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ON THE GROWTH OF HOLOMORPHIC CURVES
NaAN WU AND ZUXING XUAN

Abstract

In this paper, we deduce some results which are generalizations of Petrenko, Fuchs,
Niino, Bergweiler, Eremenko and Marchenko’s work. We will estimate the deviation
b(a, G) of a holomorphic curve G(z) with respect to a small holomorphic curve a(z) and
give an estimation of L(r,a,G).

1. Introduction

In 1935, Valiron proved

PALEY’S CONJECTURE. An entire function ¢(z) of order 1 satisfies

A - 1

log M : -, A< =,

lim inf L(V’Q) < B()) := Sin A 2
Fr—o0 T(V,g) 77:/1 ) >l
b) v 2.

The first complete proof for entire functions was given by Govorov in 1969.
Petrenko [20] proved this conjecture for meromorphic functions of finite lower

order.
D. F. Shea (presented by Fuchs [7]) used the Valiron deficiency to give an
improvement of Petrenko’s theorem.

SHEA’S THEOREM ([7]). Let f(z) be a meromorphic function of finite lower
order p and let A = A(a, f) be the Valiron deficiency of f at a. Then for each

aeC, we have
lim inf max .- {log"|/(z) —a| '}
r—0o0 T(l’7 f)

< B(u, A),
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where B(u,A) is a constant number depending only on u and A and is defined
as

x/A(2 — A), ifxzéorif()<x<%
B(x,A) = and sin%xz\/g,
A - cot +tanﬂx if 0< <1 dsinnx< =
X X 7 ) ¥ O0<x<5 an 3 5

Remark 1. Paley’s conjecture is a special case of Shea’s theorem since
B(u,A) < B(n).

In 1973, Niino [18] extended Shea’s theorem to n-valued algebroid functions
of finite lower order.

THEOREM 1.1 ([18]). Let f(z) be an n-valued transcendental algebroid func-
tion with its j-th determination f;(z) of finite lower order u and let A(0) = A be
the Valiron deficiency of f(z) at oco. Then, we have

lim inf TA%=r max <<, {log"[fj(2)[} -
r—o0 T(}’, f)

B(u,A).

In 1976, Petrenko [24] proved the the extension of Shea’s theorem for a
p-dimensional integral curve.

TueOREM 1.2 ([24]). If a p-dimensional integral curve G(z) has finite lower
order u, then

maxz—r{log W}

imi |G(z) - d|

lim inf h < B(uA),
F—0o0 T(}"7 )

for any fixed p-vector @, where A = A(d, é)

In 1993, Bergweiler and Bock [5] studied the following analogue of Paley’s
conjecture for meromorphic functions of infinite lower order.

THEOREM 1.3 ([5]). For a meromorphic function f(z) of infinite lower order,
we have

. max_{log”|f(2)[}
lim inf rT'(r, f) =
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In 1997, Eremenko [6] introduced the following quantity

o max {log" () —dl '}
bla, f) = Jim A /)

and proved an analogue of the defect relation.

THEOREM 1.4 ([6]). Let f(z) be a meromorphic function such that the set
{a:b(a,f) > 0} contains more than one point. Then

Zb(a,f) <2nm.

aeé

In 1998, Marchenko [12] proved the analogue of Shea’s theorem for
b(a, f).

Tueorem 1.5 ([12]). Let f(z) be a meromorphic function of lower order p,
where 0 < u < oo. Then, for each a e C,

ba, f) < BA)
7

where A = A(a, [) is the Valiron deficiency of a for f(z).
In 2000, Marchenko [15] proved the following

THEOREM 1.6 ([15]). Let f(z) be a meromorphic function of lower order
0<u< oo and order 0 <1 < o0. For 0 <y < o0, put

Ey(y) = {r: max log+|f(rei0) — a|7l < B(y,A(a,f))T(r,f)}.

0€l0,2n)
Then,

— . dt u
log dens Ey(y) := limsup J —>1-=

) R 108 R )goonp gy 1 14

dt A

log dens Ey(y) := lim inf J —>1—-.

log dens Eof R=co 1og R J g, )1, r) 1 y

The purpose of this paper is to extend Theorems 1.5 and 1.6 to the case of
holomorphic curves dealing with small holomorphic curves.

