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A NON-INTEGRATED HYPERSURFACE DEFECT RELATION FOR
MEROMORPHIC MAPS OVER COMPLETE KAHLER MANIFOLDS
INTO PROJECTIVE ALGEBRAIC VARIETIES
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Abstract

In this paper, a non-integrated defect relation for meromorphic maps from complete
Kéhler manifolds M into smooth projective algebraic varieties V' intersecting hyper-
surfaces located in k-subgeneral position (see (1.5) below) is proved. The novelty of this
result lies in that both the upper bound and the truncation level of our defect relation
depend only on &, dim¢ (V) and the degrees of the hypersurfaces considered; besides, this
defect relation recovers Hirotaka Fujimoto [6, Theorem 1.1] when subjected to the same
conditions.

1. Introduction

Fujimoto [4, 5, 6, 8] introduced the innovative notion of non-integrated, or
modified, defect for meromorphic maps over a complex Kéhler manifold into the
complex projective space. Recent extensions and generalizations may be found
in Ru and Sogome [17] as well as Tan and Truong [19]. Below we will replicate
the essential elements in this aspect from those references.

Denote M an m-dimensional Kdhler manifold with Kéhler form o =

V-1 _ . . ¢ . R .
TZ’V hizdzindZ;. Write Ric o = dd* log(det(h;;)) with d =0+ 0 and d° =

V—1 -
?(6—6). Let f: M — P"(C) be a meromorphic map, and let D be a

hypersurface in P"(C) of degree d with f(M) Z D. Take vlf) to be the inter-
section divisor generated through f and D, and take u, > 0 to be an integer.
Denote A(D, 1,) the family of constants # > 0 such that there exists a bounded,
nonnegative, continuous function h on M, with zeros of order no less than

min{vl’; Mo}, satisfying
(1.1) dnQy + dd* log h? > [min{v}, uo}].
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Here, € denotes the pull-back of the normalized Fubini-Study metric form on

P"(C), and [v] denotes the (1,1)-current associated with the divisor v > 0.
Note condition (1.1) says that for each nonzero holomorphic function

on an open set U of M with vg :min{v-l’;, lo} outside an analytic subset of

2d,
i

codimension at least 2, the function v := log |lP|2

) is continuous and pluri-

subharmonic, where [[f||* = Y27, |f|*> for a (local) reduced representation f=
(Fo fryoo i) : M — €™ of f=Tf -1,

The non-integrated defect of f regarding D, truncated at level y,, is defined
as
(1.2) /(D) =1—inf{n=>0:neAD,u,)}.

Ho

Then, like Nevanlinna’s or Stoll’s classical defects, 0 36;:0 +l

(D) <o/ (D) <1,

<, <
(5;;0(D) =1 if f(M)nD=40, and (5/{0(D) >1 —% for any integer u > u, if
vh—u =0 on f~1(D).

Further, we say f : M — P"(C) satisfies the “condition C(p)” provided for

some constant p > 0, there is a bounded, nonnegative, continuous function h on
M such that

(1.3) pQy + dd* log h* > Ric o.

Now, the original result of Fujimoto [6, Theorem 1.1] can be stated as
follows.

THEOREM 1.1.  Assume M is an m-dimensional complete Kdihler manifold such
that the universal covering of M is biholomorphically isomorphic to a ball in C™.
Let f: M — P"(C) be a linearly non-degenerate meromorphic map such that the
condition C(p) is satisfied, and let H\,H,,...,H, be q(=n+ 1) hyperplanes in
P"(C) that are located in general position. Then, one has the following defect
relation

(1.4) Xq:a;{'(Hj) <n+1+pnn+1).
Jj=1

Ru and Sogome [17] (see also Yan [20]), and Tan and Truong [19] gener-
alized independently the preceding Theorem 1.1 in the way that P"(C) is replaced
by a projective algebraic variety ¥ C P"(C) and hyperplanes in P"(C) located in
general position are extended to hypersurfaces in PY(C) located in different types
of k-subgeneral positions. One recalls that the k-subgeneral position condition
used in [19] comes from Dethloff, Tan and Thai [3, Definition 1.1].

It is noteworthy that both the upper bounds and the truncation levels of the
defect relations obtained in [17, Theorem 1.1], [19, Definition 1.1 and Theorem
1.2] and [20, Definition 1.2 and Theorem 1.1] depend on a given constant ¢ > 0,
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and both blow up to +00 as ¢ — 0. Also, it’s not clear to us if those results can
recover Theorem 1.1 under the same assumptions.

