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ZETA FUNCTIONS FOR KAHLER GRAPHS
Y AERMAIMAITI TUERXUNMAIMAITI AND TOSHIAKI ADACHI

Abstract

To create a discrete analogue of magnetic fields on Riemannian manifolds is a
challenging problem. The notion of Kéhler graphs introduced by the second author
is one of trials of this discretization. In this article we study the asymptotic behavior
of the weighted number of prime cycles with respect to their lengths by use of a zeta
function.

1. Introduction

A graph is a 1-dimensional CW-complex which consists of a set of vertices
and a set of edges. In the field of geometry, graphs are considered as discrete
models of Riemannian manifolds. Paths on this graph, which are chains of
edges, correspond to geodesics. When we study Riemannian manifolds we fre-
quently consider some geometric structures on them, complex structures, contact
structures and so on. The second author is hence interested in giving discrete
models of Riemannian manifolds which inherit geometric structures.

Some geometric structures induce closed 2-forms. On a Riemannian mani-
fold, a closed 2-form is said to be a magnetic field because it can be regarded as
a generalization of static magnetic fields on a Euclidean 3-space (see [12], for
example). Since geodesics are motions with constant velocities, we are interested
in motions of constant accelerations. This is a way of classical treatment of
magnetic fields. When a magnetic field is uniform, that is, its strength does
not depend on points and directions, a charged particle gets a uniform Lorentz
force and its motion is of constant acceleration. Typical examples of uniform
magnetic fields are constant multiples of the Kéhler form on a Kéhler manifold.
Such magnetic fields are said to be Kéhler magnetic fields (see [1, 3]). The
second author intend to give a discrete model corresponding to Kédhler manifolds
admitting Kéhler magnetic fields.

2010 Mathematics Subject Classification. Primary 05C50, Secondary 53C5S.

Key words and phrases. Kihler graphs; derived graphs; probabilistic weights; zeta functions.

The second author is partially supported by Grant-in-Aid for Scientific Research (C) (No.
24540075 & No. 16K05126) Japan Society for the Promotion of Science.

Received December 27, 2016; revised May 1, 2017.

227



228 YAERMAIMAITI TUERXUNMAIMAITI AND TOSHIAKI ADACHI

In his paper [2] he introduced the notion of Kdhler graphs. A Kdéhler graph
G= (V,EP)UEY) is a compound graph which consists of a set ¥ of vertices,
a set E(?) of principal edges and a set E( of auxiliary edges. Since graphs are
I-dimensional objects, we give magnetic fields on Kdihler graphs by showing
trajectories for magnetic fields. We consider paths on the principal graph
(V,E) of a Kihler graph as geodesics on this graph. In order to show a
uniform magnetic field of strength ¢/p with relatively prime positive integers
p, ¢, we give trajectories for this magnetic field. We take a p-step path on the
principal graph. This corresponds to a geodesic segment on a Riemannian
manifold. We choose a g-step path on the auxiliary graph whose origin is the
terminus of the above p-step path, and make a (p + ¢)-step “‘bicolored” path
on a Kihler graph. We consider chains of such paths as trajectories for the
magnetic field. This means that a p-step path is bended by Lorentz force and its
terminus reaches to the terminus of a (p + ¢)-bicolored path whose first p-step
coincides with the original one. Of course there are many g-step paths for each
p-step path. Since Kidhler graphs do not have 2-dimensional objects, we can not
show the direction of Lorentz force, we therefore consider all such g-step paths
and treat them probabilistically. Thus, every (p + ¢)-step bicolored path, hence
every trajectory, has its probabilistic weight so that the sum of probabilities of
(p + gq)-bicolored paths with a given first p-step path is equal to one.

In this paper we count probabilistic weights of prime cycles on a Kéhler
graph. We define a zeta function for bicolored closed paths which has infor-
mation of lengths and weights of closed paths. Along the ordinary way (cf.
[10, 15]) we show the asymptotic behavior of probabilistic weights of prime
cycles with respect to their lengths. Our discretization of magnetic fields on
Riemannian manifolds is done from the viewpoint of classical treatment. As
our discretization is still only a trial, the reader should confer [13] for another
discretization.

