumption (4.7). Define

J2 =
{

J1, if α ≤ 1,
J1 ∧ [J/(α + ε)], if α > 1,

(4.13)

so that, for T large enough, J0 < J2 ≤ J1. Write

E(α′) =
J2∑

j=J0+1

wj(α
′)�j +

J1∑
j=J2+1

wj(α
′)�j =: E1(α

′) + E2(α
′),

with the convention that
∑J1

j=J2+1 = 0 if J2 = J1. By Lemma A.6,

sup
α′∈(0,2)

|E1(α
′)| = OP (2−ξ1J ), (4.14)

for some positive ξ1. Now treat E2 for α > 1 and J2 = [J/(α + ε)] > J1. For all α′ ∈ (0,2), we
have α′ − α − 1 < −2ε. Since L is slowly varying, we obtain, for some positive constant C, for
all j = J2 + 1, J2 + 2, . . . , J1, wj(α

′) ≤ C2−ε(J2−J0). Using Lemma A.5, it follows that

E

[
sup

α′∈(0,2)

|E2(α
′)|

]
≤ C(J1 − J2)2

−ε(J2−J0) = O(2−ξ2J ), (4.15)

for some ξ2 > 0 because lim supJ0/J < 1/(α + ε). This concludes the proof. �

4.3. Rate of convergence in the stable case

Theorem 4.2. Let Assumption 1 hold with α ∈ (1,2) and p∗ = 4. Assume, moreover, that L4 is
bounded and that L(z) = c + O(z−β) with c > 0 and β > 0.

If X is observed continuously on [0, T ], that is, dj,k = dj,k , then the rate of convergence in
probability of α̂ is T −β/(2β+α), obtained for J0 = �J/{2β + α}� and J1 = J .
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If X is observed at discrete time points 1,2, . . . , T , that is, dj,k = dD
j,k , then the rate of conver-

gence in probability of α̂ is T −γ /(2γ+α) with γ = β ∧ (2 − α), obtained for J0 = �J/{2γ + α}�
and J1 = J .

Remark 4.2. Observe that the choice of J0 corresponding to the best rate for α̂ depends both
on the unknown smoothness parameter β and on the parameter α itself. The case of discrete
observations is similar to that of continuous-time observations but with the smoothness parameter
β replaced by γ = β ∧ (2 − α), resulting in a slower rate of convergence. This can be explained
by the aliasing induced by the interpolation step (3.9). It is clear that these rates of convergence
are the best possible for our estimator under the assumption on L, since this choice of J0 makes
the squared bias and the variance of the same order of magnitude. However, to our knowledge,
the best possible rate of convergence for the estimation of α under these observations schemes is
an open question. In other words, whether our estimator is rate optimal remains unknown.

The rate of convergence of our estimator is derived under assumptions on the function L. The
following lemma allows us to check them through conditions on the joint distribution of (U,η).

Lemma 4.3. Let Assumption 1 hold.

(i) If there exist positive constants c and β such that, as t → ∞,

L2(t) = c + O(t−β),

then there exists a constant c′ such that, as z → ∞,

L(z) = c′ +



O(z−β), if β < 2 − α,
O(zα−2 log z), if β = 2 − α,
O(zα−2), if β > 2 − α.

(4.16)

(ii) If there exist positive constants c and β such that, as t → 0,

E[U2{1 − cos(ηt)}] = c|t |−α{1 + O(|t |β)},
then there exists a constant c′ such that, as z → ∞,

L(z) = c′ + O(z−β), (4.17)

provided that ψ belongs to the Sobolev space W(α+β)/2−1, that is,∫ ∞

−∞
(1 + |ξ |)(α+β)−2|ψ∗(ξ)|2 dξ < ∞, (4.18)

where ψ∗ denotes the Fourier transform of ψ ,

ψ∗(ξ) =
∫ M

0
ψ(t)e−iξ t dt. (4.19)
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Example 4.1. Assume that η has a Pareto distribution, that is, P(η > t) = (1 ∨ t)−α , and is
independent of U . This corresponds to Lemma 4.3(i) with β = ∞, and we can easily compute
an exact expression for the O(zα−2) term:

L(z) = c′ + αE[U2]
2 − α

zα−2 + o(zα−2).

The best possible rate of convergence of α̂ is thus T −(2−α)/(4−α), regardless of the observation
scheme.

