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NOTE ON RESTRICTION MAPS OF CHOW RINGS TO

WEYL GROUP INVARIANTS

Nobuaki Yagita

Abstract

Let G be an algebraic group over C corresponding a compact simply connected

Lie group. When H �ðGÞ has p-torsion, we see r�
CH : CH �ðBGÞ ! CH �ðBTÞWGðTÞ is

always not surjective. We also study the algebraic cobordism version r�
W. In particular

when G ¼ Spinð7Þ and p ¼ 2, we see each Gri‰ths element in CH �ðBGÞ is detected by

an element in W�ðBTÞ.

1. Introduction

Let p be a prime number. Let G be a compact Lie group and T the
maximal torus. Let us write H �ð�Þ ¼ H �ð�;ZðpÞÞ, and BG, BT classifying
spaces of G, T . Let W ¼ WGðTÞ ¼ NGðTÞ=T be the Weyl group and
Tor � H �ðBGÞ be the ideal generated by torsion elements. Then we have the
restriction map

r�
H : H �ðBGÞ ! H �ðBGÞ=Tor � H �ðBTÞW

by using the Becker-Gottlieb transfer.
It is well known by Borel ([3]) that when H �ðGÞ is p-torsion free (hence

H �ðBGÞ is p-torsion free), then r�
H is surjective. However when H �ðGÞ has

p-torsion, there are cases that r�
H are not surjective, which are founded by

Feshbach [5].
Let us write by GC, TC the reductive group over C and its maximal

torus corresponding the Lie groups G, T . Let us write simply CH �ðBGÞ ¼
CH �ðBGCÞðpÞ, CH �ðBTÞ ¼ CH �ðBTCÞðpÞ the Chow rings of BGC and BTC

localized at p. We consider the Chow ring version of the restriction map

r�
CH : CH �ðBGÞ ! CH �ðBGÞ=Tor � CH �ðBTÞW :

Our first observation is
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Theorem 1.1. Let G be simply connected. If H �ðGÞ has p-torsion, then the
map r�

CH is always not surjective.

In the proof, we use an element x A H 4ðBGÞ with rHðxÞ B Imðr�
CHÞ. Hence

x B ImðclÞ for the cycle map cl : CH �ðBGÞ ! H �ðBGÞ, from the commutative
diagram

CH �ðBGÞ ���!r �
CH

CH �ðBTÞW

cl

???y G

???y
H �ðBGÞ H �ðBTÞW����!r �

H

The corresponding element 1n x A CH �ðBGm � BGÞ is the element founded as
a counterexample for the integral Hodge and hence the integral Tate conjecture
in [15].

Next, we consider elements in Tor. To study torsion elements, we consider
the following restriction map

resH : H �ðBGÞ ! PA:abelian�GH
�ðBAÞWGðAÞ:

There are cases such that resH are not injective, while for many cases resH are
injective. We consider the Chow ring version ([21], [22]) of the above restriction
map

resCH : CH �ðBGÞ ! PA:ab:CH
�ðBAÞWGðAÞ � PA:ab:H

�ðBAÞWGðAÞ:

In general resCH has nonzero kernel. In particular, elements in KerðclÞ
(i.e. Gri‰ths elements) for the cycle map cl are always in KerðresCHÞ. Namely
Gri‰ths elements are not detected by resCH .

On the other hand, if the Totaro conjecture

CH �ðBGÞGBP�ðBGÞnBP � ZðpÞ

(for the Brown-Peterson cohomology BP�ð�Þ) is correct, then of course all
elements in CH �ðBGÞ are detected by elements in BP�ðBGÞ. We show that there
is a case that Gri‰ths elements are detected by r�

W the restriction for algebraic
cobordism theory W�ð�Þ.

Let W�ðX Þ ¼ MGL2�;�ðX ÞnMU �
ð pÞ

BP� be the BP-version of the algebraic

cobordism defined by Voevodsky, Levine-Morel ([25], [13], [14]) such that
CH �ðXÞGW�ðXÞnBP � ZðpÞ: In particular, we consider the case G ¼ Spinð7Þ
and p ¼ 2. We note that there are (nonzero) Gri‰ths elements in CH �ðBGÞ.

Theorem 1.2. Let G ¼ Spinð7Þ and p ¼ 2. Then each Gri‰ths element (in

CH �ðBGÞ) is detected by an element in W�ðBTÞW GBP�ðBTÞW.

In §2 we study the map r�
H for the ordinary cohomology theory, and recall

Feshbach’s result. In §3, we study the Chow ring version and show Theorem
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1.1. In §4, we study the case G ¼ SpinðnÞ. In §5, we study the BP�-version and
the algebraic cobordism version for the restriction r�. In §6, we write down the
case G ¼ Spinð7Þ quite explicitly, and show Theorem 1.2. In the last section, we
note some partial results for the exceptional group G ¼ F4 and p ¼ 3.

The author thanks Kirill Zainoulline to start considering this problem,
and Masaki Kameko to let the author know the works by Benson-Wood and
Feshbach.