The authors are grateful to the referee who gave them valuable advice.

2. Derived graphs of a Kéhler graph

Let G=(V,E) be a graph whose edges are not directed. We say an edge
e € E to be a loop if its both ends coincide. For two vertices if there exist two
and more edges joining them, we say these edges to be multiple edges. When
a graph does not have loops and multiple edges, it is called simple (for more
on graphs see [6], for example). We call a simple undirected graph G = (V,E)
Kdhler if the set E of edges is divided into two disjoint subsets E(?), E@ and
satisfies the following condition: At each vertex v e V, there are at least two
edges in E(?) and two edges in E@ both of which are emanating from v. We
call (V,EW) and (V,EY) the principal graph and the auxiliary graph of a
Kahler graph, respectively. Given two vertices v,w € V' we denote by v ~,w if
they are adjacent to each other in the principal graph (¥, E(?), and denote by
v ~,w if they are adjacent to each other in the auxiliary graph (V, E@). Here,
two vertices in a graph are said to be adjacent to each other if there exists an
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edge joining them. When a Kaéhler graph G = (V,EP) UEY) is locally finite,
for each vertex v e V, we denote by d ( ) the cardinality of the set {we V|
w ~,v} and by a’ )(v) the cardinality of the set {we V' |w ~,v}. We call them
the prm01pal degree and the aux111ary degree at v, respectively. The degree dG( )
of G at v is hence d ?) (v) + d ( ). Typical examples of Kéhler graphs are given
by taking complements of graphs. For an ordinary undirected simple graph
G=(V,E), its complement graph G°= (V,E°) is defined by the following
manner: Two distinct vertices are adjacent to each other in G if and only if
they are not adjacent to each other in G. If we set GX = (V, EU E°), then it is
a Kahler graph when dg(v) > 2 and dg-(v) > 2 at each vertex ve V. We call
this a complement-filled Kdhler graph. An ordinary graph is said to be regular
if its degree function is constant. We call a Kéhler graph regular if both of its
principal and auxiliary graphs are regular, and call it complete if it is regular
and if its arbitrary two distinct vertices are joined by an edge. Since we have
many examples of regular ordinary graphs, we can construct many examples of
complete Kidhler graphs by taking their complement-filled K&hler graphs. For
construction of regular Kéhler graphs, see [16, 18].

For a pair (p,q) of relatively prime positive integers, we say that a (p + g)-
step path y = (vo, v1,...,Up+q) 18 @ (p, q)-primitive bicolored path if it satisfies the
following conditions:

1) U,'Jr]?él),',] forlSiSp-l—q—l,

il) vio1 ~pv; for 1 <i<p,

iil) v, ~,v; for p+1<i<p+gq.

The first condition shows that this path does not have back-tracking. We put
o(y) = vo and #(y) = v,4, and call them the origin and the terminus of y, respec-
tively. For this (p, ¢)-primitive bicolored path y we set its probabilistic weight

w(y) by

rtq =
w(y) = { (vp) Hl{d (v7) _1}}

J=p+1

As déa>(v) > 2 for every vertex v of G, we see w(y) <1/2 for every primitive
bicolored path y. We note that for each p-step path in the principal graph the
sum of probabilistic weights of (p, ¢)-primitive bicolored paths whose first p-step
coincide with the given one is equal to 1. Also, we should note that the
probabilistic weight w(y) of a (p, g)-primitive bicolored path y does not coincide
in general with the reciprocal of the number of (p,q)-primitive bicolored paths
emanating from o(y). We say an m(p + g)-step path y = (vo, ..., Un(p+q)) to be a
(p, q)-bicolored path if all its subpaths Y= (OG=1)(ptq)s - Vi(prq))s J=1,...,m
are (p,q)-primitive bicolored paths. For this bicolored path y, we define its
probabilistic weight w(y) by w(y) =[], w(y;). It satisfies o(y) <1/2".