In the sequel, assume that ¥ C PY(C) is a smooth projective algebraic
variety of dimension n(< N). ¢(> k) hypersurfaces Dy, D, ..., D, in P (C) are
said to be located in k-subgeneral position (k > n) with respect to V' provided for
every 1 < jo<ji<---<jik<q,

k
(1.5) <ﬂ supp(DA)) ny=0.
s=0

Here, supp(D) is the support of the divisor D. One says Dy, D,,...,D, are in
general position with respect to V', if they are located in n-subgeneral position
with respect to V.

The purpose of this paper is by combining the techniques used in [19] and
[20] to describe a hypersurface defect relation, with definite truncation level and
explicit upper bound, that will be exactly Fujimoto’s original Theorem 1.1 when
d=1,k=n=N and V =P"(C).

Fix an integer d > 1. Write H, the vector space of homogeneous poly-
nomials of degree d in C[wg, wy,...,wy]| and Z) the prime ideal in C[wo, wy, ...,
wy| defining V. Denote

. Ha
Hy(d):=d —
v(d) Imc (Hd A IV)
to be the Hilbert function of V. Recall Hy(d) =n+1 when d =1, n =N and
V =P"(C).
Finally, we can formulate our main theorem of this paper as the following
result.

THEOREM 1.2.  Assume M is an m-dimensional complete Kdihler manifold such
that the universal covering of M is biholomorphically isomorphic to a ball in C™,
and assume V C PN(C) is an irreducible projective algebraic variety of dimension
n(<N). Let f: M — V be an algebraically non-degenerate meromorphic map
such that the condition C(p) is satisfied, and let Dy,D>,...,D, be q(>k+1)
hypersurfaces in PY (C) that are located in k-subgeneral position (k > n) regarding
V' and have degrees di,ds,...,d,; respectively. Denote by d the least common
multiple of dy,dy,...,d,. Then, one has the following defect relation

2k —n+1
<7

q
s _
(1.6) ;5,,},([1)_1 (D)) < = I

p
{vta) + 2 i@ - v}

It is worthwhile to mention when d =1, k=n=N and V = P"(C), The-

.. . d+ N
orem 1.2 recovers exactly Fujimoto’s initial work. As Hy(d) < ( 4];] ), the

! As far as we can check, this condition (1.5) appeared first in Chen, Ru and Yan [2].
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truncation level in Theorem 1.2 is smaller than that in [19, Theorem 1.2] and also
better than those in [17, 20], yet the upper bound in (1.6) might be larger than
those in [17, 19, 20] (depending on their &).

2. Preliminaries

In this auxiliary section, we describe some basic notations and necessary
results that are used afterwards throughout this paper.

Denote [|z]|> =" |z|> for z=(z1,2,...,2s) €C". Write B(r) =
{zeC™:|z| <r} and S(r) = {ze C™: ||z|| = r} for re (0, ), and B(oo) = C™.
Define

v, = (dd®||z||*)’ for y=1,2,...,m on C", and
om = d log||z||* A (dd€ log||z||*)"™" on C™\{0}.

Suppose f: B(Ry) — P"(C) is a meromorphic map with 0 < Ry < co.
Choose holomorphic functions fo,fi,...,f, with = (fo,fi,...,f,) : B(Ro)\lf —
C"™! a reduced representation of f. Notice the singularity set I, := {z € B(Ry) :
fo(z) =fi(z) =--- =1,(z) =0} of f is of dimension at most m —2. Fix this
reduced representation f of f. Then, Q; = dd* log||f 2 will be the pull-back of
the normalized Fubini-Study metric form on P"(C) through f.

Given ry € (0, Ry), the characteristic function of f for re (ro,Ry) is defined

as

"odt
(21) Tf(r, }"O) = J 1‘2’"—*1J !lf/\l)m,17
ro B(l)

which can also be written as

22) 1y.r0) = [ toglilan— | 1ol
S(r) S(ro)

(r

For a holomorphic function y on an open subset U of C" and «=

(21,00, ..., %) € ZZ,, an m-tuple of nonnegative integers, set [« := Y°"", o, and

D>y := D{"D3*---D}mj where D zg—w for y=1,2,...,m. Define vl?/ U —
z

7
Z-, by vg(z) :=max{x : D*Y(z) = 0} for all possible o« € ZZ; with |« <x, and
write supp(v)) = {z € U : v)(z) > 0}.

For a meromorphic function ¢ on U, there exist two coprime holomorphic

4 0

functions ,, ¥, on U with ¢ = v such that v;* := vy and supp(v,’) := supp(v‘?,z).

