N. YAGITA KODAI MATH. J. 40 (2017), 537–552

NOTE ON RESTRICTION MAPS OF CHOW RINGS TO WEYL GROUP INVARIANTS

Nobuaki Yagita

Abstract

Let G be an algebraic group over C corresponding a compact simply connected Lie group. When $H^*(G)$ has p-torsion, we see $\rho_{CH}^*: CH^*(BG) \to CH^*(BT)^{W_G(T)}$ is always not surjective. We also study the algebraic cobordism version ρ_{Ω}^* . In particular when G = Spin(7) and p = 2, we see each Griffiths element in $CH^*(BG)$ is detected by an element in $\Omega^*(BT)$.

1. Introduction

Let p be a prime number. Let G be a compact Lie group and T the maximal torus. Let us write $H^*(-) = H^*(-; \mathbb{Z}_{(p)})$, and BG, BT classifying spaces of G, T. Let $W = W_G(T) = N_G(T)/T$ be the Weyl group and $Tor \subset H^*(BG)$ be the ideal generated by torsion elements. Then we have the restriction map

$$\rho_H^*: H^*(BG) \to H^*(BG) / Tor \subset H^*(BT)^W$$

by using the Becker-Gottlieb transfer.

It is well known by Borel ([3]) that when $H^*(G)$ is *p*-torsion free (hence $H^*(BG)$ is *p*-torsion free), then ρ_H^* is surjective. However when $H^*(G)$ has *p*-torsion, there are cases that ρ_H^* are not surjective, which are founded by Feshbach [5].

Let us write by $G_{\mathbf{C}}$, $T_{\mathbf{C}}$ the reductive group over \mathbf{C} and its maximal torus corresponding the Lie groups G, T. Let us write simply $CH^*(BG) = CH^*(BG_{\mathbf{C}})_{(p)}$, $CH^*(BT) = CH^*(BT_{\mathbf{C}})_{(p)}$ the Chow rings of $BG_{\mathbf{C}}$ and $BT_{\mathbf{C}}$ localized at p. We consider the Chow ring version of the restriction map

$$\rho_{CH}^*: CH^*(BG) \to CH^*(BG)/Tor \subset CH^*(BT)^W.$$

Our first observation is

²⁰¹⁰ Mathematics Subject Classification. 55N20, 55R12, 55R40. Key words and phrases. Chow ring, algebraic cobordism, BSpin(n). Received July 28, 2016; revised January 10, 2017.

THEOREM 1.1. Let G be simply connected. If $H^*(G)$ has p-torsion, then the map ρ^*_{CH} is always not surjective.

In the proof, we use an element $x \in H^4(BG)$ with $\rho_H(x) \notin Im(\rho_{CH}^*)$. Hence $x \notin Im(cl)$ for the cycle map $cl : CH^*(BG) \to H^*(BG)$, from the commutative diagram

$$CH^{*}(BG) \xrightarrow{\rho_{CH}^{*}} CH^{*}(BT)^{W}$$

$$cl \qquad \cong \downarrow$$

$$H^{*}(BG) \xrightarrow{\rho_{H}^{*}} H^{*}(BT)^{W}$$

The corresponding element $1 \otimes x \in CH^*(B\mathbf{G}_m \times BG)$ is the element founded as a counterexample for the integral Hodge and hence the integral Tate conjecture in [15].

Next, we consider elements in *Tor*. To study torsion elements, we consider the following restriction map

$$res_H: H^*(BG) \to \prod_{A:abelian \subset G} H^*(BA)^{W_G(A)}$$

There are cases such that res_H are not injective, while for many cases res_H are injective. We consider the Chow ring version ([21], [22]) of the above restriction map

$$res_{CH}: CH^*(BG) \to \prod_{A:ab} CH^*(BA)^{W_G(A)} \subset \prod_{A:ab} H^*(BA)^{W_G(A)}$$

In general res_{CH} has nonzero kernel. In particular, elements in Ker(cl) (i.e. Griffiths elements) for the cycle map cl are always in $Ker(res_{CH})$. Namely Griffiths elements are not detected by res_{CH} .

On the other hand, if the Totaro conjecture

$$CH^*(BG) \cong BP^*(BG) \otimes_{BP^*} \mathbb{Z}_{(p)}$$

(for the Brown-Peterson cohomology $BP^*(-)$) is correct, then of course all elements in $CH^*(BG)$ are detected by elements in $BP^*(BG)$. We show that there is a case that Griffiths elements are detected by ρ_{Ω}^* the restriction for algebraic cobordism theory $\Omega^*(-)$.

Let $\Omega^*(X) = MGL^{2*,*}(X) \otimes_{MU^*_{(p)}} BP^*$ be the *BP*-version of the algebraic cobordism defined by Voevodsky, Levine-Morel ([25], [13], [14]) such that $CH^*(X) \cong \Omega^*(X) \otimes_{BP^*} \mathbf{Z}_{(p)}$. In particular, we consider the case G = Spin(7) and p = 2. We note that there are (nonzero) Griffiths elements in $CH^*(BG)$.

THEOREM 1.2. Let G = Spin(7) and p = 2. Then each Griffiths element (in $CH^*(BG)$) is detected by an element in $\Omega^*(BT)^W \cong BP^*(BT)^W$.

In §2 we study the map ρ_H^* for the ordinary cohomology theory, and recall Feshbach's result. In §3, we study the Chow ring version and show Theorem

1.1. In §4, we study the case G = Spin(n). In §5, we study the *BP**-version and the algebraic cobordism version for the restriction ρ^* . In §6, we write down the case G = Spin(7) quite explicitly, and show Theorem 1.2. In the last section, we note some partial results for the exceptional group $G = F_4$ and p = 3.

The author thanks Kirill Zainoulline to start considering this problem, and Masaki Kameko to let the author know the works by Benson-Wood and Feshbach.

2. Cohomology theory and Feshbach theorem

Let p be a prime number. Let G be a compact Lie group and T the maximal Torus. Then we have the restriction map

$$\rho_H^*: H^*(BG) \to H^*(BT)^W$$

where $H^*(-) = H^*(-; \mathbb{Z}_{(p)})$, BG, BT are classifying spaces and $W = W_G(T) = N_G(T)/T$ is the Weyl group.

It is well known by Borel ([3], [5], [2]) that when $H^*(G)$ is *p*-torsion free, then ρ_H^* is surjective (and hence is isomorphic). However when $H^*(G)$ has *p*-torsion, there are cases that ρ_H^* are not surjective by Feshbach.