We here make mention of geometric meaning of bicolored paths and their
probabilistic weights. If we consider principal graphs as discrete models of
Riemannian manifolds, we can regard paths as geodesics, which are trajectories
of motions of particles without influence of outer force. Under the influence of
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magnetic fields, motions of charged particles are bended. When the strength of
a magnetic field is ¢/p, every p-step path without back-tracking in a principal
graph is bended and reaches to the terminus of a (p + ¢)-primitive bicolored path
whose first p-step coincides with the original path in a principal graph. Since
we can not show the direction of the action of this magnetic field on the Kéhler
graph, because graphs are 1-dimensional objects, we consider a bended path
reaches to one of terminuses of primitive bicolored paths and treat bended direc-
tion probabilistically. Formally, we can define (p,q)-primitive bicolored paths
even if p, ¢ are not relatively prime. But when p = ap’ and ¢ = ag’ with some
positive integers a, p’, ¢’ with a > 2, we note that the set of terminuses of (p, q)-
primitive bicolored paths is different from the set of a(p’ + ¢’)-step (p’,q’)-
primitive bicolored paths. As we need to define “‘curved paths” on a graph, the
authors consider that we should show curved property in minimum steps. We
hence restrict ourselves to pairs of relatively prime positive integers. Geometrical
point of view, it is more natural to suppose that the cardinality of the set of
vertices is sufficiently large compared with p + ¢ and degrees of vertices. In this
sense, the case (p,q) = (1,1) is most important. Still, we do not make mention
of this point any more in this paper.

For a Kihler graph G = (V,E(?) UE“) we have an directed graph G, , =
(V,E,,) with the set E, , of all (p,q)-primitive bicolored paths on G. We call
this directed graph the (p,q)-derived graph of G. This graph may have loops
and multiple edges, and each edge has its weight. We note that this graph is
not a circuit by the condition of Kéhler graphs. Here, we say a graph to be a
circuit if it is homeomorphic to a circle S' as a CW-complex. When G is a finite
Kihler graph, we define (p, ¢)-adjacency operator .o, , acting on the set C(V") of
all functions on V by

Ay of (0) =D () f (1)),

Y

where y runs over the set of all (p, g)-primitive bicolored paths emanating from v.
Being different from adjacency operators of ordinary graphs, this (p, ¢)-adjacency
operator is not symmetric in general. More precisely, this operator is a com-
position of an operator on the principal graph and an operator on the auxiliary
graph. We define operators ./, and 2, acting on C(V) by

Apf(0) =3 fltlp)) and 2,f(0) = 3 w()f(1(x)),

P T
where p runs over the set of all p-step paths on the principal graph which are
emanating from v and do not have backtracking, t runs over the set of all ¢-step
paths on the auxiliary graph which are emanating from v and do not have
backtracking, and w(7) is the probabilistic weight of 7 by regarding it as a (0, g)-
primitive bicolored path. Then we have .27, , = .27, 0 2, (see [16, 17] for more on
this operator).
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We call a directed graph (V, E) irreducible (or strongly connected) if for an
arbitrary pair (v,w) of distinct vertices there exists a directed path whose origin
is v and whose terminus is w. When G, , is irreducible, by Perron-Frobenius
Theorem, we see that there is a positive eigenvalue 4, ,(G) of <7, , satisfying the
following conditions:

i) Eigenvalues of .</, , whose absolute values are 4, ,(G) are of the form

2V Tlkag (G) ( j=0,1,...,k, , — 1) with some positive integer k, 4;

i) These elgenvalues ez‘/j”//kﬂqi ,(G) are simple;

iii) The absolute values of other elgenvalues are less than 4, ,(G).

