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MEAN CURVATURES FOR ANTIHOLOMORPHIC p-PLANES
IN SOME ALMOST HERMITIAN MANIFOLDS

By VANHECKE LIEVEN

1. Let (M, g) be an n-dimensional Riemannian manifold with (positive de-
finite) metric tensor g. We denote by K(x, y) the sectional curvature for a 2-
plane spanned by x and y. Let m be a point of M and = a ¢-plane at m. An
orthonormal basis {e¢,; i=1, 2, ---. n} such that e, e, -+, ¢, span 7 is called an
adapted basis for 7. Then
q
2 K(eq, €4) 1)

PEO="t—g) 2, 2,

is independent of the choice of an adapted basis for = and is called by S. Tachi-
bana [5] the mean curvature p(z) for =.

Before formulating the main theorem of this paper, we give some proposi-
tions for the mean curvature.

PROPOSITION A (S. Tachibana [5]). In an n(>2)-dimensional Riemannian
manifold (M. g), 1f the mean curvature for a q-plane s independent of the choice
of q-planes at each point, then

(3) for g=1 or n—1, (M, g) is an Einstein space;
(1) for 1<g<n—1 and 2q#n, (M, g) 1s of constant curvature;
(iii) for 2q=n, (M, g) is conformally flat.
The converse is true.

Taking holomorphic 2p-planes instead of g-planes, an analogous result in
Kéhler manifolds is obtained :

PROPOSITION B (S. Tachibana [6] and S. Tanno [7]). In a Kdhler manifold
(M, g, ]), n=2k=4, if the mean curvature for a holomorphic 2p-plane 1s indepen-
dent of the choice of holomorphic 2p-planes at a point m, then

(1) for 1=p=k—1 and 2p+k (M, g, J) is of constant holomorphic sectional

curvature at m;

(ii) for 2p=Fk, the Bochner curvature tensor vamishes at m.

The converse is true.

Remark that the case n=2 is trivial and that Proposition B can be formulated
globally. In this case, the converse of (ii) is true if and only if the scalar cur-
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vature is constant.

This proposition has been generalized by the author [9]. To state the ob-
tained result we need some definitions.

Let M be a C* differentiable manifold which is almost Hermitian, that is,
the tangent bundle has an almost complex structure J and a Riemannian metric
g such that g(JX, JY)=g(X, Y) for all X, YeX(M) where X(M) is the Lie alge-
bra of C® vector fields on M. We suppose that dim M=n=2k and we denote
by V' the Riemannian connexion on M.

Let now X, YeX(M) such that g(X, Y)=g(JX, Y)=0. They defined a field
of 2-planes called antiholomorphic planes. The sectional curvature of M restricted
to such fields is the antiholomorphic sectional curvature. More generally, every
subspace N,, of the tangent space T,(M) at meM is called an antiholomorphic
space if JN,CNj.

We say that an almost Hermitian manifold is of constant type at meM
provided that for xT,,(M) we have

A(x, y)=A(x, z) (2

A(x, »)=R(x, 3, x, )—R(x, y, Jx, J3) @)

(R is the Riemann curvature tensor) whenever the planes defined by x, y ‘and
x, z are antiholomorphic and g(y, y)=g(z, z). If this holds for all me M, we say
that M has (powntwise) constant type. Finally, if M has pointwise constant type
and for X, YeX(M) with g(Y, X)=g(JX, Y)=0, A(X, Y) is constant whenever
g(X, X)=g(Y, Y)=1, then M is said to have global constant type. Remark that
these definitions coincide with those of A. Gray for nearly Ké&hler manifolds
r2].

An almost Hermitian manifold M such that

with

FxDY+WF,;xDJY=0  for all X, YeX(M) (3)
is called a quasi-Kdhler manifold [1] and if for all XeX(M) we have
¥ xHX=0, 4)

the manifold is said to be nearly Kdhler [2]. Such a manifold is necessarily
quasi-Kéhler. In [4] G.B. Rizza defined a para-Kdhler manifold as an almost
Hermitian manifold such that

R(x, 3, z, w)=R(x, 3, Jz, Jw) ()
for all x,y, z, w. All these manifolds satisfy
R(x, 3, z, w)=R(Jx, Jy, Jz, Jw) (6)

(see [2], [3], [4]) (except some quasi-Kidhler manifolds which we exclude in
the following) and are evidently generalirations of Ké&hler manifolds. Remark
that it follows at once from (6) that
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K(x, =K(Jx, Jy),  Kx, J»)=K(Jx, ), Y

k(x, )=k(Jx, Jy),  k(x, Jy)+k(Jx, y)=0. (®)
k is the Ricci tensor defined by

Kx, )= S R(x, ¢, 3, ¢) ©)

where {e¢;} is an orthonormal local frame field.
Now we have

ProPOSITION C (L. Vanhecke [9]). Let M be an n(=2k)-dimensional almost
Hermitian manifold which 1s quasi-Kdhler with powntwise constant type or para-
Kdhler. If the mean curvature for holomorphic 2p-planes 1s independent of the
choice of holomorphic 2p-planes at each point m and 1=p=<*k—1, 2p+k, then M 1s
an Einstein manifold. The converse 1s true.