For a connected compact Lie group G, we have the Becker-Gottlieb transfer $\tau: H^*(BT) \to H^*(BG)$ such that $\tau \rho_H^* = \chi(G/T)$ for the Euler number $\chi(-)$, and $\rho_H^*\tau(x) = \chi(G/T)x$ for $x \in H^*(BT)^W$. Let $\chi(G/T) = N$ and *Tor* be the ideal of $H^*(BG)$ generated by torsion elements. Then we have the injections

$$N \cdot H^*(BT)^W \subset H^*(BG)/Tor \subset H^*(BT)^W.$$

Feshbach found good criterion to see ρ_H^* is surjecive.

THEOREM 2.1 (Feshbach [5]). The restriction ρ_H^* is surjective if and only if $(H^*(BG)/Tor) \otimes \mathbb{Z}/p$ has no nonzero nilpotent elements.

Proof. First note that $H^*(BT) \cong \mathbb{Z}_{(p)}[t_1, \ldots, t_\ell]$ for $|t_i| = 2$. Hence if $x^m = px'$ in $H^*(BT)$, then x = px'' for $x'' \in H^*(BT)$. Moreover if $x = px' \in H^*(BT)^W$, then so is x' since $H^*(BT)$ is p-torsion free. Thus we see $H^*(BT)^W \otimes \mathbb{Z}/p$ has no nonzero nilpotent elements.

Assume that ρ_H^* is not surjective, and $x \in H^*(BT)^W$ but $x \notin Im(\rho_H^*)$. Let $s \ge 1$ be the smallest number such that $p^s x = \rho_H^*(y)$ for some $y \in H^*(BG)$. Hence $y \ne 0 \mod(p)$. Then

$$\rho_H^*(y^N) = (p^s x)^N = p^{sN} x^N \in pN \cdot H^*(BT)^W \subset p \operatorname{Im}(\rho_H^*).$$

This means that y is a nilpotent element in $(H^*(BG)/Tor) \otimes \mathbb{Z}/p$.

Using this theorem, Feshbach [5] showed ρ_H^* is surjective for $G = G_2$, Spin(n) when $n \le 10$, and is not surjective for Spin(11), Spin(12). Wood [27] showed that Spin(13) is not surjective but Spin(n) for $14 \le n \le 18$ are surjective. Benson

 \square

and Wood [2] solved this problem completely, namely ρ_H^* is not surjective if and only if $n \ge 11$ and $n = 3, 4, 5 \mod(8)$.

For odd prime, we consider mod(p) version

$$\rho_{H/p}: H^*(BG; \mathbb{Z}/p) \to H^*(BT; \mathbb{Z}/p)^W \cong (H^*(BT)/p)^W.$$

It is known that $\rho_{H/p}^*$ is surjective when $G = F_4$ for p = 3 by Toda [20] using a completely different arguments. Also using different arguments (but without computations of $H^*(BT)^W$ for concrete cases), Kameko and Mimura [9] prove that $\rho_{H/p}^*$ are surjective when $G = E_6, E_7$ for p = 3 and $G = E_8$ for p = 5. (The only remain case is $G = E_8$, p = 3 for odd primes.)

Kameko-Mimura get more strong result. Recall the Milnor Q_i operation

$$Q_i: H^*(X; \mathbb{Z}/p) \to H^{*+2p'-1}(X; \mathbb{Z}/p)$$

defined by $Q_0 = \beta$ and $Q_{i+1} = [P^{p^i}Q_i, Q_iP^{p^i}]$ for the Bockstein β and the reduced powers P^j .

THEOREM 2.2 (Kameko-Mimura [9]). Let $G = F_4$, E_6 . E_7 for p = 3 or E_8 for p = 5. Let us write a generator by x_4 in $H^4(BG) \cong \mathbb{Z}_{(p)}$. Then we have

$$H^*(BT; \mathbb{Z}/p)^{W} \cong H^{even}(BG; \mathbb{Z}/p)/(Q_1Q_2x_4)$$

COROLLARY 2.3. For (G, p) in the above theorem, ρ_H^* is surjective.

We can identify $Q_1Q_2(x_4)$ is a *p*-torsion element in $H^*(BG)$, since its Q_0 -image is zero. The above corollary is immediate from the following lemma.

LEMMA 2.4. If the composition

$$\rho: (H^*(BG)/Tor) \otimes \mathbb{Z}/p \to H^*(BT)^W/p \to H^*(BT; \mathbb{Z}/p)^W$$

is injective, then ρ_H^* is surjective.

Proof. Let ρ_H^* be not surjecive and $y \in H^*(BT)^W$ with $y \notin Im(\rho_H^*)$. Then $p^s y = \rho_H^*(x)$ for some $s \ge 1$ and an additive generator $x \in H^*(BG)/Tor$. Of course $\rho(x) = 0 \in (H^*(BT)/p)^W$.

3. Chow rings

Let us write by $G_{\mathbf{C}}$, $T_{\mathbf{C}}$ the reductive group over \mathbf{C} and its maximal torus corresponding the Lie group G and its maximal torus T. Let $CH^*(BG) = CH^*(BG_{\mathbf{C}})_{(p)}$ be the Chow ring of $BG_{\mathbf{C}}$ localized at p.

The arguments of Feshbach also work for Chow rings since the Becker-Gottlieb transfer is constructed by Totaro [22].

LEMMA 3.1. The restriction map ρ_{CH}^* of Chow rings is surjective if and only if $(CH^*(BG)/T) \otimes \mathbb{Z}/p$ has not nonzero nilpotent elements.

However if $H^*(G)$ has *p*-torsion and *G* is simply connected, then $(CH^*(BG)/Tor) \otimes \mathbb{Z}/p$ always has nonzero nilpotent elements. In fact, $c_2 = px_4 \in CH^4(BG)$ in the proof of Theorem 3.3 below, is nilpotent in $(CH^*(BG)/(Tor)) \otimes \mathbb{Z}/p$. However from the proof of the above lemma, we note

COROLLARY 3.2. If $x \in CH^*(BT)^W$ but $x \notin Im(\rho_{CH}^*)$, then there is $y \in CH^*(BG)$ such that $\rho_{CH}^*(y) = p^s x$ for some $s \ge 1$ and y is nonzero nilpotent element in $(CH^*(BG)/(Tor)) \otimes \mathbb{Z}/p$.