Example 4.2. Let α ∈ (1,2) and suppose that η is the absolute value of a symmetric α-stable
random variable. Then Assumption 1 holds, say, if U is independent of η and has sufficiently
many finite moments, and

E[cos(ηt)] = exp(−σ |t |α) = 1 − σ |t |α + O(|t |2α).

By Lemma 4.3, the best possible rate of convergence of α̂ is thus T −γ /(2γ+α) with γ = α for
continuous-time observations and γ = 2 − α for discrete-time observations.

In the following, we give a decomposition of the error valid under the assumption

0 < lim inf
T →∞

J0

J
≤ lim sup

T →∞
J0

J
< 1.

Optimizing J0 in this decomposition will then give the result. We use the same notation as in
the proof of Theorem 4.1 with J1 = J . We first give a first rough rate of convergence for α̂ by
adapting the proof of Theorem 4.1. Under the present assumptions, L0(z) = c, which implies
W ′

0(α) = 0, and r∗(z) = O(z−β) as z → ∞. Then, (4.10), (4.12), (4.14) and (4.15) yield

(α̂ − α)2 = OP (2−ξJ + 2−βJ0). (4.20)

Since α̂ is consistent and α is an interior point of the parameter set, the first derivative of the
contrast function vanishes at α̂ with probability tending to one. Hence

0 =
∑

(j,k)∈
 j2(α̂−2)j d2
j,k∑

(j,k)∈
 2(α̂−2)j d2
j,k

− δ log(2).

By the definition of δ, this yields

0 =
∑

(j,k)∈


(j − δ)2(α̂−2)j d2
j,k

=
∑

(j,k)∈


(j − δ)2(α−2)j d2
j,k + log(2)(α̂ − α)

∑
(j,k)∈


j (j − δ)2(α̃−2)j d2
j,k (4.21)
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for a random α̃ between α and α̂. By the definition of �j , (4.21) implies that

α̂ − α = −
∑

j (j − δ)2−jL(2j )(1 + �j)

log 2
∑

j j (j − δ)2(α̃−α−1)jL(2j )(1 + �j)
.

Denote the sum in the denominator by D, and write

D =
∑
j

j (j − δ)2−jL(2j ) +
∑
j

j (j − δ)L(2j )2−j
(
2(α̃−α)j − 1

)
(1 + �j)

+
∑
j

j (j − δ)2−jL(2j )�j

=: S + R1 + R2.

Using Lemma A.8 and (4.9), one easily obtains that S ∼ 21−J0 as J → ∞.
Using Lemma A.5, and the fact that |α̃ − α| ≤ |α̂ − α| = oP (J−2), one similarly obatins

R1 = oP (2−J0). To bound R2, we proceed as for bounding E(α′) in the proof of Theorem 4.1
(here with α′ = α > 1): we write

∑
j = ∑J2

j=J0+1 +∑J
j=J2+1 and apply Lemmas A.5 and A.6

to obtain R2 = oP (2−J0). Hence, we finally obtain

α̂ − α = 2J0

2 log 2

{∑
j

(j − δ)2−jL(2j ) +
∑
j

(j − δ)2−jL(2j )�j

}
{1 + op(1)}. (4.22)

In (4.22), the terms inside the curly brackets are interpreted as a deterministic bias term and a
stochastic fluctuation term. The bias is bounded as follows:

2J0
∑
j

(j − δ)2−jL(2j ) = 2J0
∑
j

(j − δ)2−j (L(2j ) − c) = O(2−βJ0). (4.23)

In the case of continuous-time observations, that is, dj,k = dS
j,k or dj,k = dj,k , we have

∑
j

(j − δ)2−jL(2j )�j = OP

(
2−J/2+(α/2−1)J0

)
. (4.24)

Gathering this bound with (4.22) and (4.23), and setting J0 = J/(2β + α), yields the first claim
of Theorem 4.2, that is, α̂ − α = OP (2−β/(2β+α)).

We now prove (4.24). Define βj = n−1
j

∑nj −1
k=0 {v−1

j (dS
j,k)

2 − 1}. Then βj = �j if dj,k = dS
j,k .