The paper is arranged as follows. In Section 2, we give some notations and
our results. In Section 3, we collect together some lemmas and auxiliary results.
In Section 4, we prove Theorem 2.1 and then, in Section 5, we prove Theorem
2.2.
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2. Notations and results

We denote complex projective n-space by P,C and the dual complex pro-
jective n-space by (P,C)*. Let G:C — P,C be a holomorphic curve and G =
(90,915---,9n) : C— C”H\{O} be its reduced representation, i.e., go(z),g1(2),...,
gn(z) have no common zeros.

We define the characteristic function 7'(r, G) of G by

1 2n . ) .
(2.1) T(r,G) = ZL log|| G(re")|| d0 — log||G(0)]],

where ||G(z)| = (>0 |gj(z)\2)1/ 2. The order and lower order of a holomorphic
curve G(z) are defined as

. log T(r,G) . . log T(r,G)
= 1 _— = l f —_—.
A(G) msup == #(G) = lim in Tog r
For a holomorphlc curve a:C— (P,C)" and d= (ay,ai,...,a,):C—
C”H\{O} which is its reduced representation, G(z)-d(z) is said to be free if
G(z)-d(z) #0. Let n(r,a,G) denote the number of zeros (counting multiplic-
ities) of the entire function

():é Zg, z)aj(z

in the disk {|z| <r}. We denote by N(r,a, G) the counting function of zeros of
the entire function F(z), that is, N(r,a,G) = N(r,0,F).

Under the assumption that G(z)-d(z) #0, we define the approximating
function m(r,a,G) of G and a by

an Glre || 1d(re
m(r,a,G):LJ log 1Gre™) | id@(re )|
2n ), |G(rgz¢) (re’¢)‘

dg.

Put
T(r,a,G) =m(r,a,G)+ N(r,a, G).

Applying the Jensen formula to the entire function F(z), we have
2n

(2.2) N(r,0,F) = %J log|F(re™)| dO — 1og|F(0)|.

T Jo
This gives
(2.3) T(r,a,G) =m(r,a,G)+ N(r,a,G)

1 =IO YN = P
= EL log(||G(re™) |l ||a@(re™)|)) d¢ —10g|G(0) - @(0))|

1G(0)]| 1@(0)]]
=T, G)+ T(ra) +1 — .
(1 @) T a) lo |G(0) - d@(0)]

Q
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The Nevanlinna deficiency d(a) = d(a, G) of a respect to G is defined by
m(r,a, G)

e . T(r,a) — N(r,a,G)
2.4 =1 f————=1+1 .
(24) d(a, G) = lim in T(.G) + lim sup 0. G)

If 6(a, G) > 0 then we say that a is a Nevanlinna deficient curve. We notice that
if a satisfies

(2.5) T(r,a)=0(T(r,G)), r— oo,

i.e., a(z) is a small holomorphic curve of G(z), then (2.4) is reduced to

_ . N(r,a,G)
(2.6) o(a,G) =1 11rrrls;1p T0r.G)

The Valiron deficiency A(a) = A(a, G) of a respect to G is defined by

L m(r,a,G) .. . T(r,a)— N(r,a,G)
(2.7 Aa,G) = llrliscllp T0.G) 1+ llmglf T0.G)

If A(a, G) > 0 then we say that a is a Valiron deficient curve. We notice that if
a(z) is a small holomorphic curve of G(z), then (2.7) is reduced to

L NGaG)

The Petrenko deviation f(a) = f(a, G) of a respect to G is defined by

(2.9) B(a, G) = liminf %

where

1.4, G) = max log 1GCUIEG
Hr e G) = loe G e

The Bergweiler deviation b(a) = b(a, G) of a respect to G is defined by

. L(r,a,G)

where T’ (r,G) is the left derivative of T'(r, G) at r.

If T(r,a) =o0(T(r,G)), then 0 <d(a, G) < Ala,G) <1, d(a,G) < fB(a,G).

