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THE HESSIAN OF QUANTIZED DING FUNCTIONALS
AND ITS ASYMPTOTIC BEHAVIOR

RYOSUKE TAKAHASHI

Abstract

We compute the Hessian of quantized Ding functionals and give an elementary
proof for the convexity of quantized Ding functionals along Bergman geodesics from
the view point of projective geometry. We study also the asymptotic behavior of the
Hessian using the Berezin-Toeplitz quantization.

1. Introduction

Let X be an n-dimensional Fano manifold and k a large integer such that
—kKy is very ample. Let #(—Ky) be the space of smooth fiber metrics ¢ on
—Ky with positive curvature g := (v/—1/27)0d¢ and % the space of hermitian
forms on H°(X,—kKy). For a metric ¢ € #(—Ky), we denote the Monge-
Ampére volume form by

@y

and the canonical volume form by
2| 0
b (VD) A A —
e ?:=( ) 621/\ A&zn¢

This expression is readily verified to be independent of the local holomorphic
coordinates (zj,...,z,) and hence defines a volume form on X. We normalize
e~? to be a probability measure

2
dzyv A ANdzy AdZy N+ ANdE,.

py— 87¢
Ho = Jye?
The space #(—Ky) admits a natural Riemannian metric, called Mabuchi metric,
defined by the L’mnorm of a tangent vector fe C*(X,R) at ¢: |f|é =
Jx f2MA($).
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Recall that Ding functionals & on the space of infinite dimensional Rieman-
nian manifold J#(—Ky) is uniquely characterized (modulo an additive constant)
by the property

,U¢ _ n!
MA($)  (—=Kx)"

where V denotes the gradient and (—Ky)" is the top intersection number.
The Ding functionals are important in the study of Kéhler-Einstein metrics.
For instance, Donaldson [5] recently gave a “moment map” interpretation of
the Ding functional. More precisely, he showed that the ratio of volumes
ty/ MA(¢) —n!/(=Kx)" arises as the moment map for a suitable infinite dimen-
sional symplectic manifold and the Ding functional can be viewed as the Kempf-
Ness function. This interpretation provides us the direct link between the
existence problem of Kéhler-Einstein metrics and stability in Geometric Invariant
Theory.

On the other hand, quantization of the Ding functionals is also studied:
given ¢ € #(—Ky), we define a hermitian form Hilb,(¢) € %) by

2 2
51 2,0 = L SI2,MA(g).

Conversely, for a given H € %, we define a metric FS;(H) € #(—Kx) by

1 _ |s|?
FSi(H) :=— log| k™" sup .
() k ( seHO(x, —kky )\ {0y H (5, 5)

In what follows, we fix some Hy € %) and a reference Hy-ONB s := (s1,...,5,),
which defines an embedding 7, : X — CP™ ™!, where Ny :=dim H(X, —kKy).
For ge GL(Ni,C), let Hy,e %, be a hermitian form such that sp-¢g is an
H,-orthonormal basis. Then the map g — H, gives an isomorphism GL(Nj,C)/
U(Ny) ~ %y, and the tangent space of %, can be identified with \/—_lu(Nk).
Thus the space %, admits a natural Riemannian structure defined by the Killing
form tr(AB) (A, Be~/—1u(Ny)) at each tangent space.
Write M : CPV™! — \/—1u(N;) for the map:

[ Z:Z
M([Zla 7ZNk]) . <21|Zl|2>aﬁ

We define the center of mass M(g) by the formula

M(g) = JX(M © Y)UEs, (1,):
where we identify X with 1, (X) and the measure upg, 4, with its push forward
(150) Mg, (1,)- Quantized Ding functionals 2% on the space of finite dimensional
Riemannian manifold % is uniquely characterized (modulo an additive constant)
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by the property
k _
vl — i (M0 -1 )

There is also a finite dimensional moment-map picture for this setting: the space
of all bases 7K ~ GL(Ny) is equipped with a Kéhler structure induced from the
Berndtsson metric and U(N;) acts on Z*) isometrically with a moment map
which is essentially M(g) — Id/Nk. Critical points of the quantized Ding func-
tionals M (g) = 1d/Ny are called anti-canonically balanced metrics. There is a
strong connection between the existence problem of anti-canonically balanced
metrics and Kéhler-Einstein metrics (cf. [1, Theorem 7.1]).