2. Cohomology theory and Feshbach theorem

Let p be a prime number. Let G be a compact Lie group and T the
maximal Torus. Then we have the restriction map

r�
H : H �ðBGÞ ! H �ðBTÞW

where H �ð�Þ ¼ H �ð�;ZðpÞÞ, BG, BT are classifying spaces and W ¼ WGðTÞ ¼
NGðTÞ=T is the Weyl group.

It is well known by Borel ([3], [5], [2]) that when H �ðGÞ is p-torsion free,
then r�

H is surjective (and hence is isomorphic). However when H �ðGÞ has
p-torsion, there are cases that r�

H are not surjective by Feshbach.
For a connected compact Lie group G, we have the Becker-Gottlieb transfer

t : H �ðBTÞ ! H �ðBGÞ such that tr�
H ¼ wðG=TÞ for the Euler number wð�Þ, and

r�
HtðxÞ ¼ wðG=TÞx for x A H �ðBTÞW . Let wðG=TÞ ¼ N and Tor be the ideal of

H �ðBGÞ generated by torsion elements. Then we have the injections

N �H �ðBTÞW � H �ðBGÞ=Tor � H �ðBTÞW :

Feshbach found good criterion to see r�
H is surjecive.

Theorem 2.1 (Feshbach [5]). The restriction r�
H is surjective if and only if

ðH �ðBGÞ=TorÞnZ=p has no nonzero nilpotent elements.

Proof. First note that H �ðBTÞGZðpÞ½t1; . . . ; tl� for jtij ¼ 2. Hence if
xm ¼ px 0 in H �ðBTÞ, then x ¼ px 00 for x 00 A H �ðBTÞ. Moreover if x ¼ px 0 A
H �ðBTÞW , then so is x 0 since H �ðBTÞ is p-torsion free. Thus we see

H �ðBTÞW nZ=p has no nonzero nilpotent elements.
Assume that r�

H is not surjective, and x A H �ðBTÞW but x B Imðr�
HÞ. Let

sb 1 be the smallest number such that psx ¼ r�
HðyÞ for some y A H �ðBGÞ.

Hence y0 0 modðpÞ. Then

r�
HðyNÞ ¼ ðpsxÞN ¼ psNxN A pN �H �ðBTÞW � p Imðr�

HÞ:

This means that y is a nilpotent element in ðH �ðBGÞ=TorÞnZ=p. r

Using this theorem, Feshbach [5] showed r�
H is surjective for G ¼ G2, SpinðnÞ

when na 10, and is not surjective for Spinð11Þ, Spinð12Þ. Wood [27] showed
that Spinð13Þ is not surjective but SpinðnÞ for 14a na 18 are surjective. Benson
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and Wood [2] solved this problem completely, namely r�
H is not surjective if and

only if nb 11 and n ¼ 3; 4; 5 modð8Þ.
For odd prime, we consider modðpÞ version

rH=p : H
�ðBG;Z=pÞ ! H �ðBT ;Z=pÞW G ðH �ðBTÞ=pÞW :

It is known that r�
H=p is surjective when G ¼ F4 for p ¼ 3 by Toda [20] using

a completely di¤erent arguments. Also using di¤erent arguments (but without
computations of H �ðBTÞW for concrete cases), Kameko and Mimura [9] prove
that r�

H=p are surjective when G ¼ E6;E7 for p ¼ 3 and G ¼ E8 for p ¼ 5. (The
only remain case is G ¼ E8, p ¼ 3 for odd primes.)

Kameko-Mimura get more strong result. Recall the Milnor Qi operation

Qi : H
�ðX ;Z=pÞ ! H �þ2p i�1ðX ;Z=pÞ

defined by Q0 ¼ b and Qiþ1 ¼ ½Ppi

Qi;QiP
pi � for the Bockstein b and the reduced

powers P j.

Theorem 2.2 (Kameko-Mimura [9]). Let G ¼ F4;E6:E7 for p ¼ 3 or E8 for
p ¼ 5. Let us write a generator by x4 in H 4ðBGÞGZðpÞ. Then we have

H �ðBT ;Z=pÞW GHevenðBG;Z=pÞ=ðQ1Q2x4Þ:

Corollary 2.3. For ðG; pÞ in the above theorem, r�
H is surjective.

We can identify Q1Q2ðx4Þ is a p-torsion element in H �ðBGÞ, since its
Q0-image is zero. The above corollary is immediate from the following lemma.

Lemma 2.4. If the composition

r : ðH �ðBGÞ=TorÞnZ=p ! H �ðBTÞW=p ! H �ðBT ;Z=pÞW

is injective, then r�
H is surjective.

Proof. Let r�
H be not surjecive and y A H �ðBTÞW with y B Imðr�

HÞ. Then
psy ¼ r�

HðxÞ for some sb 1 and an additive generator x A H �ðBGÞ=Tor. Of
course rðxÞ ¼ 0 A ðH �ðBTÞ=pÞW : r

3. Chow rings

Let us write by GC, TC the reductive group over C and its maximal torus
corresponding the Lie group G and its maximal torus T . Let CH �ðBGÞ ¼
CH �ðBGCÞðpÞ be the Chow ring of BGC localized at p.

