L. MA
KODAI MATH. J.
41 (2018), 348-358

CONVEXITY AND THE DIRICHLET PROBLEM OF TRANSLATING
MEAN CURVATURE FLOWS

L1 Ma

Abstract

In this work, we propose a new evolving geometric flow (called translating mean
curvature flow) for the translating solitons of hypersurfaces in R"*!. We study the
basic properties, such as positivity preserving property, of the translating mean curva-
ture flow. The Dirichlet problem for the graphical translating mean curvature flow is
studied and the global existence of the flow and the convergence property are also
considered.

1. Introduction

In this note, we propose a new evolving flow (called translating mean cur-
vature flow) for the translating solitons of hypersurfaces in R"*!. This flow is
a modification of mean curvature flow with a translation by a fixed vector. We
study the basic properties of the translating mean curvature flow. The Dirichlet
problem for the graphical translating mean curvature flow is studied and the
global existence of the flow and the convergence property are also presented.
This work can be considered as a continuation of our paper [11]. For interesting
result about self similar solutions for the mean curvature flow in Riemannian
cone manifolds, we can see the paper of Futaki, Hattori, and Yamamoto [4].

We propose the translating mean curvature flow in the following way.
Given a fixed nonzero vector V' € R"*!. The translating mean curvature flow for
translating soliton is defined as a one parameter family of properly immersed
hypersurface M, = X(Z,1), where 0 <t < T and X : X x [0,T) — R"! evolved
by the evolution equation

(1) X,=HX)+VN >0
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where H(X) is the mean curvature vector of the hypersurface M, at the position
vector X and V'V is the normal component of the vector V. We denote V7 =
V — VN the tangential part of the vector V. Recall that for the outer unit
normal v:=v(-,f) on M,, the mean curvature is defined by H = div(v) and the
mean curvature vector is H = —Hv. Let (e¢;) be a local orthonormal frame
on M, Let a; = {D.e;,v) and let 4 = (a;) be the second fundamental form
on M,. Then H=—Y a; Define X=X —¢V. Then we have the mean cur-
vature flow

X, =HX), t>0

with the same initial hypersurface Xy up to diffeomorphisms on Xjy. Therefore,
many geometric properties such as convexity, mean convexity, are preserved by
the flows. However, the global behaviors of two flows X(7) and X(¢) are
different. Hence the flows (1) need to be considered independently.

Applying the maximum principle (and Hamilton’s tensor maximum princi-
ple) to derived evolution equations from (1) we obtain the following result.

THEOREM 1. Given a translating mean curvature flow M, with bounded second
Sfundamental form A, t€[0,T) with T > 0.

(D). (). If <V,v) =0 on the initial hypersurface My, then {V,v) >0 on
the hypersurface M, for any t>0. Similarly, assume that H >0 on the
initial hypersurface My. Then H >0 on the hypersurface M, for any t > 0.
(ii). Assume that A >0 on the initial hypersurface My. Then A >0 on the
hypersurface M; for any t > 0.

(2). Assume that for some constant f, H — KV, vy <0 on the initial hyper-
surface My and H — <V ,v) <0 at at least point in My. Then H — <V ,v) <0

on M, for t>0. <V »
3 ) If we assume A+ f——"g >0 at the initial hypersurface My and
A—i—ﬂ v>g>0 at least onepozntpeMo, we have A+ﬁ >g>0 on M,

for l>0.

To derive this result, we shall do computations as in [3]. As we have
pointed out above, the property (1) can be derived from the mean curvature
flow. For completeness, we give a full proof. Related Harnack inequalities
for translating mean curvature flow similar to results in [6] may be the
same.

One example for hypersurfaces with H — <{V,v) < 0 is the graph of the

A .
parabolic function u(x) = §|x|2, where xe R", n >2 with A=1 and V = —e,y

=(0,...0,—1). In this case, Du(x) =x, v=1/1+|x|*, v=(=x,1)/v,

<V, V> = —I/U,
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and

~Dx*) 1
—H = div ﬁi@——ML>>—

X 1(
S ) .
Vitx?) 1+ [x| v

One can compute that for 4 > 0 small we have H — {(V,v) > 0.