In this paper, we study the Hessian of quantized Ding functionals and its
asymptotic behavior as raising exponent k — co. We first give a formula for the
Hessian of the quantized Ding functional V>%®):

THEOREM 1.1. The Hessian of the quantized Ding functional is computed
by

(k _ _
Vz@\(yl (4,B) = k! L Re(&4, Ep) pstirs, (my) — K : Jx H(A)H (B)ptgs, (1)

+k7 JX H(A)pgs, (my) - JX H(B)tgs, (1)

where &4 denotes the holomorphic vector filed on CPN<~! corresponding to A, and
H(A) is the Hamiltonian for the Killing vector JEX, (-..) g is the Fubini-Study
inner product on tangent vectors.

As a corollary, we will show the following:

CoROLLARY 1.1.  We have Vzg‘(zl(A,A) > 0 for any A € vV—1u(Ny), and the
equality holds if and only if A € Lie(Aut(X, —kKy)), where Aut(X,—kKy) denotes
the group of holomorphic automorphisms of the pair (X,—kKy), embedded into

GL(N,C) by means of the reference basis so.

Although Corollary 1.1 is a direct consequence of Berndtsson’s convexity
theorem [2, Theorem 2.4] (see also [1, Lemma 7.2]), our proof is completely
independent, based on the viewpoint of projective geometry, and somewhat
elementary.

Next, we fix a reference metric ¢, € #(—Kx) and set Hy := Hilbi(¢,). For
f e C*(X,R), we associate with the derivative of the Hilbert map in the direc-
tion f:

Or k 12% Hilbi($o — 1f ) =0 = (J (kf — A¢of)(szxa5/)’)k¢oMA(¢0)) )
e op
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where Ay denotes the (negative) d-Laplacian with respect to ¢,, and in the last
equality, we identified Qs with a hermitian matrix by means of the reference
basis so. With this operation, we can connect V2Z*) to V2% as follows:

THEOREM 1.2.  For any functions f,g € C*(X,R), we have the convergence of
the Hessian

(1.1) V298 (Or k. Qui) — V2D, (f . 9)

as k — oo. In particular, limy_, ., Vz,@‘(ll;l(Qf’k, Or.k) =0 implies that the condi-
tion characterizing degeneracy VZQW,O (f, f) =0 follows. Finally, the above conver-
gence is uniform when f, g vary in a subset of C*(X,R) which is compact for the
C®-topology. It is also uniform for ¢, as long as ¢, stays a compact set in the
C*-toplogy.

This is an analogue of Berndtsson’s result [2, Theorem 4.1], but quantiza-
tion schemes are different. Moreover, his argument is based on Hodge theory,
whereas an important technical tool we use in our proofs is Berezin-Toeplitz
quantization provided by Ma-Marinescu [8]. We should mention as well that
J. Fine [7] studied the quantization of the Lichnerowicz operator on general
polarized manifolds. Our method follows a strategy discovered by him.

Acknowledgements. The author would like to express his gratitude to his
advisor Professor Shigetoshi Bando for useful discussions on this article. This
research is supported by Grant-in-Aid for JSPS Fellows Number 16J01211.

2. Foundations

2.1. Functionals on the space of metrics. We have a quick review on
several functionals over the space of metrics #(—Ky) or %, which play a central
role in the study of Kéhler-Einstein metrics. The standard reference for this
section is [1]. We fix a reference metric ¢, € #(—Kyx). We define the Monge-
Ampére energy by

1 L . .
e DY KOS

i=1

and the Ding functional £ by

9= ~60)+ L), L) =—log| .
Let /4 be the Ricci potential of wy:

Hy
MA(¢)

hy :=log
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A direct computation implies that the derivative of & along a smooth curve ¢, in
H (—K X) is

d? n!

70 ==| Gi—1043) (W - e”<”r)MA(¢)

o bt~ [ g+ (] g

Hence the Hessian of Z is
21 Vo= | Re@ o | s [ sug| o

Remark 2.1. We find that the Hessian V?% is non-negative by the modified
Poincaré inequality on Fano manifolds (for instance, see [10, Corollary 2.1]).

Set Hy := Hilb;(¢,). we also define the quantized Monge-Ampére energy by

W (H) = log det(H - Hy' "),

_ b
kN

and the quantized Ding functional by
9V (H) := W (H) + (£ o FSy)(H).