The arguments of Feshbach also work for Chow rings since the Becker-
Gottlieb transfer is constructed by Totaro [22].

Lemma 3.1. The restriction map r�
CH of Chow rings is surjective if and only

if ðCH �ðBGÞ=TÞnZ=p has not nonzero nilpotent elements.
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However if H �ðGÞ has p-torsion and G is simply connected, then
ðCH �ðBGÞ=TorÞnZ=p always has nonzero nilpotent elements. In fact,
c2 ¼ px4 A CH 4ðBGÞ in the proof of Theorem 3.3 below, is nilpotent in
ðCH �ðBGÞ=ðTorÞÞnZ=p. However from the proof of the above lemma, we
note

Corollary 3.2. If x A CH �ðBTÞW but x B Imðr�
CHÞ, then there is y A

CH �ðBGÞ such that r�
CHðyÞ ¼ psx for some sb 1 and y is nonzero nilpotent

element in ðCH �ðBGÞ=ðTorÞÞnZ=p.

Voevodsky [25], [26] defined the Milnor operation Qi on the mod p motivic
cohomology (over a perfect field k of any chðkÞ)

Qi : H
�;� 0 ðX ;Z=pÞ ! H �þ2ðp i�1Þ;� 0þp i�1ðX ;Z=pÞ

which is compatible with the usual topological Qi by the realization map
tC : H �;� 0 ðX ;Z=pÞ ! H �ðXðCÞ;Z=pÞ when chðkÞ ¼ 0. In particular, note for
smooth X ,

QijCH �ðXÞ=p ¼ QijH 2�;�ðX ;Z=pÞ ¼ 0:

(See §2 in [Pi-Ya] for details.) We will prove the following theorem without
using Feshbach theorem (Lemma 3.1).

Theorem 3.3. Let G be simply connected and H �ðGÞ has p-torsion. Then
the restriction map

r�
CH : CH 2ðBGÞ ! CH 2ðBTÞW

is not surjective.

Proof. (See §2, 3 in [15].) At first, we note that H �ðBTÞW GCH �ðBTÞW
since H �ðBTÞGCH �ðBTÞ. Therefore we have the commutative diagram

CH �ðBGÞ ���!r �
CH

CH �ðBTÞW

cl

???y G

???y
H �ðBGÞ H �ðBTÞW����!r �

H

If H �ðGÞ has p-torsion, then G has a subgroup isomorphic to G2 (resp.
F4, E8) for p ¼ 2 (resp. p ¼ 3; 5). (For details, see [29] or §3 in [15].) We prove
the theorem for p ¼ 2 but the other cases are proved similarly.

It is known that the inclusion G2 � G induces a surjection H 4ðBGÞ !
H 4ðBG2ÞGZð2Þ and let us write by x4 its generator. Then it is also known
Q1x4 0 0 in H �ðBG2;Z=2Þ where Q1 is the Milnor operation. Therefore
x4 A H 4ðBG2Þ is not in the image of the cycle map

cl : CH 2ðBG2Þ ! H 4ðBG2Þ:
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On the other hand, the element 2x4 is in ImðclÞ because it is represented by
the second Chern class c2. Since r�

H nQ is an isomorphism, r�
Hðx4Þ0 0. But

r�
Hðx4Þ is not in the image r�

CH from the above diagram. r

Remark. The condition of simply connected is necessary. By Vistoli ([24],
[9]), it is known that r�

CH is surjective for G ¼ PGLðpÞ.

Remark. The above theorem is also proved by seeing that x4 is not
generated by Chern classes, since CH 2ðX Þ is always generated by Chern classes
[22].

Recall that for a smooth projective complex variety X , the integral Hodge
conjecture is that the cycle map

cl=Tor : CH
�ðX Þ ! H 2�ðX Þ=Tor \H �;�ðX Þ

is surjective where H �;�ðXÞ � H 2�ðX ;CÞ is the submodule generated by ð�; �Þ-
forms. Since px4 ¼ c2 in the proof of the above theorem and c2 A H �;�ðXÞ, we
see x4 A H �;�ðX Þ.

We know [21], [15] that BGm � BG can be approximated by smooth
projective varieties. Hence counterexamples for the integral Hodge conjecture
with X ¼ BGm � BG give the examples such that r�

CH is not surjective.

Lemma 3.4. Let 1n y B Imðcl=TorÞ � H �ðBGm � BGÞ=Tor be a counter-
example of the integral Hodge conjecture. Then it gives an example such that
r�
CH is not surjective, namely, r�

HðyÞ B Imðr�
CHÞ.

Proof. First note that r�
H=Tor : H

�ðBGÞ=Tor ! H �ðBTÞW is injective.