Since ., , is decomposed as %7, o 2,, the eigenvalue 4, ,(G) is estimated as
velV velV velV veV

p—1 p—1
min d¥ (v ){min dP (v) — 1} < Jp 4(G) < max dép)(v){max dP (v) — 1} :

When the principal graph of a Kéhler graph G is regular of degree d¥’ ), the
eigenvalue 4, ,(G) is hence given by 4, ,(G) = d”(d) —1)?"". But when the
principal graph of a Kdhler graph G is not regular, we have 4, ,(G) # 4, 4(G)
for ¢ # ¢’, in general.

Example 1. Let G| be a regular Kéhler graph of d d((;) =2 given in
Fig. 1. Then its (1,1)-derived graph is irreducible, but 1ts (2 1)-derived graph
has 4 connected components. The eigenvalues of (1,1) and (2,1) adjacency
operators are

Ev(</ 1) ={2,0,0,0,0,0,0,-2}, Ev(e/ ) ={2,2,2,2,0,0,0,0}.

Example 2. Let G, be a Kdhler graph given in Fig. 2 whose principal graph
is regular of d <’2’ ) =3 but whose auxiliary graph is not regular. The eigenvalues
of (1,1), (2,1) and (1,2) adjacency operators are
2 2 2
Ev(#/1)=13,0,0,0,—=,—=,—=,—1,, Ev(eh)=16,2,
’ 37373 '

3

2
3
24V73+V21 1 1 2-V7 3-421
EV(&/I,Z)_{35 3 ) 6 71767_67_ 3 y 6 .

Hence /11,1(G2) = }v172(G2) = 3, /ﬂuz’l(Gz) = 6.

@ ©

FIGURe 1. G FIGURE 2. G, FIGURE 3. Gj




232 YAERMAIMAITI TUERXUNMAIMAITI AND TOSHIAKI ADACHI

Example 3. Let G3 be a complement-filled Kédhler graph given in Fig. 3.
Its principal graph is not regular. The (1,1), (1,2) and (2,1) adjacency opera-
tors are expressed by matrices

SERRY SERNE
10§ 35350 '3 221 %
P R O D R E IR
’ 1ot o of v 1o & 1 L ol
bionog SEREE
EEERN EEEER
2 01 0 1 0
PR 030
|0 R0
’ 0O 1 0 2 0 1
EEERN
froo0p
hence their eigenvalues are
4413 4— V13 —4 47
Ev(ﬂl,l){ +3\/_7 3\/_,0,0, Jg\/_, 3\/—},

3+4v33-V3 —4+V10 —4 - /10
EV(&{I,Z) { ) ) B 70»07 6 ) 6 )

294649 _ 3 11+4++vV=23 11— /=23 29 — /649
B =\"17 331 1 T n '

Thus we have

1111(G3) = (4 + \/B)/?), 1172(G3) = (3 + \/5)/2, lzvl(Gj;) = (29 + \/@)/12

3. Zeta functions

Let G= (V,E» UE®@) be a Kihler graph. For an m(p + q) step (p,q)-
bicolored path y =7y, -y,---y, with (p,¢)-primitive bicolored paths y,...,7,,
we put o(y) = o(y,) and (y) = £(y,,), and call them the origin and the terminus
of y, respectively. For this bicolored path y, we set /(y) =m(p+¢q). We call y
closed if o(y) = t(y), and call it prime if in addition there are no divisor k of m
satisfying y;,, = 7; for all i by considering the indices by modulo m. We denote
by (S,Sf””(G) the set of all m(p + ¢)-step (p,q)-bicolored closed paths. We say
that two bicolored paths y!), y are congruent to each other if both of them
belong to G,(M”"’)(G) with some m and if we denote them as y(!) = y}” . yé” e y,(nl),
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y@) = y§2) -yéz) e y,<,12) € (S,(np’q (G) there is iy satisfying yl(Jr)lO = yl by considering

the indices by modulo m. We shall call a congruence class of closed paths
cycle. It is clear that Z(y()) = /(y@)) if two (p, g)-bicolored closed paths y(!) and
»?) are congruent to each other. Moreover, as (p,q)-bicolored paths start with
principal edges, we find w(y(")) = w(y®) in this case. We denote by B79(G)
the set of all congruence classes of m(p + g)-step (p,q)-bicolored prime closed
paths, and put B79(G) =", B9 (G).

