ON THE ASYMPTOTIC VALUES FOR REGULAR FUNCTIONS WITH BOUNDED CHARACTERISTIC

Dedicated to Professor Yûsaku Komatu on his 60th birthday

By Chuji Tanaka

1. Introduction.

Let f(z) $(z=re^{i\theta})$ be regular and of bounded type in the unit disk D= $\{z; |z|<1\}$. In general, from the boundedness of the boundary cluster set at z=1, we can not conclude the boundedness of f(z) in the neighborhood of z=1 inside D. Indeed, putting $f(z)=\exp\{(1+z)/(1-z)\}$, f(z) is regular and of bounded type in D, because f(z) is the quotient of two bounded regular functions: 1 and $\exp\{-(1+z)/(1-z)\}$. Then we have easily

$$|f(e^{i\theta})| = 1$$
 for $\theta \neq 0$, $\lim_{r \to 1-0} f(r) = \infty$,

which shows that the boundedness of the boundary cluster set at z=1 does not always mean the boundedness of f(z) in the neighborhood of z=1 inside D.

The object of this note is to establish some additional conditions such that, from the boundedness of the boundary cluster set at z=1, we can conclude the boundedness of f(z) in the neighborhood of z=1 inside D. As its applications, we shall establish theorems of Lindelöf or Montel-type on the asymptotic values of f(z), including F. W. Gehring's theorems ([4]). Our method is based on the integral representation of f(z).

Contents

- 1. Introduction.
- 2. Theorems of Lindelöf-type (I).
- 3. F. W. Gehring's theorem.
- 4. The least harmonic majorant of $\log^+|f(z)|$.
- 5. Theorems of Lindelöf-type (II).
- 6. Theorems of P. Montel-type.

2. Theorems of Lindelöf-type (I).

Let D be the unit disk: |z| < 1, Γ its boundary, which is divided into two arcs Γ_i (i=1, 2) by two points z_0 and z_1 on Γ . Suppose that f(z) $(z=re^{i\theta})$ is

Received Feb. 18, 1974.

regular and of bounded characteristic in *D*. As usual ([10] 1-2), we define the boundary cluster sets $C_{\Gamma_i}(f, z_0)$ (i=1, 2) along Γ_i (i=1, 2) respectively. If $C_{\Gamma_i}(f, z_0)$ is bounded, we say that f(z) is bounded at z_0 along Γ_i . Theorem 1 reads as follows:

THEOREM 1. Let f(z) $(z=re^{i\theta})$ be regular and of bounded characteristic in D. Suppose that f(z) is bounded at $z_0=1$ along Γ_i (i=1,3), where Γ_1 is the upper arc and Γ_3 is the Jordan arc terminating at $z_0=1$ and contained in the domain \mathcal{D}_4 :

$$D \cap \{z; \pi/2 < \arg(z-1) \leq 3\pi/2 - A\},\$$

 Δ being a positive constant less than π . Under these conditions, f(z) is bounded in the domain bounded by Γ_i (i=1,3) and $|z-1|=\varepsilon$, ε being a sufficiently small positive constant.

As its corollaries, we obtain

COROLLARY 1. Let f(z) be regular and of bounded characteristic in D. Suppose that f(z) is bounded at z_0 along Γ_i (i=1, 2, 3), where Γ_s is the Jordan arc terminating at z_0 and contained in a Stolz-domain with vertex at z_0 . Under these conditions, f(z) is bounded in $D \cap U(z_0, \varepsilon)^{(*)}$, ε being a sufficiently small positive constant.

COROLLARY 2. Let f(z) be regular and of bounded characteristic in D. If f(z) tends to a finite value a_i (i=1,2) as z approaches z_0 along Γ_i (i=1,2) respectively, and f(z) is bounded on Γ_s terminating at z_0 and contained in a Stolz-domain with vertex at z_0 , then $a_1=a_2$ and f(z) tends to $a_1=a_2$ uniformly as z tends to z_0 inside D.

To establish theorem 1, we need some lemmas.

LEMMA 1. ([5], [11], p. 3). There exists a domain G bounded by a part of Γ_1 and a curve L in D terminating at z_0 such that

$$C_{\Gamma_1}(f, z_0) = C_G(f, z_0)$$

 $C_G(f, z_0)$ being the interior cluster set at z_0 with respect to G. LEMMA 2. Let us put

$$g(z) = 1/2\pi \cdot \int_{-\pi}^{+\pi} G(\varphi) P(e^{i\varphi}, z) d\varphi \quad for \quad |z| < 1,$$

where $G(\varphi) \in L(-\pi, +\pi)$, $P(e^{i\varphi}, z) = (1 - |z|^2)/|e^{i\varphi} - z|^2$. (1) If $|G(\varphi)| \leq m < +\infty$ almost everywhere in $(-\delta, +\delta)$ ($\delta > 0$), then

$$\overline{\lim_{\substack{z \to 1 \\ |z| < 1}}} |g(z)| \le m. \quad ([13], p. 48)$$

(2) If $|G(\varphi)| \leq m < +\infty$ almost everywhere in $(0, +\delta)$, then for a fixed \varDelta $(0 < \varDelta < \pi)$ we have uniformly

(*) $U(z_0, \varepsilon)$ is ε -neighborhood of z_0 .

$$\lim_{\substack{z \to 1 \\ z \in \mathcal{D}_{\pmb{d}}}} (z - 1) \cdot g(z) = 0 ,$$

where $\mathcal{D}_{\mathbf{A}} = D \cap \{z; \pi/2 < \arg(z-1) \leq 3\pi/2 - \mathbf{A}\}.$

Proof. Put

$$g(z) = \int_{0}^{+\delta_{1}} + \int_{-\delta_{1}}^{0} + \int_{\delta_{1}}^{\pi} + \int_{-\pi}^{-\delta_{1}} = I_{1} + I_{2} + I_{3} + I_{4},$$

where $\delta_1 \ (0 < \delta_1 < \delta)$ will tend to zero later.