Since CH �ðBTÞW GH �ðBTÞW , we note r�
CH ¼ r�

H=Torcl=Tor: Therefore y B
Imðcl=TorÞ implies that r�

HðyÞ B Imðr�
H=Torcl=TorÞ ¼ Imðr�

CHÞ. r

For each prime p, there are counterexamples X ¼ BGm � BG for the integral
Hodge conjecture, while they are not simply connected. Indeed, Kameko,
Antieau and Tripaphy ([7], [8], [1], [23]) show this for G ¼ ðSLp � SLpÞ=Z=p
and SUðp2Þ=Z=p. Hence these mean that they give the examples such that r�

CH

are not surjective for non simply connected and all p cases. They proved these
facts by using Chern classes.

We also note its converse. Recall [15] that the integral Tate conjecture over
a finite field k is the chðkÞ > 0 version of the integral Hodge conjecture.

Lemma 3.5. Let x A H �ðBTÞW such that x B r�
CH but x ¼ r�

HðyÞ. More-
over let psy be represented by a Chern class for some sb 1. Then 1n y A
H �ðBGm � BGÞ gives a counterexample of the integral Hodge conjecture. It also
gives a counterexample of the integral Tate conjecture for a finite field k of
chðkÞ0 p.
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Proof. Since psy is represented by a Chern class, we see psy A ImðclÞ.
Hence it is contained in the Hodge class H �;�ðBGm � BGÞ. Hence so is y.
Since x B r�

CH , we see y B cl=Tor. For details of the integral Tate conjecture see
[15]. r

4. SpinðnÞ for p ¼ 2

In this section, we study Chow rings for the cases G ¼ SpinðnÞ, p ¼ 2.
Recall that the modð2Þ cohomology is given by Quillen [17]

H �ðBSpinðnÞ;Z=2ÞGZ=2½w2; . . . ;wn�=JnZ=2½e�
where e ¼ w2hðDÞ and J ¼ ðw2;Q0w2; . . . ;Qh�2w2Þ. Here wi is the Stiefel-
Whitney class for the natural covering SpinðnÞ ! SOðnÞ. The number 2h is
the Radon-Hurwitz number, dimension of the spin representation D (which is the
representation DjC0 0 for the center CGZ=2 � SpinðnÞ). The element e is the
Stiefel-Whitney class w2 h of the spin representation D.

Hereafter this section we always assume G ¼ SpinðnÞ and p ¼ 2.
By Kono [11], it is known that H �ðBG;ZÞ has no higher 2-torsion, that is

HðH �ðBG;Z=2Þ;Q0ÞG ðH �ðBGÞ=TorÞnZ=2

where HðA;Q0Þ is the homology of A with the di¤erential d ¼ Q0.
For ease of arguments, let n be odd i.e., n ¼ 2k þ 1. Let T 0 be a maxi-

mal Torus of SOðnÞ and W 0 ¼ WSOðnÞðT 0Þ its Weyl group. Then W 0 GSG
k is

generated by permutations and change of signs so that jSG
k j ¼ 2kk!. Hence

we have

H �ðBT 0ÞW
0
GZð2Þ½p1; . . . ; pk� � H �ðBT 0ÞGZð2Þ½t1; . . . ; tk�; jtij ¼ 2

where the Pontriyagin class pi is defined by Pið1þ t2i Þ ¼
P

i pi.
For the projection p : SpinðnÞ ! SOðnÞ, the maximal torus of SpinðnÞ is

given p�1ðT 0Þ and W ¼ WSpinðnÞðTÞGW 0. To seek the invariant H �ðBTÞW is
not so easy, since the action W GSG

k is not given by permutations and change of
signs. Benson and Wood decided the H �ðBT 0ÞW

0
-algebra structure of H �ðBTÞW

(Theorem 7.1 in [2]) and proved

Theorem 4.1 (Benson-Wood). Let G ¼ SpinðnÞ and p ¼ 2. Then r�
H is

surjective if and only if na 10 or n0 3; 4; 5 modð8Þ (i.e., it is not the quaternion
case).

Hereafter to study the Chow ring version, we assume SpinðnÞ is in the real
case [17], that is n ¼ 8l� 1; 8l; 8lþ 1 (hence r�

H is surjective and h ¼ 4l� 1;
4l� 1; 4l respectively).

In this case, it is known [17] that each maximal elementary abelian 2-group
A has rank2 A ¼ hþ 1 and

ejA ¼ P
x AH 1ðBA;Z=2Þðzþ xÞ
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where we identify AGClA and H 1ðBA;Z=2ÞGZ=2fx1; . . . ; xhg is the Z=2-
vector space generated by x1; . . . ; xh, and

H �ðBC;Z=2ÞGZ=2½z�; H �ðBA;Z=2ÞGZ=2½x1; . . . ; xh�:

The Dickson algebra is written as a polynomial algebra

Z=2½x1; . . . ; xh�GLhðZ=2Þ GZ=2½d0; . . . ; dh�1�:

where di is defined as

ejA ¼ z2
h þ dh�1z

2 h�1 þ � � � þ d0z:

We can also identify di ¼ w2 h�2 iðDÞ A H �ðBG;Z=2Þ [17].

