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POSITIVE TOEPLITZ OPERATORS OF FINITE RANK
ON THE PARABOLIC BERGMAN SPACES

MASAHARU NIisHIO, NORIAKI SUZUKI AND MASAHIRO YAMADA

Abstract

We define the Toeplitz operators on the parabolic Bergman spaces by using a
positive bilinear form. In this setting we characterize finite rank Toeplitz operators.
A relation with the Carleson inclusion is also discussed.

§1. Introduction
We consider the a-parabolic operator

0
() . —A,)*
=+ (A
on the upper half space R"“, where A, := 62 -+ a{ is the Laplacian on
the x-space R" and 0 < « gl Here we denote by X =(x,1), Y={(y,5) and
Z = (z,r) points in R"™ = R" x (0, 0). We denote by (b (/ ),( ,+») the Hilbert
space

b2(%) == {ue L*(R"", V*); L™¥-harmonic on R"''},

where 2> —1 and V* is the (n+ 1)-dimensional weighted Lebesgue measure
t* dxdt on R"™'. Note that if 2 < —1, then b7(2) = {0}. Since for X € R""
the point evaluation u — u(X) : b2(2) — R is bounded (see [5, Proposition 4. 1])
the orthogonal projection from Lz(V’l) = LX(R"™", V%) to b;(%) is represented
as an integral operator by a kernel R, ;, which is called the a-parabolic Bergman
kernel.

For a positive Radon measure u on Rf’l, put

Dom(YZf) {uebz( 1); JJ\Rx i V)u(Y) du(Y) e L* (R}, V;")}
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and for u € Dom(7;}) we set
(1) (T0)(X) = | [ RusX, V)u¥) du ).

We call 7;17' a positive Toeplitz operator with symbol x and weight t*. For the
case 4 =0, under the assumption on u that

1

2 ————— du(x,t) < ©
@ ”(1+z+|x|2“)f wex)
for some = > 0, we proved in (9] that Dom(T}}) = b3(0) and T;} : b2(0) — b,(0) is
bounded if and only if x4 is an a-parabolic Carleson measure. Furthermore, we
have already discussed its compactness ([10]) and Schatten class ([12] and [14]).

In this note, we shall study the rank of positive Toeplitz operators on bf()v)
for 2> —1. In order to discuss without the assumption (2), we give an alter-
native definition of Toeplitz operator. We recall the following general theory
(see, for example, [3] or [4]): Let (#,<-,->) be a real Hilbert space and & be
a bilinear form defined on a subspace 2 of #. We denote by Z the closure
of Z in s#. 1If & is positive, i.e., &(u,u) >0 for all ue &, and if & is closed,
i.e., complete with respect to the inner product <-,-» + &(-,-), then there exists a
unique positive self-adjoint operator 7' on a dense subset Dom(7’) in Z such that

&(u,v) = (Tu,v)

for every u e Dom(T) and every ve Z. Note that the domain of VT coincides
with &, and &(u,v) = <\/7u, ﬁw holds for u,ve 2.

Let 4 >0 be a Radon measure on Rfrl and 4 > —1. Applying the above
general theory to # = b2(1), 2 = b2()) ﬂLz(Rj’r“,u) and a bilinear form

6(u.0) = | [0 dut0),

we have a positive self-adjoint operator T,/ on Dom(7}}) = & such that

3) |[ezzmeonn avioo = [[ucosee) dute)

for every ue Dom(T!f) and ve 2. Then we also define the rank of Tlf by
rank(Tﬂi) = dim(T/f(Dom(T;'))).

Now, we shall state our main theorem.
THEOREM 1. Let A > —1 and u be a positive Radon measure on Rfl.