2.2. Berezin-Toeplitz quantization. The key technical result that we use in
the proof of Theorem 1.2 is the asymptotic expansion of the Bergman function
and their generalizations. For ¢, € #(—Kx), the Bergman function p;(¢,) : X —
R is defined by

2
pi(do) == Z |Si|k¢0>

where (s;) is a Hilbi(¢y)-ONB of H°(X,—kKy). The central result for the
Bergman function concerns the large & asymptotic of p,(¢,), obtained by Bouche
[3], Catlin [4], Tian [9] and Zelditch [11]:

THEOREM 2.1.  We have the following asymptotic expansion of the Bergman
Sfunction:
Pe(do) = bok™ + b1k + byk" 2 4

where each coefficient b; can be written as a polynomial in the Riemannian
curvature Riem(wy,), their derivatives and contractions with respect to g, In
particular,
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where Sy, is the scalar curvature of wy,. The above expansion is uniform as long
as ¢, stays in a compact set in the C*-topology. More precisely, for any integer
p and [, there exists a constant C,; such that

—p—1
<prl-knp .

»
Pi(do) — Z bik"™!
i=0

C!
We can take the constant C, ; independently of ¢, as long as ¢, stays in a compact
set in the C*-topology.

Another important technical tool in our proofs is provided by the Berezin-
Toeplitz quantization [8]. For f e C*(X,R), the Berezin-Toeplitz operator Ty «
is a sequence of linear operators

Ty H'(X,—kKy) — H°(X,—kKy)

defined as two steps: first multiply a given section by f, then project to the
space of holomorphic sections using the L?-inner product Hilb(¢,). Using the
Hilb,(¢,)-ONB (s;), we obtain the explicit description of the kernel:

Bra(x.0) = 3 | SO 605)i0, 05(2) @ 52 (0MAG) ).
o, f X

If we restrict K/ 4 to the diagonal, we have

Krs) = Ra) = 35 | 1005090, 215510, () A ) 2.

% f

THEOREM 2.2 ([8]). We have the following asymptotic expansion:
Pi($o) = by ok" + by k" 4

Sfor smooth functions by ;. Moreover, there are the following formula for co-
efficients:

bro=1,
1
bfsl = §S¢of+ A¢0f'
The expansion is uniform in f varying in a subset of C*(X,R) which is compact
for the C*-topology. It is also uniform for ¢, as long as ¢, stays a compact set

in the C*-toplogy.

For f,ge C*(X,R), we also use the kernel of the composition Ty ;o T i:

Rroy(v.) = | K. 20Kl ) MA()2),
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Restricting the diagonal, we obtain a function

Ky g.k(x) == i{fﬁg,k(xa x)

“#VJXXX F(3)g(z)(s Sﬂ)k¢0(y)(sﬂ7 Sy)k¢0 (2)(sy, Sa)k%(x)

X MA(¢y)(y) A MA()(2).

THEOREM 2.3 ([8]). We have the following asymptotic expansion:
Pi(do) = by g ok + by g k"™ 4

Sfor smooth functions by, ;. Moreover, there are the following formula for
coefficients:

bf,g,O :fga
1 ) Lo
brpo =5Sul” + 2/ A f +31df 5,

The expansion is uniform in f, g varying in a subset of C*(X,R) which is compact
for the C*-topology. It is also uniform for ¢, as long as ¢, stays a compact set in
the C®-toplogy.

3. Proof of the main theorem

3.1. The second variation formula for %¥). Before going to the proof,
we define some notations that we will use later. For a hermitian matrix 4 =
(A4; ;) € V—1u(Ny), we write &, for the corresponding holomorphic vector field

. 0 . S
on CPY! je., the push forward of > ;A jZ,-7 via the standard projection

CcV\{0} — CcPM ! We set 0Z;
H(A) :=tr(AM),
then H(A) is a real-valued smooth function satisfying

. v —1-=
lg s = —27[ (7H(A),

where wps € ¢;(0(1)) denotes the Fubini-Study metric. Moreover, if we decom-
pose &, = &8 —/—1JER we find that H(A) is the Hamiltonian for J&X:

. 1
ljgv:‘{wps = 7@ dH(A)

For 4 e +v—1u(Ny), let Hy, be the corresponding Bergman geodesic, i.e., the
family of hermitian forms corresponding to the one-parameter flow g(z) := e(1/2)4,
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LeMMA 3.1. The function &% is affine along Bergman geodesics, i.e., we
have

d 1
() =
a’ " How) = g ()

Proof.  Set s\ = (SY), . ,s](\ﬁi) = s0-¢g(t). Since (Hyq(si,57)) = ’g(t)fz, the
direct computation shows that

1 1 d
™ (Hy) = “ N tf((Hg(t)(Si,Sj)) IE(Hg(I)(Si,Sj))>

—1 _1
=—kimu(g<z>2-(dg§;3 POREPURNLL ))

| 1 1

LemMa 3.2. (1) we have

%g(FSk(Hq(t))) =k~ M(g(1)).