Lemma 4.2 (Lemma 2.1 in [19]). Milnor operations act on di by

Qh�1di ¼ d0di; Qj�1dj ¼ d0; for 1a j;

Qidj ¼ 0 for i < h� 1 and i0 j � 1:

Lemma 4.3 (Corollary 2.1 in [19]). We have

Qh�1e ¼ d0e and Qke ¼ 0 for 0a ka h� 2:

Theorem 4.4. Let T � G ¼ SpinðnÞ for n ¼ 8l; 8lG 1. There is an e 0 A
CH �ðBTÞW such that e 0 B Imðr�

CHÞ and r�
HðeÞ ¼ e 0 modð2Þ.

Proof. First note that ejC ¼ z2
h

and wijC ¼ 0. Hence H �ðBG;Z=2ÞjCG
Z=2½z2 h �, which implies that e is not in the Q0-image. From the preceding
Lemma 4.3 we see Q0e ¼ 0. By Kono’s result, we see

00 e A HðH �ðBG;Z=2Þ;Q0ÞG ðH �ðBGÞ=TorÞnZ=2Þ:

Take e 00 A H �ðBGÞ=Tor with that e 00 ¼ e modð2Þ. Then

e 0 ¼ r�
Hðe 00Þ0 0 in H �ðBGÞ=Tor � H �ðBTÞW :

From the preceding Lemma 4.3, Qh�1ðeÞ0 0. Hence we see e 0 B r�
CH by the

existence of Qi in the motivic cohomology by Voevodsky. r

Let DC be the complex representation induced from the real representation
D. Then we see (see Theorem 4.2 in [19])

c2 h�1ðDCÞjC ¼ 2w2 h jC ¼ 2z2
h

:

Of course this element c2 h�1ðDCÞ is in the Chow ring CH �ðBGÞ. Hence we see
that we can take 2e 0 A Imðr�

CHÞ.
From the result by Benson-Wood, we know r�

H is surjective in this (real)
case. Hence from Lemma 3.5 (or Qh�1ðeÞ0 0), we have
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Corollary 4.5. Let X ¼ BGm � BSpinðnÞ with n ¼ 8l; 8lG 1: The ele-
ment 1n e A H 2 hðX Þ \H 2 h�1;2 h�1ðXÞ gives a counterexample for the integral
Hodge and the integral Tate conjectures, namely 1n e B ImðclH=TorÞ.

5. Cobordism

Let BP�ðXÞ be the Brown-Peterson cohomology theory with the coe‰cients
ring BP� ¼ ZðpÞ½v1; v2; . . .� of degree jvij ¼ �2ðpi � 1Þ (see [16] for details). Let

W�ðXÞ ¼ MGL2�;�ðXÞnMU � BP� be the BP�-version of the algebraic cobordism
([25], [13], [14], [29]) such that W�ðX ÞnBP � ZðpÞ GCH �ðX Þ:

We consider the cobordism version of the map r�
H

r�
W : W�ðBGÞ ! W�ðBTÞW GBP�ðBTÞW :

Although A1-homotopy category has the Becker-Gottlieb transfer t (this fact is
announced in [4]), we see

t � r�
W ¼ wðG=TÞ modðv1; v2 . . .Þ

which is not wðG=TÞ in general. So we can not have the W�-version of
Feshbach’s theorem.

We are interesting in an element x A W�ðBGÞ such that r�
WðxÞ0 0 in

W�ðBTÞ. Of course, x is torsion free in W�ðBGÞ, but there is a case such that

00 x A CH �ðBGÞ=pGW�ðBGÞnBP� Z=p

and x is p-torsion in CH �ðBGÞ:

Lemma 5.1. Let f A H �ðBTÞW , f 0 0 modðpÞ, and identify f A gr W�ðBTÞ
GW� nH �ðBTÞ. Let f B Imðr�

WÞ but vm f A Imðr�
WÞ for mb 0. Then vj f A

Imðr�
WÞ for all 0a jam. Namely, there is cj A W�ðBGÞ such that r�

WðcjÞ ¼ vj f ,

cj 0 0 A W�ðBGÞnBP � Z=pGCH �ðBGÞ=p:
Moreover pcj ¼ 0 in CH �ðBGÞ for j > 0.

Proof. We consider the Landweber-Novikov cohomology operation ra (see
[16] for details) in gr W�ðBTÞGW� nH �ðBTÞ: By Cartan formula,

raðvm f Þ ¼
X

a¼a 0þa 00
ra 0 ðvmÞra 00 ð f Þ:

Here ra 00 ð f Þ ¼ 0 for ja 00j > 0 in gr W�ðBTÞGW� nH �ðBTÞ. It is known that
there are operations rbj ðvmÞ ¼ vj for jam ([16]). Thus we see the first
statement.