Petrenko [21, 22, 24] once studied the deviation of the entire curve G(z) at a
vector d, but he did not study the deviation of the entire curve G(z) to a small
entire curve d(z). In this paper we consider that a(z) is a small holomorphic
curve with respect to G(z), i.e., a(z) satisfies T(r,a) = o(T(r, G)), and we estimate
the Bergweiler deviation b(a,G) of a holomorphic curve G(z) from a small
holomorphic curve a(z).
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THEOREM 2.1. Let G(z) be a holomorphic curve of lower order 0 < u < oo
and let a(z) be a small holomorphic curve of G(z). Then, we have

ba.G) < BULA@G)
u

From Theorem 2.1, if A(a,G) =0, then b(a,G) =0, which is Corollary
2.1.

COROLLARY 2.1. Let G(z) be a holomorphic curve of lower order 0 < u < o0
and let a(z) be a small holomorphic curve of G(z). Then, we have

B(G) ={a:b(a,G) >0} =« Ey(G) ={a:A(a,G) > 0}.
From the proof of Theorem 2.1, we can obtain the following.

COROLLARY 2.2. Let G(z) be a holomorphic curve of lower order 0 < u < o0
and let a(z) be a small holomorphic curve of G(z). Then, we have

pla, G) < B(p, A(a, G)).
Using Marchenko’s method [15], we establish Theorem 2.2.

THEOREM 2.2.  Let G(z) be a holomorphic entire curve of lower order 0 < p <
o0 and order 0 < A < oo and let a(z) be a small holomorphic curve of G(z). For
0<y< o0, put

E(y)={r:L(r,a,G) < B(y,A(a,G))T(r,G) + o(T(r, G))}.

Then we have

— . dt u
log dens E(y) := lim sup J —>1-=
) R0 108 R ) piynpm) y

dt A

log dens E(y) := liminf J —=>1--
log dens E{y) =iy log R Jgpni.ry ¢ Y

The method in this paper was firstly used by Fuchs [7] and Marchenko [15,
11, 13] to investigate the growth of meromorphic functions.

3. Some lemmas and auxiliary results
Fuchs [7] amended the Petrenko’s formula in [20] and established Lemma
3.1. We should notice that Lemma 3.1 is the Possion-Jensen formula in annulus.

LemMma 3.1 ([7]). Let f(z) be a meromorphic function in the complex plane
with its poles {by}. Then, for any y >1 and 2S <r < R/2, we have
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prer—1

i yz R ¢+n/y 0
3.1 log| f(re')| < —J — le lo te')| do
G.) e < | ] et

n Z i’y+|bk|

S<|bA|<R r7 = bl

wox{ () res.n+ () (k)

where ¢ €[0,2n), K is an absolute constant number.

We also need the definition of the second kind of Poélya peaks.

DrerFINITION 3.1. Let 7T(r) be an increasing function in r>ry, {r,} is
called a sequence of Polya peaks of the second kind of order u for T'(r), if
rm — o0, and there exist two sequences {K,} and {¢,}, with K,, — o0, €, — 0,
such that

T(}’) > (1 - 6/71)(r/rm)'uT(rm) (rm/K;n <r< Kmrm)~

Petrenko [19] gave an equality to treat with the error term, and Marchenko
[10] amended his equality and established Lemma 3.2.

Lemma 3.2 ([10, 19]). Let T(r) be a real function with finite lower order p,
{S,} and {R,} be two sequences of real numbers such that
lim S, = lim R, = lim R,/S, = w0,
m-—oo m-—oo m— oo
{48}, {4R,,} be two Pélya peaks of second kind of order u for T(r). Then for
any &> 0, there exits my(e) > 0, such that for each m > my,
111/12

T(4S,)S, "+ T(4R,)R ' < sJ T(H)t+ " ar.
2Sm

Bergweiler [5] introduced some sequences generalizing Polya peaks for
a function T(r) of infinite lower order. We recall the corresponding defini-
tion.

For all sequences M; — oo, & — 0, there exist sequences p; — 00, f; — 00
such that for all r sat1sfy1ng the 1nequa11ty [log(r/p;)| < M; /,u], we have the
estimate

r\*
(3.2) T(r)<(1+g) <p_,) T(p;)-

We can choose the sequences y;, M; such that (see [5])

(3-3) =o(log’? T(p))), M;=o(log T(p)), j— 0.
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We set

M /u M/ u:

P] — p]e l/.u/’ Qj — p]e j//‘/.