Take u, > 0 an integer or co. For a meromorphic map f : B(Ry) — P"(C)
with a reduced representation | and a hypersurface D in P"(C) of degree d with
Q its defining homogeneous polynomial, let vlf) = vOQm be the intersection divisor
associated with f and D on B(Ro)\lr. The valence function of f regarding D,
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with truncation level g, is defined to be

(2.3) Nf/_‘o(,,? ro; D) = Jr I’l}”(;; D) d,
ro
where
L_J min{vg,,uo}um,l when m > 2,
I’l;-lo(l; D) = r2m=2 supp(v]))NB(7)
Z”:”qmin{v]ﬁ(zxuo} when m = 1.

The first main theorem says N/°(r,ro; D) < dTy(r,ro) + O(1) (see [9, 10]).
Let 5[0(D) be Nevanlinna’s defect or its high dimensional extension by Stoll that
is defined as

. N (r,ro; D)
6/ (D) =1 —limsup ———
IuO( ) i'HR()p de(r7 r())
When lim,_.g, Ty(r,r0) = o0, then [6, Proposition 5.6] or [17, Proposition 2.1]
yield
(2.4) 0 <) (D) <é] (D)< 1.

Below, we recall two results of An, Quang and Thai [1, 16]. The first one is
an extension to hypersurfaces of the celebrated Nochka weights [13, 14] con-
cerning hyperplanes.

ProposiTiION 2.1 ([1, Lemma 3.3] or [16, Lemma 3]). Assume that V C
PY(C) is an irreducible projective algebraic variety of dimension n (n < N). Let
D\,Ds,...,D, be q>2k—n+1 (k=n) hypersurfaces in P"(C) of common
degree d that are located in k-subgeneral position with respect to V. Then,
there exist q rational numbers 0 < wi,ws,...,w, <1 such that

(a.) for @ :=max;c(12,.. 410;}, one has
2;1:1601'_”_1 n+1

n
2. <= - <w< -2
(2.5) w; <w 7 ] and P [ <@

.\ 1(b.) Jor each subset R of {1,2,....q} with #R =k + 1, one has 3_; p w; <
n 5

(c.) for q arbitrarily given constants Ei,E, ..., E, > 1 and each set R as in
(b.), there exists a subset T of R with #T = rank{Q;}; .+ =n+ 1 satisfying

(26) 115" <115

JER jeT

2Note this upper bound in the second estimate of (2.5) was discovered by Toda [15].
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where Q; is the defining homogeneous polynomial of D; in PY(C) for j=1,
2,...,4.

Lemma 2.2 ([1, Lemma 4.2] or [16, Lemma 5]). Under the same assump-
tions of Proposition 2.1, for each subset T C {1,2,...,q} with #T = rank{Qj}jET
=n—+1, there are Hy(d) —n—1 hypersurfaces D, D3, ..., Dy, , | in PY(C)
such that

Hy (d)—n—1
rank{{Q;};r U{Q/ 1"} = Hy(d).
Here, Q; and Q;} are the homogeneous polynomials defining D; and D} respectively.

3. Proof of Theorem 1.2

First, it’s interesting to notice the following consequence of our Theorem
1.2.

THEOREM 3.1. Suppose M is an m-dimensional complete Kdihler manifold
such that the universal covering of M is biholomorphically isomorphic to a ball
in C". Let f: M — PN (C) be a meromorphic map that satisfies the condition
C(p) whose image spans a linear subspace of dimension n, not contained in any
of Hi,H>,...,H,, where H\,H,,...,H, are q hyperplanes in PY(C) located in
general position. Then, one has the following defect relation

q
(3.1) Z H) <2N —n+1+pn@2N —n+1).

This is a Cartan-Nochka type result. For the classical defect relation, the
associated second main theorem was originally suggested by Cartan and proved
by Nochka; for that with truncation, the associated second main theorem was
initially shown by Fujimoto [8, Theorem 3.2.12] and refined by Noguchi [15
Theorem 3.1] with a better estimate about error terms.