We define the (p,q)-zeta function {s(u; p,q) of a finite Kéhler graph G =
(V,E? UEWW) by

Glspa)= [ {1 —o@e @y,
pep79(G)
We may say that this is a L-function of a directed graph G, ,. But here, we do
not consider w as a character (cf. [8]).
LemMA.  Suppose that the (p, q)-derived graph G, , of a finite Kdihler graph G
is irreducible. If Re(s) >log 4, ,(G)/(p+ q), we have

Lo(s; pyq) = det(I — e 9.7, )7

Proof. By direct computation we have

log (a(s;pg) =— Y log{l —w(p)e P} =" iW(P)" —

p€q3(ﬂ-q)(G) P n=1 n
0 0
Z_ (p)n —nks(p+q)
n=1 I’l =1 p:/(p p+q
=1
Z% k (p)m/k e~ ms(p+a)
n=1"k:k|m p:/(p p+q

On the other hand, if y e €/ (P9 (G) is not prime, there is a divisor k of m and a

prime closed path o € (S(’] 9 (G) satisfying that y is a m/k-multiple of . In this
case, as (p, q)-bicolored paths start with principal edges, we have w(y) = w(a) m/k
by deﬁnition. Since there are k distinct closed (p,q)-bicolored paths which are
congruent to o, we have

trace(7,",) = Z o(y) = Z k Z w(p)m/k )
ye€ir9(G) kiklm \  p:/(p)=k(p+q)
hence we obtain
. 1 m \ ,—ms(p+q)
log {G(s;p,q) = — trace(/," )e )

m=1

3

This leads us to the conclusion. O
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We here study zeta functions for some Kéhler graphs.

Example 4. By the above Lemma, if we put u=u,, := et we find
that the zeta functions for Kidhler graphs given in §2 are expressed as follows:

1 1

1) = s 11,2) =
R (e R R A TR P R I P
9
CGz(u; 17 1) = (3 — 8u+ uz)(3 + 8u + T/lz),
12
‘2 ) = e T 2 — 6u 3w
CGz(u;lvz) - =

(2= 3u)(1 = 3u)(6 — 11u+ 6u2)(6 — 29u + 8u2)

ProroSITION 1. Let G = (V,E) be a connected regular finite ordinary graph
whose degree dg satisfies 2 < dg < ng — 2, where ng denotes the cardinality of the
set V of vertices. If we denote the eigenvalues of the adjacency operator /g of G
by A1 =dg,22,. .., Ang, then the (1,1)-zeta function of its complement filled Kdihler
graph GX is given as

1

CG(”; 15 1) =
O—%@H%O+

/ﬂhi(ii+ 1)u> (u:e*%‘).

I’Zg—dG—l

Proof. The adjacency operator .oZG. of the complement graph G¢ of G
is given as ./gc = M — I — o/, where the operator .# is defined by #g(v) =
>owerg(w) for ge C(V). We take an eigenfunction f; corresponding to 4;.
Since G is connected, we see f is a constant function and find that .Zf; = ngfi
and Zf; =0 for i > 2. Thus, we obtain

| def, when i =1,
A fi = ————AeAfi = —AilAi .
L1fi ng —dg —1 G76:]i Mﬁ when i > 2,
ng — d(; -1
and get the conclusion. O

Since we can express higher steps adjacency and probabilistic transition
operators .«Z,, 2, of regular Kéhler graphs by using the adjacency operators ./ (P),
/'@ of its principal and auxiliary graphs ([17]), we can express the (p,q)-zeta
functions of complement filled Kédhler graphs of regular ordinary graphs.

We here give a property of zeta functions of general Kdhler graphs. In view
of results for smooth Anosov flows on compact manifolds ([5]) and Lemma, we
define (p,q)-entropy of a finite Kdhler graph G by

hy.q(G) = (log 7,4(G)) /(P + q)-
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When the principal graph of G is regular, we see

hy.o(G) = {log d + (p — 1) log(d — 1)}/(p + q).