If there exists a dense subspace Z, in b2(%) such that Z cDom(le) and
dim(7;(2)) < oo, then p is a finite linear combination of point masses and

rank(77/) = #supp(x) = dim(T7/ (%))

holds, where #A denotes the cardinal number of a set A.
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We note that if u satisfies (2), then T; is a self-adjoint extension of Y;f (see
Remark 1 below). Moreover, if supp(u ) is compact, then T/f TA on b2(4).
Hence denoting rank(T}/) := dim(T}/(b;(4))), we have the followmg

THEOREM 2. Let A > —1, and let 1> 0 be a Radon measure on R"+1 with
compact support. If the correspondlng Toeplitz operator T, * is of finite rank then
the support of u is a finite set, and moreover we have rank(TA) #supp( ).

Theorem 1 implies Theorem 2, but we give a direct proof of Theorem 2
in section 4. Using Theorem 2 we give a proof of Theorem 1 in section 5. In
section 6, we make a relation to Carleson inclusions.

In the theory of classical holomorphic Bergman space on the unit disc in the
complex plane, Luecking [7] solved the finite rank problem for complex measures
with compact support. A generalization to higher dimensions is given by Choe

[1].

§2. Preliminaries

We recall some basic properties of a fundamental solution of L(*), of
fractional derivatives of Riemann-Liouville type and of the parabolic Bergman
kernel, which we use later. For proofs and more information about them, see
8], [5] and [6].

Let 0 <o <1. A measurable function u on Rfrl is said to be L(®-
harmonic, if u is continuous on RTI and if L™y = 0 in the sense of distribution,
ie.,

[ [ @y oty avx) o

for every p € C*(R"™), where

* 0 —n—20
(L™ p(x, 1) := —E(P(x, 1) — Cuy 1§mJ (p(x+ y,0) — p(x, )| y| "> dy,
o0 Jiy>o

oy = 472 ((n+ 20)/2) /T (=) > 0 and |x| = (x2 +--- + x2)"/%.
We put
(Zn)fnj ) exp(—f|&[** + V—=1x-&) dé >0
0 ‘ 1<0.
This is a fundamental solution of L™®u =0 so that
LW =0d(0,0) (in the sense of distributions)

W (x,1) =

holds, where 5 (x,) denotes the point mass (Dirac measure) at (x,7) € R™. Note
also that W (x 1) >0 and for every 0 < s <1,

() W (x, 1 :J WO x— y,t— )W (3,5) dy
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holds. When o =1 or o =1/2, we see the explicit closed form: for 7> 0,

m _ —n/2 x4t (1/2) _T((n+1)/2) t
W (x,t) = (4nt)""e and WY/9(x 1) = )2 e |x|2)("+1)/2.

To describe the o-parabolic Bergman kernel with a weight, we use the
fractional derivatives. For x € R and ¢ € C((0,00)), we put

1 (! 1

o p(t ::—J t—1)" p(r) dt

o) = g | 0o

when x > 0, and in general, taking m e N with k —m < 0, we put
0ro(t) == 07 "0 9(1).

We define &, and its fractional power 2, as the dual of 0, in the sense of
distributions:

9[ = (01)* = —0; and D@tk = (0;()*
Then for x>0 and x —m < 0 with me NV, if a function f on (0,00) satisfies
| i@ de < o,
then
1 « el
ok _ _ p\m—K m
TIO) = s |, =07 @)

Now let 4> —1. The reproducing kernel R, , of bf(/l) is given by a
fractional derivative of W(®:

A+l

R, (X,Y) =R, (x,t,y,s):= TOE1)

In fact, it is shown in [5, theorem 5.2] that R, ; has a reproducing property on
bl(2):

G (x — y, 1+ 5).

b2 (7)== {ue LP(R""", V*); L™-harmonic on R"''},
where 1 < p < o0, ie., for any u e b?(4),
(5) () = | [ RusX, VYY) av(¥) = Ru)

holds true. Also, there exist constants Cj, C; > 0 such that
IR, (X, Y)| < Ci(t+s+|x— ) "% for every X,Y e R"!

and

(6) “ R, (X, Y) dVHY) = Gt~ /P02 for X e R,
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Moreover if we define

2V+/1+1
R, ,(X,Y):= ms”@,"”“ W (x =y t+s),
then for v > —(A+1)(1 —1/p),
(7) D'(2):=={R},f; [ e LP(R™", V*),supp(f) is compact}

is a dense subspace of b”(A), and for every u e D"(1), there exists a constant
C > 0 such that

8) e, )] < C(1 14 | )~/ 0=042

n+1
on R,

§3. Linear independence of the parabolic Bergman kernels

We begin with the following lemmas.