For each j =1,2,...,q, set Q; to be the homogeneous polynomial of degree
d; defining D; in PY(C); replacing Q; by Q /4 when necessary, we may assume
01,0,...,0, € Hq, where from now on we use d to represent the least common

multiple of dy,d,...,d,.
Now, we will proceed to prove Theorem 1.2 by considering two situations

T, , Ty (r,

I R I
- 1
Ro—l” 8 Ro—l”

(3.2) lim sup

r—Ry

log

when the universal covering of M is b1holomorphlc to a finite ball B(Ry) in C".
Let 7: M — M be the universal covermg of M. Then, fon:M—V
is again algebraically non-degenerate since f: M — V is algebraically non-
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degenerate; also, one has 5'1/;V(d)71(Dj) < 6{1‘7@)71(@). Hence, by lifting f to the
covering, we fix M = B(1) subsequently.
Consider first the former case in (3.2) that is more important.

Assume {= (fo,fi,...,fy) and Q; = Zﬂejda,/;w where .#; is the set of
(O + 1)-tuples = (Bo.fr-. fy) € ZI5" with 1B =3 %4 =d and wh:
wﬁ‘)wf why. For every j=1,2,...,q, motice [Q;(N)|=>pcy ajsf’|

(Ypes eslagl) 71l so that

IA H

q
(3.3) 00 < with 0= oglajs| > 0.
J=1 Bedy
Fix a basis {¢, b5, ..., p, @)} € Ha of H I Because f is algebraically

non-degenerate, F := [§\(f) : ¢(T) : - : by (D] : M — P @=1(C) is linearly
non-degenerate. In view of [6, Proposmon 4 5] there exist Hy(d) m-tuples o =
(af b, ... 0l) € Z7 with

m Hy(d)
H H -1

(3.4) |o!| = Zall </ and Z /] < r(d)( ZV(d) >,

=1 =1
such that the Wronskian W, _u.«(F) of F is not identically zero on M,
where

ol &
(35) Wor.qv (F) = det(D ¢/(T))lgl,/gﬂy(d)'
For any subset 7 C {1,2,...,q} with #7 = rank{Q;},. T—n+1 use the

hypersurfaces in Lemma 2.2 to define Fr := [{Q,(')}/GT Or(M) - Qryayn (]

(by abuse of notations). Then, there is a constant CT ;é 0 such that
W“I,,,xy,/(d) (FT> CTW 1...qHy(d) (F)

Fix we V' N f(M). Abusing the notation, w = cw for some w e C¥*1\{0}
and all complex numbers ¢ #0. Pick a subset R of {1,2,...,9} with
#R =k+1 such that |Q;(w)| < |Qi(w)] when jeR and se {1,2,...,q}\R;

using the k-subgeneral position hypothesis (1.5) and the continuity of

10s(w)?

(|w0\2 + |wl\2 + o+ |wN|2)

(3.6) PylliCz)! < L)

se{l, 2,..4,q

-, there exists a constant yy > 0 such that

for all ze f~!(Y)\l;, where Y is an appropriate open neighborhood of w

in V.
el

loME)l T
Parts (b.)&(c.) yields a subset 7 of R with #7 =n+ 1 such that the estimate
(2.6) holds. Noting (3.3), (3.6) and the estimate concerning these E; for R, 7,
one observes that

Take such a z and set E; : > 1 for j e R; then, Proposition 2.1—
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I W gmio D] 7y ( i Wy (F)2))
0 DE 12N~ AR \IaME)]

@I VW (F)(2)]
[Ter 10D ()]

[ W (Fr)E)]

[er IO 0 (1) ()]

Here, and hereafter, K > 0 represents an absolute constant whose value may
change from line to line but (in general) can be interpreted appropriately within
the context.
For simplicity, put
WldeF W]”,Hd)F
0= w( )qu) and  R(Fr) = ; aHV:/(d()flif)l (R
1 (f) q (M) HjeT Q./(T) Hi:l 0 ()

Considering the compactness of V, we have

Zse(l, 2, g\RPs

QZjeRw/yY

gl

<K

(3.7) (=) “ER T D (o)) < K3 IN(Fr)(z)| Vze M\l
R, T

Here, the summation is taken over all the subsets 7 C R C {1,2,...,¢} with
#R =k+1 and #7 =n—+1. Since ¢, k, n are all finite, there can only be
finitely many possibilities.