Voevodsky [25], [26] defined the Milnor operation Q_i on the mod p motivic cohomology (over a perfect field k of any ch(k))

$$Q_i: H^{*,*'}(X; \mathbb{Z}/p) \to H^{*+2(p'-1),*'+p'-1}(X; \mathbb{Z}/p)$$

which is compatible with the usual topological Q_i by the realization map $t_{\mathbf{C}}: H^{*,*'}(X; \mathbf{Z}/p) \to H^*(X(\mathbf{C}); \mathbf{Z}/p)$ when ch(k) = 0. In particular, note for smooth X,

$$Q_i|CH^*(X)/p = Q_i|H^{2*,*}(X; \mathbf{Z}/p) = 0.$$

(See §2 in [Pi-Ya] for details.) We will prove the following theorem without using Feshbach theorem (Lemma 3.1).

THEOREM 3.3. Let G be simply connected and $H^*(G)$ has p-torsion. Then the restriction map

$$\rho_{CH}^*: CH^2(BG) \to CH^2(BT)^W$$

is not surjective.

Proof. (See §2, 3 in [15].) At first, we note that $H^*(BT)^W \cong CH^*(BT)^W$ since $H^*(BT) \cong CH^*(BT)$. Therefore we have the commutative diagram

If $H^*(G)$ has *p*-torsion, then G has a subgroup isomorphic to G_2 (resp. F_4 , E_8) for p = 2 (resp. p = 3, 5). (For details, see [29] or §3 in [15].) We prove the theorem for p = 2 but the other cases are proved similarly.

It is known that the inclusion $G_2 \subset G$ induces a surjection $H^4(BG) \rightarrow H^4(BG_2) \cong \mathbb{Z}_{(2)}$ and let us write by x_4 its generator. Then it is also known $Q_1x_4 \neq 0$ in $H^*(BG_2; \mathbb{Z}/2)$ where Q_1 is the Milnor operation. Therefore $x_4 \in H^4(BG_2)$ is not in the image of the cycle map

$$cl: CH^2(BG_2) \to H^4(BG_2).$$

On the other hand, the element $2x_4$ is in Im(cl) because it is represented by the second Chern class c_2 . Since $\rho_H^* \otimes \mathbf{Q}$ is an isomorphism, $\rho_H^*(x_4) \neq 0$. But $\rho_H^*(x_4)$ is not in the image ρ_{CH}^* from the above diagram.

Remark. The condition of simply connected is necessary. By Vistoli ([24], [9]), it is known that ρ_{CH}^* is surjective for G = PGL(p).

Remark. The above theorem is also proved by seeing that x_4 is not generated by Chern classes, since $CH^2(X)$ is always generated by Chern classes [22].

Recall that for a smooth projective complex variety X, the integral Hodge conjecture is that the cycle map

$$cl_{/Tor}: CH^*(X) \to H^{2*}(X)/Tor \cap H^{*,*}(X)$$

is surjective where $H^{*,*}(X) \subset H^{2*}(X; \mathbb{C})$ is the submodule generated by (*, *)-forms. Since $px_4 = c_2$ in the proof of the above theorem and $c_2 \in H^{*,*}(X)$, we see $x_4 \in H^{*,*}(X)$.

We know [21], [15] that $B\mathbf{G}_m \times BG$ can be approximated by smooth projective varieties. Hence counterexamples for the integral Hodge conjecture with $X = B\mathbf{G}_m \times BG$ give the examples such that ρ_{CH}^* is not surjective.

LEMMA 3.4. Let $1 \otimes y \notin Im(cl_{/Tor}) \subset H^*(B\mathbf{G}_m \times BG)/Tor$ be a counterexample of the integral Hodge conjecture. Then it gives an example such that ρ_{CH}^* is not surjective, namely, $\rho_H^*(y) \notin Im(\rho_{CH}^*)$.

Proof. First note that $\rho_{H/Tor}^* : H^*(BG)/Tor \to H^*(BT)^W$ is injective. Since $CH^*(BT)^W \cong H^*(BT)^W$, we note $\rho_{CH}^* = \rho_{H/Tor}^* cl_{/Tor}$. Therefore $y \notin Im(cl_{/Tor})$ implies that $\rho_H^*(y) \notin Im(\rho_{H/Tor}^* cl_{/Tor}) = Im(\rho_{CH}^*)$.

For each prime p, there are counterexamples $X = B\mathbf{G}_m \times BG$ for the integral Hodge conjecture, while they are not simply connected. Indeed, Kameko, Antieau and Tripaphy ([7], [8], [1], [23]) show this for $G = (SL_p \times SL_p)/\mathbf{Z}/p$ and $SU(p^2)/\mathbf{Z}/p$. Hence these mean that they give the examples such that ρ_{CH}^* are not surjective for non simply connected and all p cases. They proved these facts by using Chern classes.

We also note its converse. Recall [15] that the integral Tate conjecture over a finite field k is the ch(k) > 0 version of the integral Hodge conjecture.

LEMMA 3.5. Let $x \in H^*(BT)^W$ such that $x \notin \rho_{CH}^*$ but $x = \rho_H^*(y)$. Moreover let $p^s y$ be represented by a Chern class for some $s \ge 1$. Then $1 \otimes y \in$ $H^*(B\mathbf{G}_m \times BG)$ gives a counterexample of the integral Hodge conjecture. It also gives a counterexample of the integral Tate conjecture for a finite field k of $ch(k) \neq p$.

Proof. Since $p^{s}y$ is represented by a Chern class, we see $p^{s}y \in Im(cl)$. Hence it is contained in the Hodge class $H^{*,*}(B\mathbf{G}_m \times BG)$. Hence so is y. Since $x \notin \rho_{CH}^*$, we see $y \notin cl_{/Tor}$. For details of the integral Tate conjecture see [15].

4. *Spin*(*n*) for p = 2

In this section, we study Chow rings for the cases G = Spin(n), p = 2. Recall that the mod(2) cohomology is given by Quillen [17]

$$H^*(BSpin(n); \mathbb{Z}/2) \cong \mathbb{Z}/2[w_2, \dots, w_n]/J \otimes \mathbb{Z}/2[e]$$

where $e = w_{2^h}(\Delta)$ and $J = (w_2, Q_0 w_2, \dots, Q_{h-2} w_2)$. Here w_i is the Stiefel-Whitney class for the natural covering $Spin(n) \rightarrow SO(n)$. The number 2^{h} is the Radon-Hurwitz number, dimension of the spin representation Δ (which is the representation $\Delta | C \neq 0$ for the center $C \cong \mathbb{Z}/2 \subset Spin(n)$). The element e is the Stiefel-Whitney class w_{2^h} of the spin representation Δ .