LemmA 1. Let ty > 0. Then the bounded linear operator Pl(:) : L2(R", dx) —
L*(R",dx), defined by

©) POS) = [ WP ) () d,
is injective.

Proof. Using the spectral decomposition of the Laplacian on L*(R",dx),

_A = J ;\, dE(;u)7
0

we have

© "
P = J e~ dE(J),

to 0

because the fundamental solution W(*) we use here is defined by the Fourier
transform, which is equivalent to the spectral decomposition. Hence, if f €
L*(R",dx) satisfies Pg(f‘)f: 0, then we have

[}

| earecrr <o,

0
Since d||E(Z)f||* is a positive measure on [0, o0), we see

1717 = L dIEG)I =0,

which implies f = 0. Ul
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LEmMMA 2. Let u be a signed measure on R™' := {(x,t) e R" x R|t < 0}.
Suppose that u is a finite linear combination of point masses. If W x =0 on
R then =0, where

W s u(X) = J WX = Y) du(Y).
R/x+l

Proof. Suppose that u#0 and write u= Z,ZCV:I CkO(x,,—) With ¢ #0
(k=1,...,N). Let tp :=min{tx;1 <k <N} >0 and put

u(x) == W()*,uxt—to chW — Xp, t+ b — o).

Then u, belongs to L?(R",dx) for all t>0 and by (4) and our assumption
W® s« u =0, we have

P u(x) = J WA (x =y, 10) (WP s u(p,t — 10)) dy = WP s u(x, 1) = 0.

Hence Lemma 1 shows u, = u(-,7) =0 for all 7> 0. However this contradicts
the fact that

i D=l 1 () —
lim [u(x;, )] = || Tim W0, 1)
where we take j such that ¢, =#. This implies u = 0. O

Now, we shall show the linear independence of some families related with
the fundamental solution, which is a key in the proof of our main theorems.

PROPOSITION 1. Let > —1. Then the family (RY ) xe RS linearly in-
dependent, where RY,(Y) =R, (X, Y).

Proof. 1In the proof, we write W.X(Y) = W®(x — y,t+s). Then for every

Xe RTI, wXeb?(A)if p>2u(Z+1)/n+1 (see [5, Theorem 1 (2)]). Hence by
(5), we have

JJRxYA(Z) WyX<Z) dVA(Z) = WaX(Y) — WY(X)

for every X, YeR”“, so that any finite linear relation Zk 1cka‘;( )=0
implies the relation 7\, ¢ W, (X) =0. Writing u:= 3\ 1 €kO(x,, —1)» Where
X, = (xk, Zk) we have

ZC/CWX" =0 on R”Jrl

and hence Lemma 2 gives us x =0, which implies ¢ =, =---=cy=0. [
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§4. Proof of Theorem 2

Let 4 > 0 be a measure on R"+1 with compact support. Then as in the case
that A = 0, the Toeplitz operator T % is bounded on b2(1) (in fact, it is compact,

see [10]). Moreover for every u, vleb 5 (2)

10 Ty = | [T avion - ”u(X)v(X) du(X).

Note that Dom(T) = Dom(T/) = b3(4) and T} =
Now we return to a proof of Theorem 2. Let 9?’1 ﬂ)V(bi(/I)) be the range
of T} and assume that dim(%;) < co. Put

M = {X e R ;u(X) =0 for every ue (#,)"},

where .@i is the orthogonal complement of a subset # in bz()). If X e M and
e (#))" then by (3);

(RYuy = ”RW(X, Vu(Y)dVH(Y) =u(X)=0.