On the other hand, one may observe that

q
(3.8) v, < ij min{vgj,HV(d) -1}
=1

outside an analytic subset of codimension at least 2. As a matter of fact, when
{ e M\l is a zero of some Q;(f), it can be a zero of no more than k + 1 functions
0;(f) by (1.5). Assume Q;(f) vanishes at { for je R C {l,2,...,q} with #R =
k+ 1 yet Q,(f)(¢) #0 for se {1,2,...,¢}\R. By virtue of Proposition 2.1—Part
(c.), putting E; := exp(max{vlf;j () — Hy(d) +1,0}) > 1 for jeR, there exists a
subset 7 of R with #7 = rank{Q;}; 7 =n+1 such that

> oy max{v) (0) = Hy(d) +1,0} < > max{v}, () = Hy(d) + 1,0},
jeR jeT

from which it follows that, in view of Y =0
0 ch 1t follows that, ew o Wi @ (F) Wi upa (Fz)

Yoy max{vy () = Hy(d) + 1,0y <y ) (0).
je’f@
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This estimate clearly leads to (3.8) upon verifying the following computations
at (

q
o0 f 0
<D opp, - =
= .lw]va YW i (F a)ij/ V 1ty (F)
J:

W
jeR

=Y oj(min{vy, Hy(d) — 1} +max{vy — Hy(d) + 1,0}) = vy )
je7~2

q
< ij min{vl];f,HV(d) -1} < ij min{vl];/,HV(d) -1}
JjeR » Jj=1
Next, we suppose that

(3.9) Zw, ) < Hy(d) +ZHV(d)(HV(d) —1).

When (3.9) is true, then by (1.2) and the first relation in (2.5), it yields that

i;ijj >w(q—2k+n— 1>+7’l+1 _HV(d)_SHV(d)(HV(d) -1
)

for all nonnegative constants 7; € A(D;, Hy(d) — 1); that is,

Swza-2kn-t4 Lt m@ L@ - ).

J=1

This further implies that

1 1
Z(l —n;) <2k—-n+1 +;{Hy(d) —n—1 +§Hy(d)(HV(d) - 1)},
j=1
which, along with the lower bound in the second estimate of (2.5), leads to (1.6).
In the sequel, we show by contradiction the validity of (3.9).
Suppose it doesn’t hold. Then, by definition of non-integrated defect,
there are nonnegative constants 7; € A(D;, Hy(d) — 1) and continuous, pluri-

subharmonic functions U; # —oo, for every j=1,2,...,¢, such that eﬁf|¢j| < ||I||d’7’
and
! p
(3.10) > (=) >HV(d)+gHV(d)(HV(d)*1)-
j=1

Here, y; is a nonzero holomorphic function that satisfies vd/ = mln{vD JHy(d) —
1}. Deﬁne u; :=U; + log|yy;| # —oo that is continuous and pluri-subharmonic,
and satisfies % < |||V, So, for 9(z) := log|z"p(z)| + 2L u(z) with a:
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Zq(d) a! € 2, seeing the preceding analyses and (3.8), one clearly deduces that

91 is pluri-subharmonic on M.

Note we assumed the condition C(p) satisfied; that is, (1.3) holds. By [6,
p252, Remark], there exists a continuous, pluri-subharmonic function 9, # —oo
such that e® dV < ||f » vn. Here, and henceforth, we use dV to denote the
canonical volume form on M.

2p .
Set 1y := — > 0 and write 0 := 3, + 1p9;. Then, 0
d{>>L (1 = 7;)w; — Hy(d)}
is pluri-subharmonic and thus a subharmonic function on M = B(1). In addi-
tion, one has

e dV = "% gy < " [ v,y = |2%0| e LM ||§]| %0,

) ||f|| todzjqzlw,ﬁl+2p I0) Hf” Iod{z;lzleny(d)}

< |Za¢| Um = |Za(ﬂ| U

By (3.4) and (3.10), we easily get #y( ,Z‘{w |a/|) < ¢ < 1 for some constant ¢ > 0.
Therefore, recalling v,, = 2m||z||*" ',y Ad||z|| and (3.7), we have

I I O

1
< KZJ 2l <J |zaN(FT)(z)|f°am> dr
R, T 70 S(r)

1 R2m—l ¢ 1 1
SKJ r2m—1 (R TF(R,VO)) drSKJ (R

0 —-r 0 —-r

Tr(R, ro)) dr

when rp <r< R <1, where we applied [6, Proposition 6.1] (see also [17,
Proposition 3.3]) for the derivation of the third, or the second last, estimate
in (3.11).