Then (3.2) holds for all re [P;, Q;]. We shall assume that M; > 1.
We consider the sets

4 {,e 0,0 T() < \/Lﬁj (/%)MT(/?/)},

1 /r\Y
B; = {re [P, p;] : T(r) < \/—ﬂ—, (/71> T(p_,-)}-

Let

(3.4) g [mindy if 4;£0,  fmax B, if B; #0,
| Lo it 4;=9, 7 1P if B; =0,

(3.5) S;=e MR, T, =e MR,

Then

4 <p<T;<S<R;
It is proved in [5] that
T(R)  T(y) T
R + o =0 ,ujL s dr).
i

J J

(3.6)

Moreover, it follows from inequality (19) in [5] that
(3.7) T(p) < T(5), j— .

4. Proof of Theorem 2.1

The proof results from the idea of Fuchs [7] and Marchenko [11].
Case . u(G) < o0.

By the definition of L(r,a,G), there exists a point 6y € [0,27) such that
IG(re™ )|l [|d(re™ )|

L(r,a,G) =log .
|G(rei®) - d(re)|

For z =re™  there exist two integers k., [. such that 1 <k.<p, 1 <L <p,
and

é IH() _’ i@o
W) Lira.G) — log G Iare™) |

Glre™) - (re™)

e™)| - fay (re™)|

+ |9k _g
|G(rei®) - d(re'™)|

<log™(n+1)+log



GROWTH OF HOLOMORPHIC CURVES 293
Applying (3.1) to the meromorphic function (gr (&)ar(&))/(G(E)-a(&)) and
combining with (4.1), we have

—

|G (re™ )| la(re™)]|
|G(re'™) - d(re'™)]

2 rR ygr—1 Ov+m/y
< LJ riz dtJ log™
2n S (Vy + t}‘) Oo—m/y

(42) L(r,a,G)=log

gk:(tef(})aI: (tei(})

5 — — d0
G(te™) - d(te?)

r} + 7+ |by|”
17— |br|”

PR

S<\bA\<R

Sy ( gkﬂz,) (V>} ( Ik. 1)}
1ok (2) 728, L) L (L) (R +logt(n+1),
I

where {b;} are the roots of G(¢)-a(¢). Here and in the below K is a posi-
tive constant, which may have different values at different places. It is obvious

that
Oo+m/y
J lo
Op—m/y

T<t7g_kfal:>£m<t Ik, ’)+N(za G) < m(t,a,G) + N(1,a, G)
G-d G-a

+|gk. (1) (re”)

— —|dO < m(t,a,G),
G(te') - d(te™)

=T(t,a)+ T(1,G)+ O(1).
Combining the above two equalities with (4.2), we have

O ! '
) r't M
(4.3) L(r,a, G) <y J ( zm(t,a, G) dt + Z log " |bk|y

s (11 +17) S<|bi|<R

+ yK{ (;)7(T(2S, G) + T(2S,a))

+ <;>y(T(R, G)+ T(R, a))} +log"(n+1).

We take y > max(1,2u) and divide the two sides of (4.3) by r#*! and integrate
from 2S to R/2, for —y < p < y,r >0, by

p

2 mﬂ — Iy ’
(4.4) y dt =< 7 sin(zp/y)

N2
o (7 +7r7) w7, it p=0,

if p#0

and
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) Tip P tan 2L, if p£0
© e+ b, p 2y
(4.5) log P dt =<,
0 7 — b i T
A if P = 07
2y
we can see that
R2L(r,a,G) U Rm(r,a,G) mu (RN (r,a, G)
4. ) & ) ¢ an ) ¢
+ K(S™Y(T((2S,G)+ T(2S,q))
+ R*(T(2R,G) + T(2R,a))).
By the first fundamental theorem, namely (2.3), we have
(4.7 m(r,a,G) =T(r,a)+ T(r,G) — N(r,a,G) + O(1)
={1+0(1)T(r,G)—N(r,a,G)+ O(1).
On the other hand, by the definition of Valiron deficiency, we get
(4.8) N(r,a,G) > (1 = Aa,G) —&)T(r,G) + T(r,a)
=(1-A(a,G) —e+o(1))T(r,G).
By the choice of y,y > 2u, we have
-1
tan & — (sm %) = —cot 7X < 0.
It follows from (4.6), (4.7) and (4.8) that
R2L(r,a,G) o o RT(r,G)
4. — A — — 1 .
(4.9) LS 4O dr < {( (@.G)+ ) cot "4 tan T+ o )] L ) ar