Hereafter this section we always assume G = Spin(n) and p = 2.

By Kono [11], it is known that $H^*(BG; \mathbb{Z})$ has no higher 2-torsion, that is

$$H(H^*(BG; \mathbb{Z}/2); Q_0) \cong (H^*(BG)/Tor) \otimes \mathbb{Z}/2$$

where $H(A; Q_0)$ is the homology of A with the differential $d = Q_0$.

For ease of arguments, let *n* be odd i.e., n = 2k + 1. Let T' be a maximal Torus of SO(n) and $W' = W_{SO(n)}(T')$ its Weyl group. Then $W' \cong S_k^{\pm}$ is generated by permutations and change of signs so that $|S_k^{\pm}| = 2^k k!$. Hence we have

$$H^*(BT')^{W'} \cong \mathbf{Z}_{(2)}[p_1, \dots, p_k] \subset H^*(BT') \cong \mathbf{Z}_{(2)}[t_1, \dots, t_k], \quad |t_i| = 2$$

where the Pontriyagin class p_i is defined by $\prod_i (1 + t_i^2) = \sum_i p_i$. For the projection $\pi : Spin(n) \to SO(n)$, the maximal torus of Spin(n) is given $\pi^{-1}(T')$ and $W = W_{Spin(n)}(T) \cong W'$. To seek the invariant $H^*(BT)^W$ is not so easy, since the action $W \cong S_k^{\pm}$ is not given by permutations and change of signs. Benson and Wood decided the $H^*(BT')^{W'}$ -algebra structure of $H^*(BT)^W$ (Theorem 7.1 in [2]) and proved

THEOREM 4.1 (Benson-Wood). Let G = Spin(n) and p = 2. Then ρ_H^* is surjective if and only if $n \le 10$ or $n \ne 3, 4, 5 \mod(8)$ (i.e., it is not the quaternion case).

Hereafter to study the Chow ring version, we assume Spin(n) is in the real case [17], that is $n = 8\ell - 1, 8\ell, 8\ell + 1$ (hence ρ_H^* is surjective and $h = 4\ell - 1$, $4\ell - 1, 4\ell$ respectively).

In this case, it is known [17] that each maximal elementary abelian 2-group A has $rank_2 A = h + 1$ and

$$e|A = \prod_{x \in H^1(B\overline{A}; \mathbb{Z}/2)} (z+x)$$

where we identify $A \cong C \oplus \overline{A}$ and $H^1(B\overline{A}; \mathbb{Z}/2) \cong \mathbb{Z}/2\{x_1, \ldots, x_h\}$ is the $\mathbb{Z}/2$ -vector space generated by x_1, \ldots, x_h , and

$$H^*(BC; \mathbb{Z}/2) \cong \mathbb{Z}/2[z], \quad H^*(B\overline{A}; \mathbb{Z}/2) \cong \mathbb{Z}/2[x_1, \dots, x_h].$$

The Dickson algebra is written as a polynomial algebra

$$\mathbf{Z}/2[x_1,\ldots,x_h]^{GL_h(\mathbf{Z}/2)}\cong \mathbf{Z}/2[d_0,\ldots,d_{h-1}].$$

where d_i is defined as

$$e|A = z^{2^{h}} + d_{h-1}z^{2^{h-1}} + \dots + d_0z$$

We can also identify $d_i = w_{2^h - 2^i}(\Delta) \in H^*(BG; \mathbb{Z}/2)$ [17].

LEMMA 4.2 (Lemma 2.1 in [19]). Milnor operations act on d_i by

$$Q_{h-1}d_i = d_0d_i, \quad Q_{j-1}d_j = d_0, \text{ for } 1 \le j,$$

 $Q_id_j = 0 \text{ for } i < h-1 \text{ and } i \ne j-1.$

LEMMA 4.3 (Corollary 2.1 in [19]). We have

$$Q_{h-1}e = d_0e$$
 and $Q_ke = 0$ for $0 \le k \le h-2$.

THEOREM 4.4. Let $T \subset G = Spin(n)$ for $n = 8\ell, 8\ell \pm 1$. There is an $e' \in CH^*(BT)^W$ such that $e' \notin Im(\rho_{CH}^*)$ and $\rho_H^*(e) = e' \mod(2)$.

Proof. First note that $e|C = z^{2^h}$ and $w_i|C = 0$. Hence $H^*(BG; \mathbb{Z}/2)|C \cong \mathbb{Z}/2[z^{2^h}]$, which implies that e is not in the Q_0 -image. From the preceding Lemma 4.3 we see $Q_0e = 0$. By Kono's result, we see

$$0 \neq e \in H(H^*(BG; \mathbb{Z}/2); Q_0) \cong (H^*(BG)/Tor) \otimes \mathbb{Z}/2).$$

Take $e'' \in H^*(BG)/Tor$ with that $e'' = e \mod(2)$. Then

$$e' = \rho_H^*(e'') \neq 0$$
 in $H^*(BG)/Tor \subset H^*(BT)^W$.

From the preceding Lemma 4.3, $Q_{h-1}(e) \neq 0$. Hence we see $e' \notin \rho_{CH}^*$ by the existence of Q_i in the motivic cohomology by Voevodsky.

Let Δ_{C} be the complex representation induced from the real representation Δ . Then we see (see Theorem 4.2 in [19])

$$c_{2^{h-1}}(\Delta_{\mathbf{C}})|C=2w_{2^{h}}|C=2z^{2^{n}}.$$

Of course this element $c_{2^{h-1}}(\Delta_{\mathbb{C}})$ is in the Chow ring $CH^*(BG)$. Hence we see that we can take $2e' \in Im(\rho_{CH}^*)$.

From the result by Benson-Wood, we know ρ_H^* is surjective in this (real) case. Hence from Lemma 3.5 (or $Q_{h-1}(e) \neq 0$), we have

COROLLARY 4.5. Let $X = B\mathbf{G}_m \times BSpin(n)$ with $n = 8\ell, 8\ell \pm 1$. The element $1 \otimes e \in H^{2^h}(X) \cap H^{2^{h-1}, 2^{h-1}}(X)$ gives a counterexample for the integral Hodge and the integral Tate conjectures, namely $1 \otimes e \notin Im(cl_{H/Tor})$.