The Dirichlet problem for translating solitons on convex domain has been
studied by X. J. Wang (see Theorem 5.2 in [13] from the viewpoint of Monge-
Ampere equations). B. White [14] has given a geometric measure theory argu-
ment for the existence of minimizers of the weighted area

J e M d 4 (x)

amongst integral currents over the mean convex domain. Namely, letting W be
a bounded domain in R” with piecewise smooth mean convex boundary and
letting T" be a smooth closed (n — 1) manifold in 6/ x R that is a graph-like.
Then he has used the globally defined radially symmetric solitons y = ¢(x) as
barriers for the minimizing process of integral currents which lie in the region R
defined by

R={(x,»)e Wx R b<y<op(x)}

where b =inf{y;(x,y) e'}. We remark that his region R (in the proof of
Theorem 10 in [14]) may be replaced by the region

R={(x,y) e WxR; g(x) —C < y <p(x)}

for suitable constant C > 0. The choice of the lower barrier ¢(x) — C is nice in
the sense that it is a sub-solution to the mean curvature soliton equation. One
may get the minimizers by using BV functions. Our approach for the existence
of translating solitons with the Dirichlet boundary condition on convex domains
is the heat flow method. That is, we propose the translating mean curvature flow
to get the solitons as the limits. The uniqueness and convexity of the translating
solitons with convex boundary data ¢ remain as open questions.

The Dirichlet problem for the graphical mean curvature flow on mean
convex domains has been studied by G. Huisken [7] and Lieberman [10]. Their
results show that the Dirichlet problem of the graphical mean curvature flow
on mean convex domains has a global flow and it converges to a minimal surface
at time infinity. Their result can not been directly applied to the following
graphical translating mean curvature flow.

(2) 6,u:y11+|Du|2 dlU D‘\/___L _1, ln QX [0700)
1+ |Dul?

with the Dirichlet boundary condition

u=¢, on 0Q,t=>0
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and the initial condition
u(x,0) = up(x), xeQ.

Here we assume ©Q C R" is a bounded domain with C? boundary, ¢ € C>*(Q),
up e C>*(Q), and uy =¢ on 9Q. The flow (2) corresponds to the negative
gradient flow of the weighted area functional

F(u :J 1+ | Dul?e“™ dx.
(u) LV | Dul

If we let f =u+1 then f satisfies

D
o = \/1 + |Dul? div e , in Qx[0,00)

1 + |Dul?
with the Dirichlet boundary condition
f=¢+t, on dQ,t=>0
and the initial condition
f(x,0) =up(x), xeQ.

Observe that the boundary condition now depends on time variable and the
known result [7] can not be applied directly to it.
We have the following result.

THEOREM 2.  Assume Q C R" be a bounded convex domain with C 2 boundary.
Assume that ¢ € C»*(Q), up e C>*(Q), and uy = ¢ on 0Q. Then the Dirichlet
problem of (2) has a smooth solution and u(-,t) converges to the translating soliton
with boundary data ¢ as t — 0.

The plan of this note is below. In section 2 we discuss the positivity
preserving properties of the general translating mean curvature flow. In section
3 we consider the global existence of the Dirichlet problem of graphic mean
curvature flows on bounded convex domains in R”".

2. Positivity preserving property of the translating mean curvature flow

We shall use Hamilton’s tensor maximum principle as below (see [2] for full
statement and the proof).

ProprosSITION 3. Let (M,g(t)) be a one parameter family of complete
noncompact  Riemannian manifolds with bounded curvature. Suppose S =
Sii(x,t) dx'dx’ is a smooth time-dependent symmetric 2-tensor field such that

(5[ - Ag(,))S > VxS + B(S, Z)
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where B(S, 1) is locally Lipschitz in (S,t) and X = X (t) is a smooth time dependent
vector field on M. Assume that B satisfies the null-eigenvector assumption in the
sense that for some time-parallel vector field v and at some point x € M such that if
S>0and S(v,-) =0, then B(S,t)(v,v) > 0. Assume that S > 0 at the initial time
t=0. Then S =0 for all t > 0.