This implies that {Rf XeM} < ((9 ﬂ)L)L 9?) and hence Proposition 1
shows #M < dim(#,) < oo. Moreover, for each e (?/?A)L, we have

0< ” u?(X) du(X) = (T u,u) =0,

by (10). This implies x({X € R""";u(X) # 0}) =0, i.e., supp(y) = {X e R"™;
u(X)=0}. Hence

supp(p) = () {X eR"™hu(X)=0} =M,
ue(?)lf)i

which shows #supp(u) < #M < dim(@i’:) = rank(];f) < oo. Since rank(7, 4) <
#supp(u) is trivially true, we complete the proof of Theorem 2. O

§5. Proof of Theorem 1

Let K be an arbitrary compact set in R”“, and consider the restricted mea-
sure 4|, and the corresponding Toeplitz operator T" Then T| is a bounded
operator on b2(/) and

() Ty = | w00 ) > [ ux)? du = Ty 0

for every ue Dom(7}}). Since dim(7T,(%)) < oo, ];[“K is of finite rank and

rank(7,; ) < dim(7}}(Z0))
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holds true. To show this, let uy,...,u, be any finite elements in bi (1) such that
their images 7/ UL ﬂ'} u,, are linearly independent. Denote by s# the linear
hull of {uy, ..., un, 7;4"1 Uy, ..., Tﬂ‘ un}. Let 1,4 be the projection map from bz())
onto . Then lyoT " gives a symmetric linear map on a finite dimensional
Hilbert space #, so that there exist an orthonormal system wy,...,w,, € # and

real numbers 4; > --- > 4, > 0 such that
<’1;;‘VKWZ', Wj> = ;Lj&jj7

where ¢;; stands for the Kronecker delta. Take 0 < e < 1/(2m) with

4 Iy
ST
K
where ||T || is the operator norm of TA :b2(2) — b(1). Since Z is a dense
subspace of b’ 2 (4), we can choose Wy, ..., W, € Zy such that
W —will <e, j=1,....,m

Then the family (wj) 1 Is also linearly independent, if &> 0 is small enough
(which is easily seen by considering their Grammians). Denoting by H and H
the linear hull of {wy,...,w,} and {w;,...,W,}, respectively, and considering
a natural correspondence of W = aywy + -+ + 04 Wy, With w = oywy + -+ + oWy
between H and H, we have for any we H with ||w| =1,

2

- < <2
37 1+me

— )

< <
< vl < —

because ||w — w| < m|w|le. Then we also have

KT o, ) = T wowy| < el| T I (Iw] + [wll) < 3e|| T,

Hlg /t\A I

and hence by (11),

(T, ) = T o,y = (T w,w) = 3¢]| T ||
=Y "l =37 || > Am 3| T;7 11 > 0.

This implies dlrn(T “(2¢)) = m, because dim H = m, and hence dlm( H D)) =
rank(T) ) follows. Since K is arbitrary, Theorem 2 shows that u is a finite
linear combmatlon of point masses and

rank(7 ) > dlm(T‘(@())) > #supp(u)

holds. Since #supp(u) > rank(7}}) is trivially true, we have rank(T})=
dim(7;(%)) = #supp(u). This completes the proof of Theorem 1. O



46 MASAHARU NISHIO, NORIAKI SUZUKI AND MASAHIRO YAMADA

We close this section by making the following remark.

Remark 1. Let 2> —1 and ¢ >0 be a Radon measure on R”“. If u
satisfies a growth condition (2) with some constant 7 > 0, then Dom(T’ ) is dense
in b2(4) and T’ is a self-adjoint extension of T‘ In particular, T) TA on
b;(7) if T} is bounded.