5. Cobordism

Let $BP^*(X)$ be the Brown-Peterson cohomology theory with the coefficients ring $BP^* = \mathbb{Z}_{(p)}[v_1, v_2, ...]$ of degree $|v_i| = -2(p^i - 1)$ (see [16] for details). Let $\Omega^*(X) = MGL^{2*,*}(X) \otimes_{MU^*} BP^*$ be the BP^* -version of the algebraic cobordism ([25], [13], [14], [29]) such that $\Omega^*(X) \otimes_{BP^*} \mathbb{Z}_{(p)} \cong CH^*(X)$.

We consider the cobordism version of the map ρ_H^*

$$\rho_{\Omega}^*: \Omega^*(BG) \to \Omega^*(BT)^W \cong BP^*(BT)^W.$$

Although A^1 -homotopy category has the Becker-Gottlieb transfer τ (this fact is announced in [4]), we see

$$\tau \cdot \rho_{\Omega}^* = \chi(G/T) \mod(v_1, v_2 \ldots)$$

which is not $\chi(G/T)$ in general. So we can not have the Ω^* -version of Feshbach's theorem.

We are interesting in an element $x \in \Omega^*(BG)$ such that $\rho_{\Omega}^*(x) \neq 0$ in $\Omega^*(BT)$. Of course, x is torsion free in $\Omega^*(BG)$, but there is a case such that

$$0 \neq x \in CH^*(BG)/p \cong \Omega^*(BG) \otimes_{BP^*} \mathbb{Z}/p$$

and x is p-torsion in $CH^*(BG)$.

LEMMA 5.1. Let $f \in H^*(BT)^W$, $f \neq 0 \mod(p)$, and identify $f \in gr \Omega^*(BT) \cong \Omega^* \otimes H^*(BT)$. Let $f \notin Im(\rho_{\Omega}^*)$ but $v_m f \in Im(\rho_{\Omega}^*)$ for $m \geq 0$. Then $v_j f \in Im(\rho_{\Omega}^*)$ for all $0 \leq j \leq m$. Namely, there is $c_j \in \Omega^*(BG)$ such that $\rho_{\Omega}^*(c_j) = v_j f$,

$$c_j \neq 0 \in \Omega^*(BG) \otimes_{BP^*} \mathbb{Z}/p \cong CH^*(BG)/p.$$

Moreover $pc_j = 0$ in $CH^*(BG)$ for j > 0.

Proof. We consider the Landweber-Novikov cohomology operation r_a (see [16] for details) in $gr \Omega^*(BT) \cong \Omega^* \otimes H^*(BT)$. By Cartan formula,

$$r_a(v_m f) = \sum_{a=a'+a''} r_{a'}(v_m) r_{a''}(f).$$

Here $r_{a''}(f) = 0$ for |a''| > 0 in $gr \Omega^*(BT) \cong \Omega^* \otimes H^*(BT)$. It is known that there are operations $r_{\beta_j}(v_m) = v_j$ for $j \le m$ ([16]). Thus we see the first statement.

From the assumption, f itself is not in the cycle map ρ_{Ω^*} . Hence $v_j f$ is a BP^* -module generator in $\Omega^*(BT)^W \cap Im(\Omega^*(BG)))$. Hence it is also nonzero in $CH^*(BG)/p$. Since $pv_j f = v_j pf \in v_j Im(\Omega^*(BG))$, we have $pc_j = 0 \in CH^*(BG)$.

We consider the Atiyah-Hirzebruch spectral sequence (AHss)

$$E_2^{*,*'} \cong H^*(X; BP^{*'}) \Rightarrow BP^*(X)$$

It is known that

(*)
$$d_{2p^{i}-1}(x) = v_i \otimes Q_i(x) \mod(p, v_1, \dots, v_{i-1}).$$

In general, there are many other types of nonzero differential. However we consider cases that differentials are only of this form.

LEMMA 5.2. Let X = BSpin(n) and $n = 8\ell, 8\ell \pm 1$. In AHss for $BP^*(X)$, assume all nonzero differentials are of form (*). Then $2e, v_1e, \ldots, v_{h-2}e$ are all permanent cycles.

Proof. We use Lemma 4.2, 4.3 in the preceding section. First recall $Q_i(d_0) = 0$, $Q_i(e) = 0$ for i < h - 1. Therefore d_0e exists in E_{2^h-1} .

Since $Q_{j-1}d_j = d_0$ and $Q_k(d_j) = 0$ for k < j-1, the differential in AHss is

$$d_{2^{j}-1}(d_{j}e) = v_{j-1} \otimes Q_{j-1}(d_{j}e) = v_{j-1}d_{0}e$$

Hence we have $(2, v_1, v_2, \dots, v_{h-2})(d_0 e) = 0$ in $E_{2^{h-1}}^{*,*'}$.

Now we study the differential

$$d_{2^{h}-1}(e) = v_{h-1}Q_{h-1}(e) = v_{h-1}d_0e.$$

Note that e is BP^* -free in $E_{2^{h-1}}^{*,*'}$, since $e|C = z^{2^h}$ and $e \notin Im(Q_i)$. Hence we have

$$Ker(d_{2^{h}-1}) \cap BP^{*}\{e\} \cong Ideal(2, v_{1}, \dots, v_{h-2})\{e\}.$$

(In this paper, $R\{a, b, ...\}$ means the *R*-free module generated by a, b, ...) By the assumption (*) for differentials, $2e, v_1e, ..., v_{h-2}e$ are all permanent cycles.

For $7 \le n \le 9$, AHss converging $BP^*(BSpin(n))$ is computed in [12], ([19] also), and it is known that (*) is satisfied.

COROLLARY 5.3. For n = 7,8 (resp. n = 9), the elements 2e, v_1e (resp. 2e, v_1e , v_2e) are in $Im(\rho_{BP}^*) \subset BP^*(BT)^W$ (but e itself is not).

Let $K(s)^*(X)$ be the Morava K-theory with the coefficients ring $K(s)^* \cong \mathbb{Z}/p[v_s, v_s^{-1}]$, and $AK(s)^*(X) = AK(s)^{2*,*}(X)$ its algebraic version [29]. Here we consider an assumption such that

(**)
$$AK(s)^*(BG) \to K(s)^*(BG)$$
 is surjective.

It is known by Merkurjev (see [21] for details) that $AK^*(BG) \cong K^*(BG)$ for the algebraic K-theory $AK^*(X)$ and the complex K-theory $K^*(X)$, which induces $AK(1)^*(BG) \cong K(1)^*(BG)$. Hence (**) is correct when s = 1 for all G.

LEMMA 5.4. Let X = BSpin(n), $n = 8\ell, 8\ell \pm 1$ and suppose (*). Moreover suppose (**) for s = h - 2. Then $v_{h-2}e \in Im(\rho_{\Omega}^*)$, and hence there is $c_i \in CH^*(X)$ for $0 \le i \le h - 2$ in Lemma 5.1.