From the assumption, f itself is not in the cycle map rW � . Hence vj f is
a BP�-module generator in W�ðBTÞW \ ImðW�ðBGÞÞÞ. Hence it is also
nonzero in CH �ðBGÞ=p. Since pvj f ¼ vj pf A vj ImðW�ðBGÞÞ, we have pcj ¼ 0 A
CH �ðBGÞ. r
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We consider the Atiyah-Hirzebruch spectral sequence (AHss)

E �;� 0

2 GH �ðX ;BP� 0 Þ ) BP�ðX Þ
It is known that

ð�Þ d2p i�1ðxÞ ¼ vi nQiðxÞ modðp; v1; . . . ; vi�1Þ:

In general, there are many other types of nonzero di¤erential. However we
consider cases that di¤erentials are only of this form.

Lemma 5.2. Let X ¼ BSpinðnÞ and n ¼ 8l; 8lG 1. In AHss for BP�ðX Þ,
assume all nonzero di¤erentials are of form (*). Then 2e; v1e; . . . ; vh�2e are all
permanent cycles.

Proof. We use Lemma 4.2, 4.3 in the preceding section. First recall
Qiðd0Þ ¼ 0, QiðeÞ ¼ 0 for i < h� 1. Therefore d0e exists in E2 h�1.

Since Qj�1dj ¼ d0 and QkðdjÞ ¼ 0 for k < j � 1, the di¤erential in AHss
is

d2 j�1ðdjeÞ ¼ vj�1 nQj�1ðdjeÞ ¼ vj�1d0e:

Hence we have ð2; v1; v2; . . . ; vh�2Þðd0eÞ ¼ 0 in E �;� 0

2 h�1
:

Now we study the di¤erential

d2 h�1ðeÞ ¼ vh�1Qh�1ðeÞ ¼ vh�1d0e:

Note that e is BP�-free in E
�;� 0

2 h�1
, since ejC ¼ z2

h

and e B ImðQiÞ. Hence we
have

Kerðd2h�1Þ \ BP�fegG Idealð2; v1; . . . ; vh�2Þfeg:

(In this paper, Rfa; b; . . .g means the R-free module generated by a; b; . . .) By the
assumption (*) for di¤erentials, 2e; v1e; . . . ; vh�2e are all permanent cycles. r

For 7a na 9, AHss converging BP�ðBSpinðnÞÞ is computed in [12], ([19]
also), and it is known that (*) is satisfied.

Corollary 5.3. For n ¼ 7; 8 (resp. n ¼ 9), the elements 2e, v1e (resp. 2e,
v1e, v2e) are in Imðr�

BPÞ � BP�ðBTÞW (but e itself is not).

Let KðsÞ�ðXÞ be the Morava K-theory with the coe‰cients ring KðsÞ� G
Z=p½vs; v�1

s �, and AKðsÞ�ðXÞ ¼ AKðsÞ2�;�ðXÞ its algebraic version [29]. Here we
consider an assumption such that

ð��Þ AKðsÞ�ðBGÞ ! KðsÞ�ðBGÞ is surjecive:

It is known by Merkurjev (see [21] for details) that AK �ðBGÞGK �ðBGÞ for the
algebraic K-theory AK �ðXÞ and the complex K-theory K �ðXÞ, which induces
AKð1Þ�ðBGÞGKð1Þ�ðBGÞ. Hence (**) is correct when s ¼ 1 for all G.
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Lemma 5.4. Let X ¼ BSpinðnÞ, n ¼ 8l; 8lG 1 and suppose (*). Moreover
suppose (**) for s ¼ h� 2. Then vh�2e A Imðr�

WÞ, and hence there is ci A CH �ðX Þ
for 0a ia h� 2 in Lemma 5.1.

Proof. First note 00 vh�2e A Kðh� 2Þ�ðXÞ (hence so is e). On the other
hand [29]

AKðh� 2Þ�ðXÞGKðh� 2Þ� nCH �ðXÞ=I

for some ideal I of CH �ðXÞ. Therefore there is an element c A CH �ðXÞ
which corresponds vsh�2e that is clWðcÞ ¼ vsh�2e for clW : W�ðXÞ ! BP�ðXÞ: Since
e B ImðclWÞ, we see s must be positive. The possibility of

jvsh�2ej ¼ �2ð2h�2 � 1Þsþ 2h > 0

is s ¼ 1 or s ¼ 2. When s ¼ 2, we note jv2h�2ej ¼ 4 and clCHðcÞ ¼ 0. However
it is known by Totaro (Theorem 15.1 in [22]),

cl : CH 2ðX Þ ! H 4ðXÞ is injective:

Hence s ¼ 1 and clWðcÞ ¼ vh�2e. r

From Merkurjev’s result for Kð1Þ�ðBGÞ, we have clWðcÞ ¼ v1e.

Corollary 5.5. For X ¼ BSpinðnÞ n ¼ 7; 8, there is an element c A CH 3ðX Þ
such that c0 0 A CH �ðXÞ=2, clðcÞ ¼ 0 but r�

WðcÞ0 0 A W�ðBTÞW.