+ K(1+0(1)) (TQSSH’ %) T(ii’ G)).

In particular, we choose S =S,,, R = R,,, where S,, and R, are described in
Lemma 3.2. And we notice that the quantity

2Sm Rm
J [T (r, G)/r’“‘“] dr +J [T (r, G)/r"“] dr
S R,/2

can be absorbed into the error term
T(2Sm,G)/Sk + T(2R,,, G)/RL,.

In view of Lemma 3.2, we obtain
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Rin/2 L(r,a,G) T i R /2 T(r,G)
st Ha O dr < {(A(a, 6) +4) cot -t tan T+ 0(1)] LS v ar
Rm/2 T G
+K(1 + 0(1))eLS r(;;l ) ar

= {nﬂ [(A(a, G) + &) cot %+ tan % + 0(1)] FK(1+ 0(1))8}

dr.

1 —|—£JR”I/2 rT' (r, G)
JZ E S

Therefore, we have
b(a,G) < n(A(a, G) cot % + tan Zf)

Taking the maximum of the function f(y)= A(a,G) cotn—f—ktan 7;—/;, we can

obtain the result.

Case II.  u(G) = .
Set

9

j 1 Gire) | |a(re®
m*(re,a,G) = sup —j tog 16 l(re™)]|
meas(E)=20 2n E |G(Ve"ﬂ) . a(rel¢)|
T*(Veig,a, G) = m*(reié’a’ G) +N(V;a; G)a

where re (0,00), 8€[0,n], E<[0,n] is a Lebesgue measurable set. For any
0 <t < o0, consider the set [9]

1G(re®)]| [ld(re™)]

|G(reiv) - d(re™)|

F, = {re”/’ : log > t}, i(re'”) = sup{t: re" e F/'},
where F is the symmetric rearrangement of the set F,. The function
u(re'”) is non-negative and non-increasing in the interval [0,7], even in ¢
and for each fixed r equimeasurable with u(re’”?). Moreover, it satisfies the
relations:

G i , 1(? A
i(r,0) = max log W, m*(re’(),a, G) = fJ u(re'?) do.
|zl=r |G(z) - d(z)] 7 Jo

From a result of Goldberg [8], we know that log||G(z)|| and log|@(z)|| are
subharmonic functions, thus log(||G(z)| - [|d(z)||) is a subharmonic function.
Since log|G(z) - d@(z)| is a subharmonic function, from Theorem A’ in [2] and
(2.2), the function T*(re,a,G) is subharmonic in the domain K = {re™ :0 <
r < 0,0 < ¢ < r}, continuous in K = KU (—00,0)U(0,00) and convex in log r
for each fixed ¢ € [0,7]. Moreover,



296 NAN WU AND ZUXING XUAN
T*(r,a,G) = N(r,a,G), T*(-r,a,G)=T(r,G)+o(T(r,G)),
0 uf i _a(re™)
@T (re 7a,G)—T, 0<O<m.

Suppose that o(r) is a real function. Set

h —hy _
La(r) — li?j(glf a(re”) + oc(:le2 ) — 2a(r)

d( d
If a(r) is twice differentiable, then La(r) = re (rEoc(r))

Since T*(re',a,G) is a subharmonic function, we have

A 02 ‘
(4.10) LT*(re" a,G) +==T"(re'’,a,G) > 0.