As a consequence of Lemma we have the following result.

PROPOSITION 2. Let G= (V,EP) UEW) be a finite Kihler graph. If the
(p, q)-derived graph G, , of G is irreducible, then the followings hold:
(1) L(s;p,q) converges absolutely and is holomorphic on Re(s) > h, 4(G);
(2) It is extended meromorphically to the whole plane;
(3) It has a simple pole at s = h, ,(G) +/—1B, where = 2nj/k,, (j =0,
1,....ky 4 — 1) modulo 2r/(p + q), and except such poles it is holomorphic
in the neighborhood of Re(s) > h, 4(G).

4. Counting prime cycles

We are now in the position to study the asymptotic behavior of the number
of prime cycles in a Kihler graph G = (V,E(”) U E) by an ordinary way (cf.
[5, 11]). For a positive number x we set

)= > o),

peP”9(G)
/(p)<x

which shows the “weighted” counting of the number of (p,q)-bicolored prime
cycles. Since we consider behaviors of trajectories probabilistically, this counting
corresponds to the counting of prime cycles on an ordinary graph. For functions
f,9:10,00) — R, we denote by f ~g (x — o0) if they satisfy lim,_, f(x)/g(x)
= 1.

THEOREM. If the (p,q)-derived graph G,, of a finite Kdhler graph G =
(V,EP) U EW) is irreducible, then we have

nd ) (x) ~ O (g (G)x) - (x = o0),

Proof. We denote h, ,(G) by h, , for the sake of simplicity. For a positive
y, we set

o) =hpy Y @P)"l(p).

peP”9(G),n=1
nl(p) <y/hpq

We then have ¢(0) =0, and as we see

logtolspa) = 3 S 2

vesl;(iw)(@ n=1 n

n

e s/(p)
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in the proof of Lemma, we have

d - n —n ut * —uy
= o8 Colhy g1 p,q) = g D> o(p)"/(p)e"r e ®) :JO e dy(y).
p n=1

Hence the function u— [;" e dp(y) converges absolutely on Re(u) >1 by
Proposition 2. We see that ¢(y) ~e¢” (y — o) by Proposition 2 and by
Wiener-lkehara’s Tauberian theorem (see Appendix A in [11] or §15.2 in [7]).

We set #g(y) =" (y/h,,). Since lengths of (p,q)-primitive bicolored
paths are p + ¢, we trivially have /(p) > p + ¢ for every p € B»9(G). Thus we
have

R /(p)
ng(y) = Z o(p) < Z CU(P)T
P/ (p) S}’//’l,,_q pi/(wgy/h]m/ p q
1 n o(»)
< — @) p)=1—"=
Pty g;l ) hp.q(P +q)
nt(p)<y/hyq

and find that there is a positive C satisfying 7ig(y) < Ce? because ¢(y) ~ e’

(y — o).
We now estimate 7g(y). We have

vic() =y Y. e® 2k, > o®)/(p)
L (P)<y/hy. 4 pL(p)<y/hyq
=0(0) ~lpy Y o®)"(p).

n=2p
nl(p) <y/hy.q

Here, as we have w(p) < 1/2, we obtain

Yo emim s Y o))
n>2,p n>2p
n/(p)gy/hpq n/(p)SJ’//"p-q
Y o (Y
= Z w(p) Z /(p) < 5 TG <§>
P/ (p) 5}’/(21”;".11) n:2$n£y/(hp‘q/(p)) P4
We hence find
yag(y) _ o) vy (YN o) Oy

“1) o e a"\3)Z e Ten

On the other hand, we have
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#6(y) = 7ig(y — 2 log y) + > o(p)
p:(y=21log y)/hp <l (p)<y/hp 4
R hy,
<7ng(y—2logy)+ # Z o(p)/(p)
Y Y o2 108 1)y g <0 <3/
1
<7 21
< #tg(y —2log y) 3 10g yw(y),
hence obtain
(42) yﬁ:G(y)< y ¢(y)+lﬁG(y_210g y)
' e? T y—2logy e’ e
y o(y) , C
T y-2logy e y
By (4.1) and (4.2) we see 7ig(y) ~¢e’/y, and get the conclusion. O

COROLLARY 1. When the principal graph of a Kdhler graph G is regular,
the asymptotic behavior of n(Gp D does not depend on q provided that G, , is

irreducible.