Proof. First note $0 \neq v_{h-2}e \in K(h-2)^*(X)$ (hence so is e). On the other hand [29]

$$AK(h-2)^*(X) \cong K(h-2)^* \otimes CH^*(X)/I$$

for some ideal I of $CH^*(X)$. Therefore there is an element $c \in CH^*(X)$ which corresponds $v_{h-2}^s e$ that is $cl_{\Omega}(c) = v_{h-2}^s e$ for $cl_{\Omega} : \Omega^*(X) \to BP^*(X)$. Since $e \notin Im(cl_{\Omega})$, we see s must be positive. The possibility of

$$|v_{h-2}^s e| = -2(2^{h-2} - 1)s + 2^h > 0$$

is s = 1 or s = 2. When s = 2, we note $|v_{h-2}^2 e| = 4$ and $cl_{CH}(c) = 0$. However it is known by Totaro (Theorem 15.1 in [22]),

$$cl: CH^2(X) \to H^4(X)$$
 is injective.

Hence s = 1 and $cl_{\Omega}(c) = v_{h-2}e$.

From Merkurjev's result for $K(1)^*(BG)$, we have $cl_{\Omega}(c) = v_1 e$.

COROLLARY 5.5. For X = BSpin(n) n = 7, 8, there is an element $c \in CH^3(X)$ such that $c \neq 0 \in CH^*(X)/2$, cl(c) = 0 but $\rho_{\Omega}^*(c) \neq 0 \in \Omega^*(BT)^W$.

6. *Spin*(7) for p = 2

Let G be a compact Lie group. Consider the restriction map

$$res_{H/p}: H^*(BG; \mathbb{Z}/p) \to Lim_{V:el.ab.} H^*(BV; \mathbb{Z}/p)^{W_G(A)}$$

where $W_G(A) = N_G(A)/C_G(A)$ and V ranges in the conjugacy classes of elementary abelian p-groups. Quillen [18] showed this $res_{H/p}$ is an F-isomorphism (i.e. its kernel and cokernel are generated by nilpotent elements). We consider its integral version

$$res_H: H^*(BG) \to \Pi_{A:ab} H^*(BA)^{W_G(A)},$$

where A ranges in the conjugacy classes of abelian subgroups of G.

Hereafter this section, we assume G = Spin(7) and p = 2 and hence h = 3. The number of conjugacy classes of the maximal abelian subgroups of G is two, one is the torus T and the other is $A' \cong (\mathbb{Z}/2)^4$ which is not contained in T. The Weyl group is $W_G(A') \cong \langle U, GL_3(\mathbb{Z}/2) \rangle \subset GL_4(\mathbb{Z}/2)$ where U is the maximal unipotent group in $GL_4(\mathbb{Z}/2)$. It is well known

$$H^*(BG; \mathbb{Z}/2) \cong H^*(BA'; \mathbb{Z}/2)^{W_G(A')} \cong \mathbb{Z}/2[w_4, w_6, w_7, w_8]$$

where w_i for $i \le 7$ (resp. i = 8) are the Stiefel-Whitney class for the representation induced from $Spin(7) \rightarrow SO(7)$ (resp. the spin representation Δ and hence $w_8 = w_8(\Delta) = e$).

Since $H^*(BG)$ has just 2-torsion by Kono, the restriction map res_H injects Tor into $H^*(BA'; \mathbb{Z}/2)^{W_G(A')}$, and

$$(H^*(BG)/Tor) \otimes \mathbb{Z}/2 \cong H(H^*(BG;\mathbb{Z}/2);Q_0).$$

Since $Q_0w_i = 0$ for $i \neq 6$ and $Q_0w_6 = w_7$, we have

$$H(H^*(BG; \mathbb{Z}/2); Q_0) \cong \mathbb{Z}/2[w_4, c_6, w_8] \quad c_6 = w_6^2.$$

Of course the right hand side ring has no nonzero nilpotent elements. Hence we see that ρ_H^* is surjective and

$$H^*(BT)^W \otimes \mathbb{Z}/2 \cong \mathbb{Z}/2[w_4, c_6, w_8]$$

Thus the integral cohomogy is written as

$$H^*(BG) \cong \mathbb{Z}_{(2)}[w_4, c_6, w_8] \otimes (\mathbb{Z}_{(2)}\{1\} \oplus \mathbb{Z}/2[w_7]\{w_7\}).$$

In particular, we note res_H is injective.

Next we consider the Atiyah-Hirzebruch spectral sequence

$$E_2^{*,*'} \cong H^*(BG) \otimes BP^* \Rightarrow BP^*(BG).$$

Its differentials have forms of (*) in §5. Using $Q_1(w_4) = w_7$, $Q_2(w_7) = c_7$, $Q_2(w_8) = w_7w_8$ and $Q_3(w_7w_8) = c_7c_8$, we can compute the spectral sequence

$$gr BP^*(BG) \cong BP^*[c_4, c_6, c_8]\{1, 2w_4, 2w_8, 2w_4w_8, v_1w_8\}$$
$$\oplus BP^*/(2, v_1, v_2)[c_4, c_6, c_7, c_8]\{c_7\}/(v_3c_7c_8).$$

Hence $BP^*(BG) \otimes_{BP^*} \mathbb{Z}_{(2)}$ is isomorphic to

 $\mathbf{Z}^*_{(2)}[c_4, c_6, c_8]\{1, 2w_4, 2w_8, 2w_4w_8, v_1w_8\}/(2v_1w_8)$ $\oplus \mathbf{Z}/2[c_4, c_6, c_7, c_8]\{c_7\}.$

On the other hand, the Chow ring of BG is given by Guillot ([6], [29], [30])

$$CH^*(BG) \cong BP^*(BG) \otimes_{BP^*} \mathbb{Z}_{(2)}$$

$$\cong \mathbf{Z}_{(2)}[c_4, c_6, c_8] \otimes (\mathbf{Z}_{(2)}\{1, c'_2, c'_4, c'_6\} \oplus \mathbf{Z}/2\{\xi_3\} \oplus \mathbf{Z}/2[c_7]\{c_7\})$$

where $cl(c_i) = w_i^2$, $cl(c'_2) = 2w_4$, $cl(c'_4) = 2w_8$, $cl(c'_6) = 2w_4w_8$, and $cl(\xi_3) = 0$, $|\xi_3| = 6$. Note $cl_{\Omega}(\xi_3) = v_1w_8$ in $BP^*(BT)^W$, and $\xi_3 = c$ in Corollary 5.5. Hence we have

$$CH^{*}(BG)/Tor \cong \mathbf{Z}_{(2)}[c_{4}, c_{6}, c_{8}]\{1, c'_{2}, c'_{4}.c'_{6}\}$$
$$\subset \mathbf{Z}_{(2)}[w_{4}, c_{6}, w_{8}] \cong CH^{*}(BT)^{W}$$

In fact the nilpotent ideal in $(CH^*(BG)/(Tor)) \otimes \mathbb{Z}/2$ is generated by c'_2, c'_4, c'_6 .