Finally, seeing Hayman [11, Lemma 2.4 (ii)] and letting R =r +
one has

1—r
eTp(r, 7'0)’

Tr(R,r0) < 2TF(r,ro) < 2dTy(r,10)

outside a set with finite logarithmic measure. Recall we assumed the case
7}'(” I 0)
1
1—r
Proposition 5.5] yields that

lim sup
r—1

< oo in (3.2). The preceding analyses combined with [5,

log

1 2 1 2d2€ S
(3.12) J e’ dv < KJ ————Tr(r,ro) | dr < KJ TH(r,ro) | dr
M 0 1 —r 0 1 '
eTr(r,ro)

1 1 1 2 K
SI<J'() (1 —V)g (log 1 —r) dr:mr(ZC—F 1) < 00.
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This result however would contradict Yau [21] and Karp [12, Theorem B], as
M = B(1) has infinite volume with respect to the given complete Kihler metric;
see [17, pl147].

From now on, we shall consider the latter case in (3.2) and the situation
when the universal covering of M is biholomorphic to C” simultaneously, since
both may be treated essentially in the same way through traditional defect
relation and (2.4). As can be seen from the following discussions, we don’t need
f to satisfy the growth condition C(p) in these settings.

Noting the description below (3.2), we without loss of generality assume
M = B(Ry) for some 0 < Ry < oo afterwards. Moreover, when Ry = oo, we can
use the flat metric to see Ric @ = 0; that is, all meromorphic maps f : C" — V
satisfy the condition C(0) automatically.

PropPOSITION 3.2.  Under the same hypotheses of Theorem 1.2 concerning the
algebraic variety V in PY(C) and the hypersurfaces Dy,Da,...,D, in PY(C), let
f i B(Ry)(C C™) — V be an algebraically non-degenerate meromorphic map with
0 < Ry < o0. Then, one has

2k —n+1

(3.13) {q .

q
1 ()
MM%D@MSE:AﬁW1MWQHSNw%

where Sy(r,ro) = 0 satisfies Sy(r,ro) < K{log" Ty(r,ro) +log™ r} for all r € (ro, )
outside a set of finite linear measure when Ry = oo and

+2k—n+1 1
2d(n+1) Ry —r

Sfor all re (ro,Ry) outside a set of finite logarithmic measure when Ry < co.

(3.14)  Sp(r,ro) < K log™ Ty(r,ro) Hy(d)(Hy(d) — 1) log*

Proof. Like the first case in (3.2), by (3.4), (3.7) and the argument in (3.11),
one has
q . 2m—1
J ‘Zugo(z)”f(z)Hd{zj:'wj_HV(d>}|too'n1 < K(R
S() R

Tr(R, ro))C

for rp <r < R < Ry, which further implies that, applying the concavity of
logarithm,

(315) J 10g|Za « (P(Z)|0'm +J log”fHd{zj'qzle*HV(d)}o-m
S(r) )

S(r

—r

1
< ZE log" ——+ K{log" Te(R.r0) +log" R}.
- -

Here, i, > 0 are arbitrarily given constants satisfying 7 (3, ’{(d) lo/]) <& < 1.
Besides, use Jensen’s formula and (3.8) to derive that

q
JIMﬂW@WZ*Z%WWHMWm+WM
S(r) j=1 '
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which combined with the first relation in (2.5) and (3.15) altogether leads to
{w(g—2k+n—1)+n+1—Hy(d)}Ty(r,ro)

1

—r

< Sy Hy(d)(Hy (d) ~ 1)

(r,710; Dj) + 7 log™ R

+ K{log"™ Tr(R,ro) + log" R}

¢ Hy(d)(Hy(d) —1
when 5 approaches v(d)(Hy(d) — 1) from the above. Since d; <d, w; <w
to 2 ’
1 2k — 1 . . . . .
and — < ?n;r, (3.13) follows immediately from the above inequality with
w
1