(2) The second variation formula for & o FSy is

d2

a2 L (FSk(H, ()))|z:0 =k JX €4 \ersﬂFSk(Ho) -k JX H(A)zﬂFsk(Ho)

2
+k? (JX H(A)ﬂFSk(HO)) .

Proof. (1) Direct computation shows that

-1
%f(FSk(Ho)) = —(J el W) J (—%FS;((H“)) e~ FSi(Hyw)
X X

d
_J 5 FSk(Hoy) gs, 1,

and

d 1
(3.1) T FSK(Hy) =k~ ZI 2dtZ|

=k M tr(Mog(r) - A).
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Thus we have

%X(Fsk(Hg(t))) =k J tr((M o g(1)) - A)/‘FSA»(HM)

(2) We compute

d? _ d
G LSt = e o0 ), gt

B d
k| ) =0,
Since
d
(M 0 g(0) - A), o = w(dM(ER) - 4)

= —dnwps(JER, ER)

= [¢lzs,
the first term is
- 2
(3.2) k IJX|5A|FS/1FS,((H0)'

On the other hand, using H(A4) =tr(AM) and (3.1), we have
d d
%ﬂFSk(HO)‘Z =0= P %FS]\’(HQ(U)\I:O/‘FS,((HO) * HFs, (Hy)

d
- %FSk(Hg(Z))lt:O " HFS, (Ho)

=k (JX H(A)tps, (1) — H(A)>ﬂFSk(H0)'

Hence the second term is

2
(3.3) —k? L{ H(A)zﬂFSk(Ho) +k? (J H(A)ﬂFsk(Ho)> :

X

Combining (3.2) and (3.3) gives our conclusion. O

When we take into account that the Hessian V?%2®) is a symmetric bilinear
form, we can easily get Theorem 1.1 from Lemma 3.1 and Lemma 3.2.

Proof of Corollary 1.1. For A e+/—1u(Ny), let &) be the component of
&4]y which is tangent to X and fj the component which is perpendicular to X
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with respect to the Fubini-Study metric. Then we have

: vV—=l-

Ie1 OFS; (Hy) = 75(/‘ 'H(4))
on X. It follows that k~'|&}|7s = €)1 Fs, s = & 210H (A)|fs, s, Combining
with the formula |&,|7g = |€] |7 + [¢ 5|7, We have

- (k — _
V29 (4, 4) = kY2 D s, 1) (H(A), H(A)) + k! JX &4 Rshtrs, ()

= k71 JX |éj|%SﬂFSk(HO) (by Remark 21)
> 0.

Now we assume that VZQ(Q)(A,A) =0, then we have ¢; =0, and hence 4 €

Lie(Aut(X,—kKy)) as desired. Conversely, the conditiion A € Lie(Aut(X,
—kKy)) implies that fj =0 and fAT is holomorphic. Differentiating the equation

. 1 .= . .
Ric(wrs, (1,)) — @Fs, (Hy) :ﬁaahpsk(ﬂo) with respect to ¢}, we obtain

_AFS/C(H())H(A) - (ahFS/\»(Ho), aH(A))FS/C(Ho) - H(A) + JX H(A):uFSk(H(O =0.

Multiplying H(A) and integrating by parts, we obtain VZQ‘ Fsu(Ho) (H(A), H(A)) =
0. Therefore, we have Vza@fg)(A,A) = 0. O

3.2. Asymptotic of the Hessian V22¥), Our starting point is the following:

LemMma 3.3 ([6], Lemma 18). For any Hermitian matrices A, B € vV/—1u(Ny),
we have

H(A)H(B) + (S4,¢p)ps = tr(ABM).
By Lemma 3.3, we have

k _
V%) (4,B) =k IJ

B Re(tr(ABM))ugs, my) — k(1 + kil)J H(A)H (B)ptps, (1)

X
+k72 L H(A)pps, (1) * Jx H(B)ups, 1)

For given functions f,ge C*(X,R), we set 4 := O, B:= Oy and compute
the asymptotic of szz‘(fll(Qﬁk, QOyx) as k — co. However, in the course of the
proof, we find that Vzgle(Q/"k7 Q,.x) has an asymptotic expansion whose co-

efficients are also symmetric and bilinear with respect to f and g. Hence it
follows that we may assume f =g to prove Theorem 1.2. We set
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-1 2
A] Z:k JX tr(QfﬁkM),ufk(%),

Ay =~k 1+ k7Y JX H(Qr.0) 4,

2
Ay = k2 <JX H(Qf,k)m(qso)) :

and we will compute these terms separately, where 7 := FSj o Hilb;. The
following arguments are based on [7, Section 2].