Proof of Theorem 1. Recall the following formulae for the flow X, = fv
with local coordinates (x;) on M,, we have for the evolving metric g; = {0y, X,
0y, X>, outer unit normal v, and the second fundamental form (a;), we have

019y = —2fay,
0y = =Vf,
and
01 = fij — Jaia;.-

We shall let f = <{V,v) — H, which is our translating mean curvature flow case.

Let (97) = (g7) "
We now use moving frames to compute formulae for the flow. As in [3]
and [8] we take (e;) to be the evolving frame on M, such that

1 . .
0 = Egjkazgijek = _fg/ka,'jek,

Then we have
0,9;5 = 0.
At a fixed point p € M; we may assume that <{e;¢;> =J; and V,e; =0. Then
0 A(ei, ) = fij + faiay.
Note that
VikV,v) =V, Devy = =V, e pai,
and at p,
ViViV, vy = =V expai,j — <V, Dyexyaiw = —aj; yr — <V, vyagay;.
Then we have
AV VY = VyrH — (V0|4
Since 0,{V,v) =<V, Vf>=—-Vyrf and f+ H =<V ,v), we get
(0 — AV vy = —Vyif = VyrH + <V, v)| A
= —V V) + Vv 4

That is,
(3) (0 — AV, vy = VeV, vy + <V, v)| 4]
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Recall the well-known formulae that
(A4),; = —|4|*ay — Hayay; — Hy.
Then we have
(0,4 — Ad)(er,e)) = (f + H)y + (f + H)away; + 4| ay,
which implies that for the normalized mean curvature flow,
(0,4 — AA)(ei,¢;) = —Vyray; + |4 ay,
that is,
(4) (0,4 —AA) = —Vyrd + |4 A.

Applying Hamilton’s tensor maximum principle above (see also Proposition 12.31
in [2]) we know that 4 >0 is preserved along the translating mean curvature
flow. Note that by taking the trace of (4), we have

(0, —A)H = =V H + |4|*H.

We can apply the scalar maximum principle to this equation and to (3) too.
This gives the property (1) in Theorem 1.
By these formulae for A, H, and {V,v) we obtain that

(0 = A)(A+ﬂ<Vv> >=—VVT(A+ﬁ<Vv> >+|A <A+ﬁ<VV> )

and
(00— A)(H — BV, vy) = =Vyr(H = BV, v)) + AP (H = BV, v)).
Define the operator
L=A—-Vyr+ |4 =L+ 4.

Then the above equations can be rewritten as

(@ — )<A+ﬂ<V 12 )—o

(0 = L)(B<V,vy — H) =0.

Applying the maximum principle (and Hamilton’s tensor maximum principle as
above) to above two equations, we complete the proof of Theorem 1. O

and

One immediate consequence is the following pinching estimate.

COROLLARY 4. Given a translating mean curvature flow M, with bounded
second fundamental form A, t € [0,T) with T > 0. Assume that for some uniform
constants f, and B,, [<V,v> < H < XV ,v) on the initial hypersurface M.
Then B, {V,vy < H < BXV,v)> on M, for t > 0.
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The proof is the same as (2) in Theorem 1.
As in [3] we have for any symmetric 2-tensor f and positive function 4 on
the manifold M,

(0 —L)|f]F <24/, (0 — L),
2
-uji] <2(f.6-vh),

DSV CE TR LN YORAN

and

h h? h

Then we have

/I /I
—L)|> 2( V|- 1
)'h < Vh ,Viogh
when we put
f= A+)<VV>
for any real number A and
h=pV,vy—H.
Let
A+2<V 2,
/3<V»V> H

By the maximum principle, we have the following.

Lemma 5. Let M; C R™' be a one parameter family of hypersurfaces
evolved by the translating mean curvature flow (1). Assume that p<V,vy — H
> 0 on the initial hypersurface for some constant f§, and |A| are bounded on each
M, Then

(9 = L)|B|* < 2<V|BJ,V log(B<V,v) — H)>, on M,.
We now point out the geometric meaning of the operator A — Vyr + |A|2 on
the hypersurface M. Define the operator
L=A—-Vyr+ |4
which is the Jacobian operator for the weighted volume

F(M) = J e ax.
M
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Then, F'=—-H—-VN=Hv— V", In fact, for X,=X'= fv and H' = 0,H,
we have

H'=—Af —|4]f

and

Then
(H =<V, v) = —Af = Al +<V. V> = L.
At the critical point of F where
H=V,v),

we have
F"=—J CfALf dm
M

where dm = e <V"*> dx.