Next we consider the Chow rings version for the restriction map

$$res_{CH}: CH^*(BG) \to \Pi_{A:ab.} CH^*(BA)^{W_G(A)}$$

Recall $CH^*(BA') \cong \mathbb{Z}_{(2)}[y_1, \ldots, y_4]$ with $cl(y_i) = x_i^2$. Hence we have

$$(CH^*(BA')/2)^{W_G(A')} \cong \mathbb{Z}/2[c_4, c_6, c_7, c_8].$$

Since Tor is just 2-torsion, we have

LEMMA 6.1. For the torsion ideal $Tor \subset CH^*(BG)$, we have

$$res_{CH}(Tor) \cong \mathbb{Z}/2[c_4, c_6, c_8, c_7]\{c_7\} \subset CH^*(BA').$$

Thus we see that $Ker(res_{CH}) \cong \mathbb{Z}/2[c_4, c_6, c_8]\{\xi_3\}$, which is the ideal of Griffiths elements. We write down the above results.

THEOREM 6.2. Let (G, p) = (Spin(7), 2). Let Grif be the ideal generated by Griffiths elements and $D = \mathbb{Z}_{(2)}[c_4, c_6, c_8]$. Then we have

$$CH^{*}(BG)/Tor \cong D\{1, 2w_{4}, 2w_{8}, 2w_{4}w_{8}\}$$

$$\subset D\{1, w_{4}, w_{8}, w_{4}w_{8}\} \cong CH^{*}(BT)^{W}, \quad with \ w_{i}^{2} = c_{i},$$

$$Tor/Grif \cong D/2[c_{7}]\{c_{7}\}, \quad Grif \cong D/2\{\xi_{3}\}.$$

Thus we see Theorem 1.2 in the introduction.

COROLLARY 6.3. Take an element $\xi \in \Omega^*(BG)$ such that $\xi = \xi_3$ in $\Omega^*(BG) \otimes_{BP^*} \mathbb{Z}_{(2)} \cong CH^*(BG)$. Also identify c_i as an element in $\Omega^*(BG)$. Then we have $\mathbb{Z}/2[c_4.c_6,c_8]\{\xi\} \subset \Omega^*(BT)^W/2$.

COROLLARY 6.4. Let $J = (2^2, 2v_1, v_1^2, v_2, ...) \subset BP^*$ so that $BP^*/J \cong \mathbb{Z}/4\{1\} \oplus \mathbb{Z}/2\{v_1\}$. For $D = \mathbb{Z}_{(2)}[c_4, c_6, c_8]$, we have

$$\Omega^*(BG)/J \cong D \otimes (BP^*/J\{1, c_2', c_4', c_6', \xi_3\}/(2\xi_3 = v_1c_4')) \oplus \mathbb{Z}/2[c_7]\{c_7\}).$$

7. The exceptional group F_4 , p = 3

In this section, we assume $(G, p) = (F_4, 3)$. (However similar arguments also work for $(G, p) = (E_6, 3), (E_7, 3)$ and $(E_8, 5)$ [10].) Toda computed the mod(3) cohomology of BF_4 . (For details see [20].)

$$H^*(BG; \mathbb{Z}/3) \cong C \otimes D, \quad \text{where}$$

$$C = F\{1, x_{20}, x_{20}^2\} \oplus \mathbb{Z}/3[x_{26}] \otimes \Lambda(x_9) \otimes \{1, x_{20}, x_{21}, x_{26}\}$$

$$D = \mathbb{Z}_{(3)}[x_{36}, x_{48}], \quad F = \mathbb{Z}_{(3)}[x_4, x_8].$$

Using that $H^*(BG)$ has no higher 3-torsion and $Q_0x_8 = x_9$, $Q_0x_{20} = x_{21}$, $Q_0x_{25} = x_{26}$, we can compute

$$H^{*}(BG) \cong D \otimes C' \quad where$$

$$C'/Tor \cong Z_{(3)}\{1, x_{4}\} \oplus E, \quad where \quad E = F\{ab \mid a, b \in \{x_{4}, x_{8}, x_{20}\}\}$$

$$C' \supset Tor \cong \mathbb{Z}/3[x_{26}]\{x_{26}, x_{21}, x_{9}, x_{9}x_{21}\}.$$

Note $x_{26} = Q_2 Q_1(x_4)$ in Theorem 2.2 and

$$H^*(BT; \mathbb{Z}/3)^W \cong H^{even}(BG; \mathbb{Z}/3)/(Q_2Q_1x_4) \cong D \otimes F\{1, x_{20}, x_{20}^2\}.$$

(For $x_{20}^3 \neq 0$, see [20]). Hence we have

$$(H^*(BG)/Tor) \otimes \mathbb{Z}/3 \cong D/3 \otimes (\mathbb{Z}/3\{1, x_4\} \oplus E) \subset D/3 \otimes F\{1, x_{20}, x_{20}^2\}.$$

From Lemma 2.3, we see ρ_H^* is surjective and

$$H^*(BT)^{W} \cong H^*(BG)/Tor \cong D \otimes (\mathbb{Z}_{(3)}\{1, x_4\} \oplus E).$$

Next we consider the Atiyah-Hirzebruch spectral sequence [12]

$$E_2^{*,*'} \cong H^*(BG) \otimes BP^* \Rightarrow BP^*(BG).$$

Its differentials have forms of (*) in §5. Using $Q_1(x_4) = x_9$, $Q_1(x_{20}) = x_{25}$, $Q_1(x_{21}) = x_{26}$ and $Q_2x_9 = x_{26}$, we can compute

$$gr BP^*(BG) \cong D \otimes (BP^* \otimes (\mathbb{Z}_{(3)}\{1, 3x_4\} \oplus E) \oplus BP^*/(3, v_1, v_2)[x_{26}]\{x_{26}\}).$$