0p?
Set

o(r) = j T*(re™,a, G) cos y(p + V) dp,
0

where 0 <o <n/(2w), 0<v¢ <m/(2;)—o, g is defined as in (3.3). As
T*(re",a,G) is a convex function of log r, applying Fatou’s lemma, we obtain

o

(4.11) Lo(r) = LJ T*(re",a,G) cos (¢ + V) do
0

> J LT*(re",a, G) cos u;(p + ) dp > 0.
0

It follows that o(r) is a convex function of logr. Then, ro’ (r) is increasing on
(0,00). Thus, for almost all re (0,00), we have

Lo(r)=r % ra’ (r).

Operating o(r) by L, and by (4.10), for almost all r € (0, 00), we have

Lo(r) = V%(”U/_(V)) = J: LT*(re",a, G) cos wi(p+y) do

* 62 * i
> —L 67)2T (re',a, G) cos (¢ + ) do

0 ; ’
— 7 T*(re",a,G) cos w(p + )l

— i T*(re', a,G) sin (9 +)lg + 7o (r).

We divide this by ! and integrate from ¢ to 7; (where ¢; and 7; are described
by (3.4) and (3.5)):
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T 0 * i 0 * i
(4.12) J [—T (re,a, G)|,—o cosujW—%T (re'’,a, G)|,_, cos p; (o + )

v i . N . dr
— 1 T"(re',a,G) sin (e + ) + 4, T7(r,a, G) sin ,ujlp} )

o (1)) , a(T)) a (y) o)
< | - Fu .
(Tjﬂjl 4 T t;;,.fl H (0

By the definition of &(r), we obtain

Since r¢’ (r) is non-decreasing in [¢;, T},

o(5) = o(T) = | o (1) dr = T (T)) o 3 =~ Tyo" ().
j J 7

where S; is described as in (3.5). Thus,
Tio' (T) < wa(S)) < (1 +0(1))T(S;, G),

On the other hand, by ra’ (r) > ¢’ (1), r > 1, we substitute the above inequality
to (4.12), and in view of (3.6),

T:
O i 0 i i
L [@T (re',a, G)|,—o cos ,ujlp—%T (re™,a, G)|,_, cos u(x+ 1)

v . . . dr
—wT*(re”,a,G) sin (o + ) + 1, T*(r,a, G) sin w T

Lt
< s,ujj (r, G) dr, J— o0.
lj

r,u,-+1

Set y = " _ 4 in the above inequality,
Hj
JTJ [L(r, a, G) sin o
T

dr

piy+l

wT*(re™ a,G) + ;N (r, a, G) cos ,ujoc]

4

LT(r,G) .
<8ﬂjjz,~ s dr, j— oo.
On the other hand, by the definition of Valiron deficiency, ie., (4.8) and
T*(re"™,d,G) < (14 0(1))T(r,G), we have

L L(r,a, G) g <
s sin ;o
! Y

UT(r,G)
+1

dr.

(1+&— (1 —A(q,G)) cos o) Jl. o
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Integrate the right side of the above by parts:
LyT! (r, G)

T; G n G) — 7
J L(r,a, )dr< (1+e—(1—A(a, G) —¢) cos ,-oc)J I
- " r,uﬂr

- dr.
z,- i+l (1 —¢)sin o

There exists a sequence r; € [t;, T;| such that

VA
L(rj,a,G) < m [1+&e—(1—-A(a,G)—c¢)cos ﬂjo‘]roi(Vja G)

Hence,

T

b(a,G) < (1 +e&—(1—A(a,G) —e) cos wal.

(1 — &) sin o
Take o = o; such that cos yo=1-A(a,G) — &
(l4+&—(1—A(a,G) —e)?)

b(a,G) < .
(1=8)\/1— (1 - Aa, G) &)’

Letting ¢ — 0, we have
b(a, G) < n\/A(a, G)(2 — Ala, G)).
This completes the proof of Theorem 2.1.

5. Proof of Theorem 2.2

The proof results from the idea of Marchenko [15, 13]. We put the same
significance on the same notations in the proof of Theorem 2.1. If y <y, the
theorem is obviously true. Suppose that y > x4, v > 0 is a real number satisfying
that u < 7 <y. Choose o, ¥ such that

0 < o < min n,l, —ﬁgxpsﬁ—cx.
27 27
Put

o

a(r) = Jo T*(re,a, G) cos t(p + ) dg.