In fact, by (2), (7 ) and (8), if v> —(2+1)/2, then D"(4) is included in
L>(R™™, 1) and dense in b(1), and hence 7 := b2(2)ﬂL2(R”“,,u) is dense in
bz(i). This shows that the domain Dom(T’l) is also dense in hZ(4). Next, take
ue Dzom(T ) arbitrarily. Then by the Fub1n1 theorem, we see that for every
veb;(4),

(Tlu, vy = | [(Tu)(X)o(X) dV*(X)

= [ (] et v dury oty avic

= [ (] et v10000 @500 Yutr) duv) = [ [ty ducr).

This shows that u € Lz(Ri“,y), and hence ue 9. Thus, for evry ve Dom(Tj),
we have

(12) Ty = 6(u0) = [|ww de = (10,

which shows u € Dom((7})") and T,ju= (T;})"u. Since T} is self-adjoint, u e
Dom(7}}) and Tju= Tiu follows.

Above argument explains that the assumption (2) for symbol measures of
Toeplitz operators is very natural in a sense.

§6. Relation to the Carleson inclusion

If a measure x> 0 on RTI satisfies the growth condition (2) for some 7 > 0,
then the corresponding Carleson inclusion

v B2 — LR ) ue

whose domain is Dom(y, ) =b2(A)NL*(R™" 1) = 2, is densely defined and is
a closed operator (see Remark 1). In this section, we discuss some relations
between operators 7, and 1.

Hereafter, for two linear operators 7' and S on a Hilbert space, we write
T < S if Dom(T) <« Dom(S) and 7 =S on Dom(7) hold. Then we have

PROPOSITION 2. Let . > —1. If a measure u > 0 satisfies (2) for some t > 0,
then T, = (11)"1; holds.
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Proof We remark that Dom((z ;)* /”) = {ueb?(A);uecDom(s j),lﬂu €
Dom((z; )*)}. Now we take u e Dom(T’ ) arbitrarily. Then by (12), for every

ve Dom( ), we have

(13) <T/fu, vy = <llfu, l;;LU>L2(RZ+1”u) <= JJ u(X)v(X) d,u(X)),

which implies 1/

Next, since (1)

ueDom((1})") and (1})"sju= Tfu, ie, T} < ()"t} holds.

j is clearly symmetric and TA is self—adjom‘[ we have
Ti=(T;7)" = (1)) = (1) 17,

which shows the proposition. O

If the Carleson inclusion i* is bounded on b2 2 (A), then the corresponding
Toeplitz operator is bounded. More precisely, we have

ProPOSITION 3. Let A > —1 and u be a positive Radon measure on RTI. If
i is bounded, then the measure p =0 satisfies the growth condztlon (2) with
> (n/204+ 1)+ A and T‘ is bounded. Moreover, ||T/|| < ||l;|| and Tlf = Y;j‘
holds on b2 (1.

Proof. We assume that % is bounded. Then as in the proof of Proposi-
tion 1 in [9], we see w(Q*(X))< CV*(Q*X)) for all X e R™™" with some
constant C > 0 (use also [5, Proposition 3.2]), where Q*(X) is the a-parabolic
Carleson box centered at X € RT‘. By a similar argument to [9, Proposition 2],

we have
1 t
(L4124 |x|™) (IL+z1+|x]™)

Hence if we take 7 > (n/2a+ )+ 4, then u satisfies (2). Thus we can use
Proposition 2, which gives |7, Hl < ||z’ |>. Moreover, by (13), we have

A _ A, pX N ) _ i
Tﬂu(X) ={Tju,R; ;> = JJR“’”(X’ Yu(Y)du(Y) = Tﬂu(X).
This completes the proof. ]
Conversely, we have

PrROPOSITION 4. Let 2> —1 and p >0 satisfy the growth condition (2) for
some ©>0. If T/j‘ is bounded, then ljl' is bounded and Hl/i|| < /I
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Proof. We assume that T/ is bounded. Then Dom(7}) = b;(4) so that
L*(R™™, 1) = b2(7). Hence by (12),

2 5 77 77 2
||”HL2(R1+1,,,) =<Tyu,uy < ||Tp“||b§(/t) : ||”||b§(,1) <70 H“”bf(m

This shows the proposition. O
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