1
St (r,ro) == Hy(d)(Hy(d) — 1) log" 5 K{log" Tr(R,r9) +log"™ R}.

2dw

The remaining estimates about Sy(r,ry) appear to be exactly the same as those,
for instance, in [6, Proposition 6.2] or [17, Theorem 4.5] by virtue of [11, Lemma

2.4]. U
A natural consequence of Proposition 3.2 is the standard defect relation

2k —n+1

1 H ),

q
(3.16) > ot (D)) <
j=1

provided either Rop=o0 and [ is transcendental®’, or Ry < oo and

T,
lim sup M: oo. Thus, (1.6) follows from (2.4) and (3.16) so that our

lo !
& RO —r
proof is finished completely.

r—Ry

4. Some related uniqueness results

In 1986, Fujimoto [7] generalized the well-known five-value theorem of
Nevanlinna to the situation of meromorphic maps over a complete, connected
Kéhler manifold M (whose universal covering is biholomorphic to a finite ball in
C™) into P"(C) that satisfy the growth condition C(p) and share hyperplanes;
other closely related results can be found in [18, 20].

In this last section, under the same setting as this result of Fujimoto, we use
the techniques in the proof of Theorem 1.2 to describe two uniqueness results
regarding hypersurfaces located in k-subgeneral position, following essentially the
approach applied in [7, 18, 20].

3Notice when f is rational, then one can choose S;(r,ro) = O(1) to have (3.16).
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Considering the comments made in [7, Section 5], we will without loss
of generality suppose that either M = B(1) C C"” (finite ball covering of M) or
M = C™ subsequently.

In fact, when f,g: M — V are the given meromorphic maps, then f o,
gom: M — V will satisfy all the hypotheses as meromorphic maps over the
lifted, complete universal covering M of M. Since fon=gon on M implies
f =g on M, we simply assume M = M.

THEOREM 4.1. Assume V C PV (C) is an irreducible projective algebraic
variety of dimension n(< N). Let f,g:B(1)(CC"™) — V be two algebraically
non-degenerate meromorphic maps, both satisfying the condition C(p). Let
Dy\,Ds,...,D, be q hypersurfaces in PY(C) of degrees di,da,...,dg, located
in k-subgeneral position (k >n) with respect to V. Suppose further that
lim sup Ty(r,ro) + ng(n r0)
r—1

1—r
(1) fﬁl(D)_g 1( )forj_1727"'7qa
(2.) f=gon U, I H(Dy),
(3.) /Y (Djn Dy ) has dimension at most m—2 for 1 < j+#j <q.

Then, one has [ =g provided, for the least common multiple d of di,d>, ..., d,,

< oo and f, g satisfy the following conditions

log

2k—n+1 p 2
4.1) >ﬁ{HV(d)+3HV(d)(HV(d)—1)}+3(Hy(d)—1).
Proof. Assume f =1fy:f :---:fy] and g =gy :9; : - : gy], with reduced
representations | = (fo,f1,...,fy) and ¢ =1(gy,9;,--.,9y)- Suppose in the fol-

lowing f # g. Then, there exist at least two distinct indices 0 <2 # 7 < N such
that the holomorphic function y := f,g; — f;g, is not identically zero and satisfies

(1).
Employ the previous notations to have F as before and G := [¢ (9):
$2(8) i -+ ¢y, (a)(g)], both being linearly non- degenerate maps to P @-1(C).

Thus, one ﬁnds two sets of Hy(d) m-tuples o a’ € Z” with (3.4) satisfied
for each one, and W, mw(F) X Wy iy (G ) #0 with Wy ;mw(G) =
det(D¥ ¢, (g ))1<, /<Hy()- Besides, for every subset 7 C {1,2,...,q} with #7 =
rank{Q]}]eT =n+ 1, use the hypersurfaces in Lemma 2.2 to deﬁne G7 similarly,
and there is a constant Cr # 0 such that W, .umw(Gr)= CrWy mw(G).