3. The Dirichlet problem for the translating graphical mean
curvature flow

Recall that Q C R" is a bounded convex domain with C? boundary.
Note that the flow (2) corresponds to the negative gradient flow of the

weighted area functional
F(u) = J \/ 14 |Dul*e"™ dx.
Q

In fact,
D 1
OF (u)ou = fJ div| —ZL | — = | Sue™ dx,
Q 1+ |Du*) !
where v = /14 |Du|>. The functional F(u) corresponds to the functional F(M)
with V' = —e,,| in the previous section.
We point out a similarity between the translating mean curvature flow (2)

and the graphical mean curvature flow. Fix any 7y > 0. Define U =u — ¢y + ¢.
Then U satisfies the following

DU
(5) U =1\/1+ DU div| ———=1|, in Qx[0,0)
1+ |DUJ?
with the Dirichlet boundary condition
U=¢—to+t, on 0Q,t>0
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and the initial condition
U(x,0) = up(x) — 1, xeQ.
Define Q = \/1+ |[DU|*>. Then Q satisfies
(6) 8,0 = Di(a"D;Q) + Ha'D;Q — a"a" D;DyuD;Dyu - Q, in Q x (0,T)

where a' = Q7'D;U and a¥ = da’/0x;. We shall use (6) to get the uniform
gradient bound of u. We need to control supyn|Du| first. Because of the
equation (6) (being the same as the case of mean curvature flow) we believe the
result of Theorem 2 should also be true for mean convex domains. However, we
shall not discuss this in this note.

We now begin the proof of Theorem 2.

The existence of short time solution to (2) can be obtained by the standard
method. Let 7 > 0 be the maximal existence time of the solution u(x,?). We
claim that 7 = +4o00. To obtain this, we need to find a priori estimates for
supe|u| and supg|Dul.

Define

Du

\/ 1+ |Du?

Let w be the bowl soliton constructed by Altschuler-Wu [1]. Then we have

—\/1+|Dw|*Aw =1, in R".

Note that w satisfies (2). By adding to w some uniform constant C we may
assume w — C < —supq|ug| and w + C > supglug|. Using w + C as the barriers,
we obtain that

Au = —div

w—C<u<w+C, in Qx][0,T).

This gives us the uniform bound of supg|u|.
We now use the fact that the domain Q is convex. Recall that by the result
of J. Serrin [12] or applying Cor. 14.3 in [5] to the operator

Ou) = —(\/1 + |Dul?)* Au — (1 + |Dul?),

we can construct barriers 0, and J_ such that d4|,, = ¢,

—(y1+ D3, *)° 46, < 1+4|D5,|?, 6,2 ¢
—(\J14+|D5 )46 =14+|D5_|>, 6 <¢

in Q. We may also assume J_ < uy < J; (see [7]).
Applying the maximum principle to the evolution equation (2) we know that
0_<u<odyonQx|[0,7). Thus, we know that there is a uniform constant Cp

and
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depending only on 0Q, uy, and ¢ such that
|Du| < Cy, on 0Q x[0,T).

Applying the maximum principle to the equation (6) for Q, we obtain the
uniform bound for supg|Du|. Once these are done, we then get the existence
of the unique solution to the Dirichlet problem of (2) for all times 0 < ¢ < o
with the uniform gradient bound on supg|Du|. The standard parabolic equation
theory [9] guarantees uniform bounds of all higher derivatives of u. Since d,u =0

. 1
on 0Q, by the equation we have H +; =0 on 0Q and for dm := e" dx,

4= (-2 o
[t oo

Using the uniform bound about v, we can conclude that supg|du| and

Then

1 . .
supg |H + " converges to zero uniformly as t — oo. This completes the proof of

Theorem 2. O
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