6. Spinð7Þ for p ¼ 2

Let G be a compact Lie group. Consider the restriction map

resH=p : H
�ðBG;Z=pÞ ! LimV :el:ab: H

�ðBV ;Z=pÞWGðAÞ

where WGðAÞ ¼ NGðAÞ=CGðAÞ and V ranges in the conjugacy classes of ele-
mentary abelian p-groups. Quillen [18] showed this resH=p is an F -isomorphism
(i.e. its kernel and cokernel are generated by nilpotent elements). We consider its
integral version

resH : H �ðBGÞ ! PA:ab:H
�ðBAÞWGðAÞ;

where A ranges in the conjugacy classes of abelian subgroups of G.
Hereafter this section, we assume G ¼ Spinð7Þ and p ¼ 2 and hence h ¼ 3.

The number of conjugacy classes of the maximal abelian subgroups of G is two,
one is the torus T and the other is A 0 G ðZ=2Þ4 which is not contained in T .
The Weyl group is WGðA 0ÞG hU ;GL3ðZ=2Þi � GL4ðZ=2Þ where U is the maxi-
mal unipotent group in GL4ðZ=2Þ. It is well known

H �ðBG;Z=2ÞGH �ðBA 0;Z=2ÞWGðA 0Þ GZ=2½w4;w6;w7;w8�
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where wi for ia 7 (resp. i ¼ 8) are the Stiefel-Whitney class for the representation
induced from Spinð7Þ ! SOð7Þ (resp. the spin representation D and hence w8 ¼
w8ðDÞ ¼ e).

Since H �ðBGÞ has just 2-torsion by Kono, the restriction map resH injects

Tor into H �ðBA 0;Z=2ÞWGðA 0Þ, and

ðH �ðBGÞ=TorÞnZ=2GHðH �ðBG;Z=2Þ;Q0Þ:

Since Q0wi ¼ 0 for i0 6 and Q0w6 ¼ w7, we have

HðH �ðBG;Z=2Þ;Q0ÞGZ=2½w4; c6;w8� c6 ¼ w2
6 :

Of course the right hand side ring has no nonzero nilpotent elements. Hence we
see that r�

H is surjective and

H �ðBTÞW nZ=2GZ=2½w4; c6;w8�:

Thus the integral cohomogy is written as

H �ðBGÞGZð2Þ½w4; c6;w8�n ðZð2Þf1glZ=2½w7�fw7gÞ:
In particular, we note resH is injective.

Next we consider the Atiyah-Hirzebruch spectral sequence

E
�;� 0

2 GH �ðBGÞnBP� ) BP�ðBGÞ:
Its di¤erentials have forms of (*) in §5. Using Q1ðw4Þ ¼ w7, Q2ðw7Þ ¼ c7,
Q2ðw8Þ ¼ w7w8 and Q3ðw7w8Þ ¼ c7c8, we can compute the spectral sequence

gr BP�ðBGÞGBP�½c4; c6; c8�f1; 2w4; 2w8; 2w4w8; v1w8g
lBP�=ð2; v1; v2Þ½c4; c6; c7; c8�fc7g=ðv3c7c8Þ:

Hence BP�ðBGÞnBP� Zð2Þ is isomorphic to

Z�
ð2Þ½c4; c6; c8�f1; 2w4; 2w8; 2w4w8; v1w8g=ð2v1w8Þ

lZ=2½c4; c6; c7; c8�fc7g:

On the other hand, the Chow ring of BG is given by Guillot ([6], [29], [30])

CH �ðBGÞGBP�ðBGÞnBP� Zð2Þ

GZð2Þ½c4; c6; c8�n ðZð2Þf1; c 02; c 04:c 06glZ=2fx3glZ=2½c7�fc7gÞ

where clðciÞ ¼ w2
i , clðc 02Þ ¼ 2w4, clðc 04Þ ¼ 2w8, clðc 06Þ ¼ 2w4w8, and clðx3Þ ¼ 0,

jx3j ¼ 6. Note clWðx3Þ ¼ v1w8 in BP�ðBTÞW , and x3 ¼ c in Corollary 5.5.
Hence we have

CH �ðBGÞ=TorGZð2Þ½c4; c6; c8�f1; c 02; c 04:c 06g

� Zð2Þ½w4; c6;w8�GCH �ðBTÞW :

In fact the nilpotent ideal in ðCH �ðBGÞ=ðTorÞÞnZ=2 is generated by c 02, c
0
4, c

0
6.
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Next we consider the Chow rings version for the restriction map

resCH : CH �ðBGÞ ! PA:ab:CH
�ðBAÞWGðAÞ:

Recall CH �ðBA 0ÞGZð2Þ½y1; . . . ; y4� with clðyiÞ ¼ x2
i . Hence we have

ðCH �ðBA 0Þ=2ÞWGðA 0Þ GZ=2½c4; c6; c7; c8�:

Since Tor is just 2-torsion, we have

Lemma 6.1. For the torsion ideal Tor � CH �ðBGÞ, we have

resCHðTorÞGZ=2½c4; c6; c8; c7�fc7g � CH �ðBA 0Þ:

Thus we see that KerðresCHÞGZ=2½c4; c6; c8�fx3g, which is the ideal of
Gri‰ths elements. We write down the above results.