Hence we have

$$BP^*(BG) \otimes_{BP^*} \mathbf{Z}_{(3)} \cong D \otimes (\mathbf{Z}_{(3)}\{1, 3x_4\} \oplus E \oplus \mathbf{Z}/3[x_{26}]\{x_{26}\}).$$

PROPOSITION 7.1. Let $(G, p) = (F_4, 3)$ and $Tor \supset Grif$ be the ideal generated by Griffiths elements. Then we have

$$CH^*(BG)/Tor \subset D \otimes (\mathbf{Z}_{(3)}\{1, 3x_4\} \oplus E) \subset H^*(BG)/Tor,$$
$$Tor/Grif \cong D \otimes \mathbf{Z}/3[x_{26}]\{x_{26}\}.$$

If Totaro's conjecture is correct, then $Grif = \{0\}$ and the first inclusion is an isomorphism. From [28], it is known that if $x_8^2 \in Im(cl)$ for the cycle map cl, then we can show that cl itself is surjective. However it seems still unknown whether $x_8^2 \in Im(cl)$ or not.

COROLLARY 7.2. Let $(G, p) = (F_4, 3)$. If (**) in §5 is correct for some $n \ge 2$, then the cycle map $CH^*(BG) \rightarrow BP^*(BG) \otimes_{BP^*} \mathbb{Z}_{(3)}$ is surjective and

$$CH^*(BG)/Tor \cong D \otimes (\mathbb{Z}_{(3)}\{1, 3x_4\} \oplus E).$$

Proof. The corollary follows from $|v_n x_8^2| = 16 - 2(3^n - 1) \le 0$.

REFERENCES

- [1] B. ANTIEAU, On the integral Tate conjecture for finite fields and representation theory, Algebraic Geometry 3 (2016), 138–149.
- [2] D. BENSON AND J. WOOD, Integral invariants and cohomology of BSpin(n), Topology 34 (1994), 13–28.
- [3] A. BOREL, Topics in the homology theory of fiber bundles, Lect. notes in math. (second edition) **36**, Springer Verlag, 1967.
- [4] G. CARLSSON AND R. JOSHUA, Motivic Spanier-Whitehead duality and motivic Becker-Gottlieb transfer, www.researchgate.net.
- [5] M. FESHBACH, The image of H*(BG; Z) in H*(BT; Z) for a compact Lie group with maximal torus T, Topology 20 (1985), 93–95.
- [6] P. GUILLOT, The Chow rings of G_2 and Spin(7), J. reine angew. Math. 604 (2007), 137–158.
- [7] M. KAMEKO, On the integral Tate conjecture over finite fields, Math. Proc. Cambridge Philos. Soc. 158, 2015, 531–546.
- [8] M. KAMEKO, Representation theory and the cycle map of a classifying space, Algebraic Geometry 4 (2017), 221–228.
- [9] M. KAMEKO AND M. MIMURA, Wely group invariants, arXiv: 1202.6459v1.
- [10] M. KAMEKO AND N. YAGITA, The Brown-Peterson cohomology of the classifying spaces of the projective unitary group PU(p) and exceptional Lie groups, Trans. Amer. Math. Soc. 360 (2008), 2265–2284.
- [11] A. KONO, On the integral cohomology of BSpin(n), J. Math. Kyoto Univ. 26 (1986), 333–337.
- [12] A. KONO AND N. YAGITA, Brown-Peterson and ordinary cohomology theories of classifying spaces for compact Lie groups, Trans. Amer. Math. Soc. 339 (1993), 781–798.
- [13] M. LEVINE AND F. MOREL, Cobordisme algébrique I, C. R. Acad. Sci. Paris 332 (2001), 723-728.
- [14] M. LEVINE AND F. MOREL, Cobordisme algébrique II, C. R. Acad. Sci. Paris 332 (2001), 815–820.
- [15] A. PIRUTKA AND N. YAGITA, Note on the counterexamples for the integral Tate conjecture over finite fields, Document Math. Extra Vol.: A. Merkurjev and A. Suslin's sixtieth birthday, 2015, 501–511.
- [16] D. RAVENEL, Complex cobordism and stable homotopy groups of spheres, Pure and applied mathematics 121, Academic Press, London, 1986.
- [17] D. QUILLEN, The mod 2 cohomology rings of extra-special 2-groups and the spinor groups, Math. Ann. 194 (1971), 197–212.
- [18] D. QUILLEN, A cohomological criterion for *p*-nilpotence, J. of Pure and Applied Algebra 1 (1971), 361–372.
- [19] B. SCHUSTER AND N. YAGITA, Transfers of Chern classes in BP-cohomology and Chow rings, Trans. Amer. Math. Soc. 353 (2001), 1039–1054.
- [20] H. TODA, Cohomology mod(3) of the classifying space BF_4 of the exceptional group F_4 , J. Math. Kyoto Univ. **13** (1973), 97–115.
- [21] B. TOTARO, The Chow ring of classifying spaces, Proc. of symposia in pure math. "Algebraic K-theory" (1997: University of Washington, Seattle) 67, 1999, 248–281.
- [22] B. TOTARO, Group cohomology and algebraic cycles, Cambridge tracts in math. 204, Cambridge Univ. Press, 2014.
- [23] A. TRIPATHY, Further counterexamples to the integral Hodge conjecture, arXiv:1601.0617v1.
- [24] A. VISTOLI, On the cohomolgy and the Chow ring of the classifying space PGL_p , J. reine angew. Math. **610** (2007), 181–227.

- [25] V. VOEVODSKY, The Milnor conjecture, www.math.uiuc.edu/K-theory/0170/.
- [26] V. VOEVODSKY, Motivic cohomology with Z/2 coefficient, Publ. Math. IHES 98 (2003), 59–104.
- [27] J. Wood, Nilpotent elements in the Bockstein spectral sequence for BSpin(n), Contemporary Math. 146 (1993), 453–469.
- [28] N. YAGITA, The image of the cycle map of classifying space of the exceptional Lie group F_4 , J. Math. Kyoto Univ. **44** (2004), 181–191.
- [29] N. YAGITA, Applications of Atiyah-Hirzebruch spectral sequence for motivic cobordism, Proc. London Math. Soc. 90, 2005, 783–816.
- [30] N. YAGITA, Coniveau filtration of cohomology of groups, Proc. London Math. Soc. 101, 2010, 179–206.

Nobuaki Yagita Faculty of Education Ibaraki University Mito, Ibaraki Japan E-mail: nobuaki.yagita.math@vc.ibaraki.ac.jp