W,.. HV(”)(F) Wl HV‘/ (FT)
Recall ¢ =———7—— and R(Fr)= - —= . Analo-
- o7 o Y Mer oI i ‘Q*(@)
ly, set = &L“&nw)w d R(G) = glgtra (GT .
souslys S 03 g o ™ N T eI o

Then, one has (3.7) and

(4.2) la(2)|[ ‘B 52 < KN IR(Gr)(2)] Yz e M\l
R, T
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Now, it is routine to see our condition (4.1) and (2.5) imply that
A 2w P
(4.3) Za)j>HV(d>+7(HV(d)_1)+3HV(d)(HV(d)_1)'

From our assumptions, we know y(z) =0 for all ze |J., SUD)). As
w; < @, we can infer that vy°’,vZ < w(Hy(d)—1)v) and thus gg=Hv(@=1,
Gy =y (") are both holomorphlc *functions on B(1)." Recall the Kihler form

Zl jhijdzindzZ; on B(1). By hypothesis, there exist two continuous,

plur1-subharmomc functions 7,7, # —oo such that

det(hy) < [[f|” and 7, [det(hy) < lgll”-

i T P
Take 7 := log|z* @y >@Hr (=1 for fy .=

o T IS o By (@)}~ 2w (A ()~ 1)
> 0 with a = ,:’l'( Vol g = Z,:q( Vil e 72, Then 7 is pluri-subharmonic and

one has
det(h)e™ ™™ < |z oI 22| [ = O 512 g
< K|Za¢|to||ﬂ|/1+2fow(HV(d)*1)|Zé¢|tng||/)+2fow(HV(d)*1>

= K]z"p| ]| B O} |28 g Aol H ),

Via (4.3), we get toHy(d)(Hy(d) — 1) < ¢ < 1 for some constant ¢ > 0. So,
seeing dV = ¢y det(h;z)vy, for an absolute constant ¢, >0, (3.4), (3.7) and (4.2),
we have

M

. N2
(4.4) J ertmte dVgK( |z* |2’°|¢ ||f(Z)||d{Z,-le—Hv<d>}|2toUm)
M

X

. 1/2
( M 210|(0 |g(z)|d{2quwfHV(d)}|2foUm)
| 1/2
K{ZJ P2l (J |Z"N(FT)(Z)|2t°am> dr}
=70 S
1
|
1

<
) 1/2
X {Z rz'"_l <JS; |ZaN(G'T)( )|2toam> d}’}
<

R, T

1 1 )ZQ K

K (1o dr=————T(26+1)< o
Jo(l—r)g< ST (1—¢)*H! ( )
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by Hoélder’s inequality, where a parallel argument concerning (3.11) and (3.12) is
used to derive (4.4). This contradicts the results of Yau [21] and Karp [12], and
thus f =g. O

Finally, we describe a uniqueness result when the growth condition C(p) is
dropped. Since it follows directly from the discussions in [7, Section 4] (see
also [18, Section 3] or [20, Theorem 4.2]) and our Proposition 3.2 (in particular
(3.14)), we only outline its proof.

PropoSITION 4.2.  Under the same hypotheses of Theorem 4.1 concerning
the algebraic variety V in PV (C) and the hypersurfaces Dy, D, .. ., Dy in PV (C),
suppose f,g: B(Ro)(C C")— V are algebraically non-degenerate meromorphic
maps satisfying the conditions (1.)—(3.). Fix d the least common multiple of
di,d>,...,d, Then, one has f =g provided either

2k —n+1 2

(4.5) q> I Hy(d) +g(HV(d) -1

when Ry = oo or

o) a> 2 ) L@ ) - b+ S ) -
log 1 l—r

when Ry = 1 with 2 := liminf
measure. r=1 Ty(r,ro) + Ty(r,ro)

outside a set of finite logarithmic

Proof. From the derivation of (3.13) and the facts that y =0 on

)Ly f71(D)) and T,(r,ro) < Ty(r,ro) + Ty(r, 1), one has for the valence function

N|r,rg;—| of zeros of y
X

{o- 2 @ o) + 140000}

< %(Hy(d) - 1N (r, ro;}() + Sr(r,r0) + Sy(r,70)

when we suppose f # g; that is, considering the first main theorem,

2k —n+1 2 .. Sp(r, o) + Sy(r, ro)
<= _  H —(H —1)+1 f .
n+1 V(d)+d( vid) =1+ ety Ty (r,r0) + Ty(r,ro)

If Ry = o0, a contradiction against (4.5) follows*; on the other hand, if Ry =1,

“Recall when f, g are rational, then Sy (r,ro) = S,(r,r0) = O(1).
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. - . . Se(r, S, (r,
(3.14) yields a contradiction against (4.6) as liminf /(o) + Sy (s 1o)

A2k —n+1) =1 Ty (rro) + Ty(r,ro)
WHV(d)(Hv(d) - 1. O
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