For almost all re (0, 00), (4.10) implies that
d “1 ou(re™)
— > | -—~ }
rdrro—_(r) > Jo T ap cos (6 + ) do
Integrating twice by parts, we obtain
d |, 1. 1
. — > —— -
(5.1) o ra’ (r) = nu(r, o) cos (o + ) + nL(r, a, G) cos Ty
—tT*(re™, a, G) sin (o + ) + tN(r, a, G) sin t + t%a(r)

= h(r) + t%a(r),
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Since #i(re™) is decreasing in 0, it follows that
(5.2) he(r) + t%a(r) > 0.

Dividing (5.1) by ™! and integrating by parts over the interval [r, R], we have

53 [ s (PR D) - (0D, nesrsr

5 [‘r+l R* Rt rT rT

where ry is a constant number. Next we apply the method of Barry [3, 4]. Put

R
DO(r) = — J };ZS_ZI) dt, ro<r<R

By (5.3), we deduce that
o' (R) _a(R) o' (r) _alr)

. > —— — .
(5.4) D(r) > Rl TR + e +7 p
Put
' (R) o(R)
Y(r)=r"|®(r) + R +71 = |

Combining (5.3) with (5.4), we derive that
(5.5) ¥(r) > ro’ (r) +7o(r), ro<r<R.
And combining (5.2) with (5.5), we derive that
' (r) = t¥(r) + ho(r) = tra’ (r) + 2o(r) + ho(r) = tra’ (r), ro<r<R.

We notice that for fixed 0, T*(re” a,G) is an increasing function in r,
so ¢ (r)=0. Set Ai(tr)={relro,o):h(r)>0}. For reAd(r)N]ro,R],
r¥'(r) > 7¥(r) > 0, that is

) ot

Y(r) > r

We deduce that

\P/
(5.6) ‘L'J dr < J (1) dr <
AN, R T A4 (0o, R ()

The definition of W(r) yields
(5.7) ¥(R) = Ra’ (R) + ta(R).
And the definition of ¢(r) implies that

R‘P’(r) B Y(R)
J’ W) dr = log W(ro)"

0

g(R) < J:(l +0(1))T(R,G) cos (0 + ) d0 < n(1 4+ o(1))T(R, G).
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The monotonicity of ro’ (r) gives

2R 2R ro’ (r
o(2R) — o(R) = J o (r) dr= JR % dr > Ro' (R) log 2.

This leads to

, o(2R) _n(l1+0(1))T(2R,G)
Ro_(R) < log 2 = log 2

From (5.7) we can have a estimation:
n
Y(R — (1 1)T(2R, G).
()= (-4 o5 ) 1+ o))TCR.G)
The inequality (5.6) gives

dr -
T — <lo m+)1+01 T (2R, G)|.
JAI(T)H[FQ,R] r g|:< 10g2 ( ( )) ( )
4
T

Thus log dens A;(7) <
0}, then Ej(t) = [ro, 00)\4;(7), and

, log dens A(7) < Put Ei(7) = {re[ro, ) : h(r) <

RIS

— A
log dens E\ (1) > 1 _é’ log dens E;(7) 21—;.

Taking = 22 —a in h(r) gives
T

1 )
h.(r) ==L(r,a,G) sin ta. — tT*(re", a, G) + tN(r,a, G) cos 0.
T

From the definition of Valiron deficiency and the relation T*(re™ a,G) <
(I+o(1)T(r,G), it follows that

he(r) = %{L(r, a,G) sin ta — wr[l — (1 — A(a, G) —¢) cos w T(r, G)} — o(T(r, G)).

For re Ei(t), h.(r) <0, we have

T

L(r,a,G) < [1—(1—-A(a,G)—¢)cos o T(r,G) +o(T(r,G)), rekE(r).

sin o

By the definition of B(z,A), we can prove that for re Ei(7), the following
holds:

L(r,a,G) < B(t,A(a, G))T(r,G) + o(T(r, G)) < B(y,Ala, G))T(r,G) + o(T(r, G)).

Hence we deduce that Ei(zr) = E(y). By the arbitrariness of 7, we can obtain the
desired result.
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