5. Concluding remarks

In this section we shall compare our result with the result on Kdhler mag-
netic flows for a Kéhler manifold of negative curvature. Let M be a Kéihler
manifold of negative curvature with complex structure J. A constant multiple
B, = kB; of its Kéhler form B, is called a Kéhgler magnetic field. We say
a smooth curve y parameterized by its arclength to be a trajectory for B, if it
satisfies V;7 = xJp. Since trajectories for the trivial magnetic field By are geo-
desics, we may say that trajectories are generalizations of geodesics. Just like
geodesics induce the geodesic flow ¢, on the unit tangent bundle UM, trajectories
for a Kdhler magnetic field B,. induce a magnetic flow B¢, on UM. When M is
compact and B¢, is hyperbolic, we have a zeta function as a dynamical system
which is defined by (g, (s) =[], {1 - e/®317! where p runs over the set of all
congruence classes of prime periodic orbits and /(p) denotes the period of a prime
periodic orbit contained in p. If we denote by /(M) the topological entropy of
B.¢,, this zeta function satisfies the following (see [9]):

(1) It converges absolutely and is holomorphic on Re(s) > i, (M);

(2) It is extended meromorphically to a open neighborhood containing

Re(s) > h(M);

(3) It has a simple pole at s = h,(M).

For a positive number x, we denote by 7, (x) the number of congruence classes
of prime closed orbits whose periods are not longer than x. As a direct conse-
quence of these properties we find that the asymptotic behavior of the function
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TB,p, 1S given as

g, (x) ~ "M/ (he(M)x)  (x — o0).

We here compare closed paths on a Kihler graph G = (V, E(?) U E(@) whose
principal graph is regular and periodic orbits of Kéhler magnetic flows for a
compact quotient M = I'\CH"(c¢) of a complex hyperbolic space CH"(c) of
constant holomorphic sectional curvature ¢. When |k| < 4/|c|, we see that the
Kéhler magnetic flow B,.p, for M is hyperbolic and that its topological entropy

he(M) is given as h. (M) =ny/|c| — k2 (see [1]). Thus we have

he(M) = /1 = (12 /|cl)ho(M)

with the topological entropy /io(M) of the geodesic flow ¢, for M. On the other
hand, if the regular principal graph (V,E(?)) of a Kihler graph G is connected
and is not a bipartite, then the asymptotlc behavior of the number n(Gl 0 (x) of
prime cycles whose lengths are not longer than x is e"-9(9%/(hy o(G)x) with
h.o(G) = log(d?) —1). Thus we find

1 1
hp,q(G) =

———1,0(G) + —— log d /dP —1)).

We next consider the relationship between the distance d(P, Q) of two points
P, Qe M and the length length(y) of the trajectory-segment y joining them.
According to [3] we have

ﬁ sinh G Veld(P, Q)> = \/ﬁ sinh G \/|—C|—:-K'2 length(y)).

Quite roughly, we can consider that d(P, Q) = /1 — (x%/|c|) length(y) by taking
expansions of both sides of the above equahty On the other hand a (p,q)-
primitive bicolored path is of step (p + ¢). It is natural to consider the distance
between its origin and terminus is p, because it moves on the principal graph
p-steps. Thus the relation between the length /(o) of (p,q)-bicolored path o

and the moving-distance d(o) is given by d(o) /(o). The authors

1
"1+ (¢/p)

consider that ¢/p corresponds to x?/|c| by these relations on entropies and on
distances and lengths.
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