Remark that in this case the mean curvature p(z) of a holomorphic 2p-
plane equals the antiholomorphic sectional curvature.

The main purpose of this paper is to prove an analogous result considering
now the mean curvature of an antiholomorphic p-plane.

MAIN THEOREM. Let M be an n(=2k)-dimensional almost Hermitian mani-
fold which is quasi-Kdhler with pointwise constant type or para-Kdhler. If the
mean curvature for antiholomorphic p-planes 1s independent of the choice of anti-
holomorphic p-planes at each point m and 1=<p=<k—1, then M1s an Einstein mani-
fold. The converse is true.

We prove first the case p=1. To prove the other cases we shall prove the
following theorem :

THEOREM. Let M be an n(=2k)-dimensional almost Hermitian manifold which
1s quasi-Kdhler with constant type at a point me M or para-Kdhler. If the mean
curvature for antiholomorphic p-planes is independent of the choice of antiholo-
morphic p-planes at m and 1<p=<k—1, then M has constant holomorphic sectional
curvature at m. The converse is true.

The main theorem follows then immediately from the two following pro-
positions.

ProrosiTION D (L. Vanhecke [8]). Let M be a quasi-Kdhler manifold with
pointwise constant holomorphic sectional curvature p and pointwise constant type
A. Then M is an Einstein manifold with

2k(x, x)=(k+1)p+3(k—1)2 (10)
for g(x, x)=1, where dim M=n=2k and
dy=p+32, (11
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v denoting the constant antiholomorphic sectional curvature.

This proposition is a generalization of an analogous one for nearly Kéhler
manifolds [2].

ProprosSITION E (G. B. Rizza [4]). Let M be a para-Kdhler manifold with
powntwise constant holomorphic sectional curvature p. Then M is an Einstein
manifold with dv=p, v denoting the constant antiholomorphic sectional curvature
and

2k(x, X)=(k+1)p (12)
where dim M=2k.

Remark that the same theorem can be proved for the almost Hermitian
manifolds such that they satisfy (6) and which are of constant type at a point
me M.

2. Case p=1.
Let
(ey, gy =+, ey, Jeu, Jeo, o+, Jep, €piyy Cpusy vy Chy JCpisy JOpis, o+, Jeu)
be an adapted basis such that e, e, ---, ¢, span the antiholomorphic p-plane.

Then, the antiholomorphic mean curvature p(x) for = is
k
o=t [ 5 3 (K(ew e+ K(ew Je))+ 3 3 Klew, Jep)} . (13)
p(n—p) ‘aFh1 &= B=1 a=1

This can be written as follows:
Pn—pp(m)=2p =)o)+ 33 3 Klew, Je5) (1)

where o(n’) is the holomorphic mean curvature of the 2p-plane =’ spanned by
€y, &gy ", Ep, ]ely Je2r Ty ]ep~ Since

Bew 0= 3 (K(ew €)+Klew, Je) (15)
we have
2k —plo")= 3 kew 0= 32 3 (Klew e)+Klew Je)h  (16)
and then it follows
Pn—P)p)= 3 ke €)= 3 32 Klew €3). (an
For p=1 we obtain
pm)=—L (e, e,) (18)

and with our hypotheses we have

k(x, x)=(n—1)p (19)
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for all x such that g(x, x)=1. This proves the assertion for p=1.

3. Prove of the Theorem.

First we write (17) as follows :

Hn—D)p()='%, Kew ea) by €)= 33 3, Klew 69)—2 5 Klew 25). (20)

Considering now the antiholomorphic p-plane 7, spanned by ey, e, -+, ep_y, Je,
and writing the analogous expression for 7, we obtain by substraction
p—1 p—1
a§1K(e"" ep)solzz1 K(ea, Jep) (21)
or
y 4
aglK(eay ep)=§1K<em ]ep)"H(ep) ) (22)

where H(e,) denotes the holomorphic sectional curvature for the 2-plane spanned
by e, and Je,. We obtain so in general for 1=<8=<p

agl K(ea, eﬁ):é)l K(ea, Jels)_H(eﬁ) . (23)
It follows then from (17):
1’(71—;17)9(%):;;)1 k(eq, ea)—f-é)1 H(ea)—iz{ é}lK(em Jeg) (24)

and with (14) and (16) we get
2p(n—p)p(m)=2 5 bew, ea)+ 3 Hlew = 33 5 (Klew, 05)+Klew, Jep)) . (25)