Since α > 1, Lemmas 3.1 and A.2 yield, for some positive constant C,

E[β2
j ] = var(βj ) ≤ C

L4(2j )

L2(2j )
2αj−J . (4.25)
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Since L is bounded away from zero and L4 is bounded by assumption, the ratio L4/L2 is also
bounded. The Minkowski inequality then yields, for some constant C > 0,

E

[(∑
j

(j − δ)2−jL(2j )βj

)2]1/2

≤ C2−J/2
∑
j

|j − δ|2(α/2−1)j

= O
(
2−J/2+(α/2−1)J0

)
. (4.26)

If dj,k = dj,k , we use (A.3) in Lemma A.5, and obtain E[|�j −βj |] ≤ Cn
−1/2
j for some constant

C > 0. Hence, in this case, since −1/2 < α/2 − 1,

E

[∣∣∣∣∑
j

(j − δ)2−jL(2j )(�j − βj )

∣∣∣∣
]

≤ C2−J/2
∑
j

|j − δ|L(2j )2−j/2

= o
(
2−J/2+(α/2−1)J0

)
. (4.27)

Inequalities (4.26) and (4.27) imply (4.24).
We now briefly adapt the previous proof to the case of discrete observations. Define vD

j =
E[(dSD

j,k )2]. Lemma A.4(iii) implies vD
j = vj + O(1). Thus we have vD

j = LD(2j )2(2−α)j and

LD(z) = L(z) + O(zα−2) = c + O(z−γ ),

with γ = β ∧ (2 − α). Then, defining

�D
j = n−1

j

nj∑
k=1

{(vD
j )−1d2

j,k − 1},

we obtain that (4.22) still holds with LD and �D replacing L and �, respectively. Lemma A.7
implies that �D

j has the same order of magnitude as �j , so that the stochastic fluctuation term
has the same order of magnitude as in the previous case. The difference comes from the bias term,
which is O(2−γ J0). Thus, α̂ − α = OP (2−γ J0 + 2−γ J0), and setting J0 = J/(2γ + α) yields the
second claim of Theorem 4.2.

5. Concluding remarks

In this work, we have proved the validity of a wavelet method for the estimation of the long-
memory parameter of an infinite-source Poisson traffic model, either in a stable or in an unstable
state, that is, when it does or does not converge to a stationary process. We have shown that a
suitable choice of the scales in the estimator (see Remark 4.1) yields a consistent estimator in
both situations, and checked that the estimator is robust to discrete data sampling.

However, the study of the rates raises some questions concerning the optimality of this es-
timator. To draw a comparison, suppose that one directly observes the durations η1, . . . , ηn of
clients arriving at times t1, . . . , tn in [0, T ]. Then one can use the Hill estimator for estimating
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the tail index α. Since T and n are asymptotically proportional and η1, . . . , ηn are independent
and identically distributed, the rates of this estimator are those derived in Hall and Welsh [5]. In
particular, if η has a Pareto distribution, then a parametric rate

√
T can be obtained. On the other

hand, in the same situation, our wavelet estimator defined on the observations {X(t), t ∈ [0, T ]}
has a dramatically deteriorating rate for α close to 2. It remains to establish whether this discrep-
ancy comes from the choice of the estimator or from the fact that the durations ηk are not directly
observed.

Finally, let us draw a practical conclusion from our study. Care precaution should be taken
with the choice of the scales used in the estimation, as shown by the conditions on J0 and J1.
In particular, if only discrete observations are available, the best possible rate of convergence is
obtained for a much larger value of J0 than if continous observations are available. Too small
a value of J0 will induce an important bias for finite samples. Practitioners should be aware of
this restriction and be careful in the interpretation of the results. These questions will be tackled
numerically in a future work.

Appendix: Technical results

The following technical lemmas are proved in Faÿ et al. [4].

Lemma A.1. Let Assumption 1 hold. Let f be a bounded measurable compactly supported
function such that

∫
f (s)ds = 0. Define

f̃ (t, v,w) = w

∫ t+v

t

f (s)ds.

Then
∫ |f̃ (t, v,w)|p dt ν(dv, dw) < ∞, E[NS(f̃ )] = 0 and

∫ ∞
0 X(s)f (s)ds =

NS(f̃ 1R+×R+×R). If, moreover, E[η] < ∞, then NS(f̃ ) = ∫
XS(s)f (s)ds.