LemmA 3.4, The volume form e~ 7%) has the asymptotic expansion
e k) = (1 4+ 0(k™2))e .
Proof.  Since Ti(dy) = ¢ + k' log(k~"p(dy)), we have

e ) = (k~"pe(go)) e
= (14 0(k™?))e?,

where we used the asymptotic expansion of pi(¢,) in the last equality
(cf. Theorem 2.1). O

LemMA 3.5. The term A, has an asymptotic expansion
Al = JX fzﬂ% -k —+ JX |af|i0/l¢0 + O(kil)

Proof. We can write M|  as
(Savsﬁ)k%
M, ={—0"5") -
pk(¢0) of

A = k_l Z er/fQ/f;'Myw
B,y

It follows that

where

w=LWF%ﬂWW%MW@

(Syasa)kqﬁ
M :J ———— Y U (4
" )y pelgo) TR
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By Theorem 2.1 and Lemma 3.4, we have
e~ k(%) _ 1+ 0(k™?%) oty
Pie(dg)  bok" + bik"—1 + O(k"—2)
= (k™" = bk 4 O(k™"2))e .

It follows that

—1 —-7
A = k! <J eﬂ(%)) J Kkﬂ
X X Pi(o)
-1
= k! ((J e%) + 0(k2)> J Ki(k™ = bk 4 O(k™"2))e %,
X X

where we put Kj := ka,% Tk =By f k- Although Theorem 2.3 valid for func-
tions f,g € C*(X,R) which are independent of k, we can still apply Theorem 2.3
to get an expansion of Kj since the function kf — Ay f depends linearly on k.
Hence we obtain

Kic = by, 1.0k™ 2 + (=by.a, 1.0 = bay, 1.7.0 + by )K" + O(K™)
= 2k + (=2f Ay, [ + by r )K" 4+ O(K™).

This gives that
Ay = J Fug, -k + J (=2 Dy, f + by = br.po0- by, + OK™")
X X
= | P,k [ 1o, + 0u), .

Lemma 3.6. There is the following expansion:
H(Qrx) = fk+ O(k™).

Proof. We write H(Qr «) as

1

e MAR)

H@mmzzjw>%nwmmmwmmm
o, ff X

1
=———Kir 5, .k
pi(o) () AT

By Theorem 2.2, we know that Kjis_a, s,k has an expansion

Kig—ng 1. = by ok™ + (=bay, 1,0 +br)k" + o(k™h).
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Combining with Theorem 2.1, we have
H(Qs k) = by .ok + (=bay .0 + by — by - byo) + O(k™)
= fk+O(k™). O

Lemma 3.7. The term Ay has an asymptotic expansion
A== | P | P+ 00,
X X
Proof. By Lemma 3.4 and Lemma 3.6, we have

Ay =—k Y1 +k™ (J e'm‘ﬁo))l ) J H(Q/._k)Zef-Wfo)
X K X
S ((Jx¢) ’ O(k2)> | 2+ o)1 + 0yt

== | P k| P00, 0
b X
LemMMa 3.8. The term Az has an asymptotic expansion
2
A3 = (ij'u¢0) + Ok

Proof. By Lemma 3.4 and Lemma 3.6, we have
-1
J H(Qr. 1)1z, 4,) = ((J €¢°) + 0(k2)> J (fk + O(k™")(1 + O(k?))e "
X b b

= JX fuy, - k+OK™).
It follows that

Ay = (L f,u¢0>2 +Oo(k). O

Proof of Theorem 1.2. Combining Lemma 3.5, Lemma 3.7 and Lemma 3.8,
we have

V2% (Qr ks Or k) = A1 + Ay + A

2
= J |5f|;‘,ﬂ¢0 —J f2ﬂ¢0 + (J fﬂ¢0> +O0(k™)
X X X
=V, (f. /) + Ok ™).
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Finally, the uniformity of convergence follows from the analogous uniformity of
Theorem 2.1, Theorem 2.2 and Theorem 2.3. O
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