Since p=k—1, we can consider the analogous formula for the antiholomor-
phic p-plane =, spanned by e, e, --- ¢,-, and ¢,,;. We get by substraction and

p(m)=p(x,):
Kep, €= 2 1K e )+ K(ew Jep))

p—1
:k(epﬂy ep+l)_a§\ {K(eq ep+1)+K(em .[ep+1)} (26)
or in general

(e, e5)-+H(es)— 3 {K(ea ep)+K(eu Je)
=k(e,, ea)—é1 {K(ea, eq)+K(eq, Jeo)} +K(eg, ea)+K(ep, Je,) (27)
where 1<8=<p and p+1=<a=<k. Addition with respect to B gives

élk(eﬁr ep)t+ é H(eg)— A=pk(eq, ea)—(p—l)é1 {K(ea, €a)+K(ea, Jea)} (28)
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where
A= 5 3 (K(ew )+ K(ew Je5)) - (29)
Substituting A with (25) in (28) we obtain
— 2 e )+ 2p(n—pp()
=P k(ew, ¢)—(p—1) 33 {K(ew ea)+Klew Je)} . (30)
Furthermore, by addition with respect to a we get
D k
2p(n—p)(k—p)p(n)—(k—p) glk(eﬁ, e,a)=1>a=§qk(ea, e)—(p—1B  (31)

where
B= 3 % (K(ew e+ K(en Jeo). (32)

a=p+1 a=

It follows now easily with the formulas of above that

B=2p(n—p)o()— 3 kles, e9)— 3, Hiep) (32)

and so we obtain from (31)
(k—p—1) % Kew e +(p=1) 33 Hep)
=2p(n—p)k—Dp(m)—p 3} k(e €. (33)
Considering again = and =, it follows finally from (33) that

(k—p—Dk(x, x)+(p—1)H(x) (34)

is independent of the unit vector x. This proves the theorem for p—%k—1 and
k=+2.

Since k satisfies (8) we have a J-basis (e, Je,) such that %2 is diagonal with
respect to (e, Je,). So it follows from (34) and H(e,)=H(Je,) for

x= % (AetBJe),  B(AMBA=L, (35)
that, for p+1,
H(x)= 2 (A2+BYH(e). (36)

We have for example
Hlea+ Jea)=—5-H(O)+ 5 H(es). (37)

We need now the following formula for quasi-Kdhler manifolds of constant
type (see [3]):
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K(x, 9)+K(x, )
= (He+ Jy)+ B Jy)+ HOxet 3)+ Hix—y)— HG)— HO) 452 (38)

where
A=A(x, y)=A(x, Jy) (39)

is the constant type and g(x, x)=g(y, ¥)=1, g(Jx, y)=0. The same formula is
valid for para-Kidhler manifolds putting A=0.
With the help of (38) we have

K(ea, €0+ K(eay Jeo)=—4H(e)+—5-Hlea)+—52 (40)
for @+#a and then it follows from (32'):
2p(n—p)p(x)
= 3 Kew e+ 272 S He)+ - 2 HE)+-5 02, (4D

Further we have
Kew cd=H(e)+ 2 {K(eq e)+K(ee J0) “2)

1#a
and it follows with (40):

Kew e=—"T2 Hle)+-5 3 He)+-3-(k—12. (43)

Finally, substituting this expression in (41) we get
1p(n—p)p(m)=(k—p+3) 3 Hle+p 3 Hie)+-3-K2h—p—D2.  (44)
Considering again = and =, and remarking that 2+3%) we obtain finally

H(e,)=H(e,) (45)
and this proves the theorem.

4. Proof of the converse.

Let M be a para-Kidhler manifold or a quasi-Kdhler manifold with (point-
wise) constant type and suppose that the holomorphic sectional curvature is

constant at a point me M.
In [8] we proved the following formula for g(x. x)=g(y, ¥y)=1 and g(x, ¥)=0:

K(x, y)= —'u—{l-l-SgZ(]x +-g 2 A, y)+ —Ax, Jy). (46)

The same formula, with 1=0, is proved in [4] for para-Kdhler manifolds with
(pointwise) constant holomorphic sectional curvature. It follows for a+#a:
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K(ew, ea)+K(ew Jea)=—5-(+30=2v )

where v is the antiholomorphic sectional curvature at m. So we have for (13):
2(n—p)p(m)=(k+1Dp+(k—1)32—2(p—1)v. (48)

This proves the converse.
It is interesting to remark that it follows from (43) and (19) that

k(x, x)=(n—p)p+(p—1)v (49)
for g(x, x)=1.
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