Lemma A.2. Let Assumption 1 hold with p∗ ≥ 4. Then, there exists a positive constant C > 0
such that

var

(
n−1∑
k=0

(dS
j,k)

2

)
≤ Cn

{
L2

2(2
j )2(4−2α)j + L4(2

j )2(3−α)j
}
.

Note that the first term dominates for α < 1 and the second dominates for α > 1.

Lemma A.3. Let Assumption 1 hold. Let f be a bounded measurable compactly supported
function such that

∫
f (s)ds = 0. Define

f̂ (t, v,w) = w

∫ ∞

−∞
gt,v(s)f (s)ds, f̌ (t, v,w) = w

∫ ∞

−∞
ht,v(s)f (s)ds.

Then, for p = 1, . . . , p∗,
∫ |f̂ (t, v,w)|p dt ν(dv, dw) < ∞,

∫ |f̌ (t, v,w)|p dt ν(dv, dw) < ∞,∫
Iφ[X](s)f (s)ds = NS(f̂ 1R+×R+×R), and E[NS(f̂ )] = E[NS(f̌ )] = 0. If, moreover, E[η] <

∞, then NS(f̂ ) = ∫
Iφ[XS](s)f (s)ds.
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Applying Lemma A.3, we can extend the definition of dSD
j,k in (3.10) to the case E[η] = ∞ by

dSD
j,k = NS(ψ̂j,k). (A.1)

Lemma A.4. (i) Let Assumption 1 hold with p∗ ≥ 1 and α ∈ (0,2). Then E[dSD
j,k ] = 0 for all

j ≥ 0 and k ∈ Z.
(ii) Let Assumption 1 hold with p∗ ≥ 2 and α ∈ (0,2). Then var(dS

j,k − dSD
j,k ) is bounded

uniformly for j ∈ N and k ∈ Z.
(iii) Let Assumption 1 hold with p∗ ≥ 2 and α ∈ (1,2). Then |var(dS

j,k)−var(dSD
j,k )| is bounded

uniformly for j ∈ N and k ∈ Z.

Lemma A.5. Let Assumption 1 hold with α ∈ (1,2) and p∗ ≥ 2. Then

sup
0≤j≤J

E|�j | = O(1); (A.2)

sup
n≥1,j≥0

n−1/2
E

[∣∣∣∣∣v−1
j

n−1∑
k=0

{(dS
j,k)

2 − d2
j,k}

∣∣∣∣∣
]

< ∞. (A.3)

Lemma A.6. Let Assumption 1 hold with α ∈ (0,2) and p∗ ≥ 4. If α ≤ 1/2, assume (4.4) and
(4.5).

Let J ∗ be a sequence depending on J such that lim supJ ∗/J < (1/α) ∧ (1/(2 − α)). Then,
there exists ε > 0 such that

sup
u∈S

∣∣∣∣∣
J ∗∑

j=J0+1

uj�j

∣∣∣∣∣ = OP (2−εJ ), (A.4)

where S is the set of sequences u = (u0, . . .) satisfying
∑

j∈N
|uj | ≤ 1.

Lemma A.7. Let Assumption 1 hold with p∗ ≥ 4 and α ∈ (1,2). Then, there exists a positive
constant C > 0 such that

var

(
n−1∑
k=0

(dSD
j,k )2

)
≤ CL4(2

j )n2(3−α)j . (A.5)

Lemma A.8. Let ρ be a positive real and ρ′ := (2ρ − 1)−1. Let �∗ be a non-increasing function
on [1,∞) such that lims→∞ �∗(s) = 0, and let � be a function on [1,∞) such that |�(s)| ≤ �∗(s)
for all s ∈ [1,∞). Define

L(x) = c exp

{∫ x

1

�(s)

s
ds

}
and ωj = 2−ρjL(2j )∑J1

j ′=J0+1 2−ρj ′
L(2j ′

)
.
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Then, as J0 → ∞ and for any ε > 0,

J1∑
j=J0+1

ωjj = J0 + 1 + ρ′(1 + O(�∗(2J0))
) + O

(
J1(2 − ε)J0−J1

)
, (A.6)

J1∑
j=J0+1

ωjj
2 = J 2

0 + 2J0(1 + ρ′) + 2ρ′2 + 3ρ′ + 1 + ρ′O(�∗(2J0))

+ O
(
J 2

1 (2 − ε)J0−J1
)
. (A.7)
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