Theorem 6.2. Let ðG; pÞ ¼ ðSpinð7Þ; 2Þ. Let Grif be the ideal generated by
Gri‰ths elements and D ¼ Zð2Þ½c4; c6; c8�. Then we have

CH �ðBGÞ=TorGDf1; 2w4; 2w8; 2w4w8g

� Df1;w4;w8;w4w8gGCH �ðBTÞW ; with w2
i ¼ ci;

Tor=Grif GD=2½c7�fc7g; Grif GD=2fx3g:

Thus we see Theorem 1.2 in the introduction.

Corollary 6.3. Take an element x A W�ðBGÞ such that x ¼ x3 in
W�ðBGÞnBP� Zð2Þ GCH �ðBGÞ. Also identify ci as an element in W�ðBGÞ.
Then we have Z=2½c4:c6; c8�fxg � W�ðBTÞW=2:

Corollary 6.4. Let J ¼ ð22; 2v1; v21 ; v2; . . .Þ � BP� so that BP�=JG
Z=4f1glZ=2fv1g: For D ¼ Zð2Þ½c4; c6; c8�, we have

W�ðBGÞ=JGDn ðBP�=Jf1; c 02; c 04; c 06; x3g=ð2x3 ¼ v1c
0
4ÞÞlZ=2½c7�fc7gÞ:

7. The exceptional group F4, p ¼ 3

In this section, we assume ðG; pÞ ¼ ðF4; 3Þ. (However similar arguments
also work for ðG; pÞ ¼ ðE6; 3Þ; ðE7; 3Þ and ðE8; 5Þ [10].) Toda computed the
modð3Þ cohomology of BF4. (For details see [20].)

H �ðBG;Z=3ÞGCnD; where

C ¼ Ff1; x20; x2
20glZ=3½x26�nLðx9Þn f1; x20; x21; x26g

D ¼ Zð3Þ½x36; x48�; F ¼ Zð3Þ½x4; x8�:
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Using that H �ðBGÞ has no higher 3-torsion and Q0x8 ¼ x9, Q0x20 ¼ x21,
Q0x25 ¼ x26, we can compute

H �ðBGÞGDnC 0 where

C 0=TorGZð3Þf1; x4glE; where E ¼ Ffab j a; b A fx4; x8; x20gg
C 0 � TorGZ=3½x26�fx26; x21; x9; x9x21g:

Note x26 ¼ Q2Q1ðx4Þ in Theorem 2.2 and

H �ðBT ;Z=3ÞW GHevenðBG;Z=3Þ=ðQ2Q1x4ÞGDnFf1; x20; x2
20g:

(For x3
20 0 0, see [20]). Hence we have

ðH �ðBGÞ=TorÞnZ=3GD=3n ðZ=3f1; x4glEÞ � D=3nFf1; x20; x2
20g:

From Lemma 2.3, we see r�
H is surjective and

H �ðBTÞW GH �ðBGÞ=TorGDn ðZð3Þf1; x4glEÞ:

Next we consider the Atiyah-Hirzebruch spectral sequence [12]

E
�;� 0

2 GH �ðBGÞnBP� ) BP�ðBGÞ:

Its di¤erentials have forms of (*) in §5. Using Q1ðx4Þ ¼ x9, Q1ðx20Þ ¼ x25,
Q1ðx21Þ ¼ x26 and Q2x9 ¼ x26, we can compute

gr BP�ðBGÞGDn ðBP� n ðZð3Þf1; 3x4glEÞlBP�=ð3; v1; v2Þ½x26�fx26gÞ:

Hence we have

BP�ðBGÞnBP� Zð3Þ GDn ðZð3Þf1; 3x4glElZ=3½x26�fx26gÞ:

Proposition 7.1. Let ðG; pÞ ¼ ðF4; 3Þ and Tor � Grif be the ideal generated
by Gri‰ths elements. Then we have

CH �ðBGÞ=Tor � Dn ðZð3Þf1; 3x4glEÞ � H �ðBGÞ=Tor;
Tor=Grif GDnZ=3½x26�fx26g:

If Totaro’s conjecture is correct, then Grif ¼ f0g and the first inclusion is an
isomorphism. From [28], it is known that if x2

8 A ImðclÞ for the cycle map cl,
then we can show that cl itself is surjective. However it seems still unknown
whether x2

8 A ImðclÞ or not.

Corollary 7.2. Let ðG; pÞ ¼ ðF4; 3Þ. If (**) in §5 is correct for some
nb 2, then the cycle map CH �ðBGÞ ! BP�ðBGÞnBP� Zð3Þ is surjective and

CH �ðBGÞ=TorGDn ðZð3Þf1; 3x4glEÞ:

Proof. The corollary follows from jvnx2
8 j ¼ 16� 2ð3n � 1Þa 0. r
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