By the assumption: $|G(\varphi)| \leq m$ almost everywhere in $(0, +\delta)$,

(2.1)
$$|I_1| \leq m/2\pi \cdot \int_0^{\delta_1} P(e^{i\varphi}, z) d\varphi < m/2\pi \cdot \int_{-\pi}^{+\pi} P(e^{i\varphi}, z) d\varphi = m$$

Putting $z=re^{i\theta}$, we have for $\delta_1 \leq \varphi \leq \pi$, $|\theta| \leq \delta_1/2$,

$$\varphi - \theta \ge \delta_1/2$$
,
 $|e^{i\varphi} - z|^2 \ge 1 - 2r\cos(\delta_1/2) + r^2 \ge \sin^2(\delta_1/2)$,

so that

$$|I_{3}| \leq \frac{1 - r^{2}}{2\pi \sin^{2}\left(\frac{\delta_{1}}{2}\right)} \cdot \int_{\delta_{1}}^{\pi} |G(\varphi)| d\varphi < \frac{1 - r^{2}}{2\pi \sin^{2}\left(\frac{\delta_{1}}{2}\right)} \cdot \int_{-\pi}^{+\pi} |G(\varphi)| d\varphi.$$

Similarly

$$|I_4| < \frac{1-r^2}{2\pi \sin^2\left(\frac{\delta_1}{2}\right)} \cdot \int_{-\pi}^{+\pi} |G(\varphi)| d\varphi.$$

Hence

(2.2)
$$|I_{3}+I_{4}| < \frac{1-r^{2}}{\pi \sin^{2}\left(\frac{\delta_{1}}{2}\right)} \cdot \int_{-\pi}^{+\pi} |G(\varphi)| d\varphi.$$

Since $\mathcal{D}_{\mathbf{\Delta}} \supset \mathcal{D}_{\mathbf{\Delta}'}$ for $0 < \mathbf{\Delta} < \mathbf{\Delta}' < \pi$, we can assume that

 $0 < \delta_1 < \Delta < \pi/4$.

By the elementary calculations, we have

$$\frac{|z-e^{i\varphi}|}{|z-1|} > \sin(d/2) \quad \text{for} \quad -\delta_1 \leq \varphi \leq 0, \ z \in \mathcal{D}_{\mathcal{A}}.$$

Hence

(2.3)
$$|I_{2}| \leq \frac{1-|z|^{2}}{|z-1|^{2}} \cdot \frac{1}{2\pi \sin^{2}\left(\frac{\varDelta}{2}\right)} \cdot \int_{-\delta_{1}}^{0} |G(\varphi)| d\varphi$$
$$< \frac{1}{|z-1|} \cdot \frac{1}{\pi \sin^{2}\left(\frac{\varDelta}{2}\right)} \cdot \int_{-\delta_{1}}^{0} |G(\varphi)| d\varphi.$$

By (2.1), (2.2) and (2.3),

(2.4)
$$\overline{\lim_{\substack{z \to 1 \\ z \in \mathcal{D}_{\mathcal{A}}}}} |(z-1) \cdot g(z)| \leq \frac{1}{\pi \sin^2\left(\frac{\mathcal{A}}{2}\right)} \cdot \int_{-\delta_1}^0 |G(\varphi)| d\varphi.$$

Letting $\delta_1 \rightarrow +0$ in (2.4), we have

$$\overline{\lim_{z \to 1 \atop z \in \mathcal{D}_{\mathcal{A}}}} |(z-1) \cdot g(z)| = 0,$$

which proves part (2) of our lemma.

LEMMA 3. Suppose that f(z) is regular in \overline{D} except at z=1, and of bounded characteristic in D. Then f(z) has the following integral representation:

$$f(z) = B(z) \cdot \exp\left\{1/2\pi \cdot \int_{-\pi}^{+\pi} \log|f(e^{i\varphi})| \cdot Q(e^{i\varphi}, z)d\varphi\right\} \cdot \exp\left\{C \cdot Q(1, z) + i\lambda\right\},$$

where B(z): Blaschke products extended over the zeros of f(z), which may have the unique limit point: z=1,^(*)

$$Q(e^{i\varphi}, z) = (e^{i\varphi} + z)/(e^{i\varphi} - z), \quad C, \lambda: real constants.$$

Proof. It is well konwn ([12], p. 79) that f(z) has the following integral representation;

(2.5)
$$f(z) = B(z) \cdot D_1(z) \cdot D_2(z) ,$$

where B(z): Blaschke products extended over the zeros of f(z),

$$D_{1}(z) = \exp\left\{1/2\pi \cdot \int_{-\pi}^{+\pi} \log|f(e^{i\varphi})| \cdot Q(e^{i\varphi}, z)d\varphi\right\},$$
$$D_{2}(z) = \exp\left\{1/2\pi \cdot \int_{-\pi}^{+\pi} Q(e^{i\varphi}, z)d\mu(\varphi) + i\lambda\right\},$$

 $\mu(\varphi)$: the real function of bounded variation with $\mu'(\varphi)=0$ for almost all $\varphi \in [-\pi, +\pi]$, λ : a real constant.

Since f(z) is regular on |z|=1 except at z=1, its zeros may have the unique limit point: z=1. In the neighbourhood of $z=e^{i\varphi_0}$ ($\varphi_0\neq 0$), f(z) can be represented by

(2.6)
$$f(z) = (z - e^{i\varphi_0})^n \cdot F(z)$$

where n: non negative integer, F(z) is regular at $z=e^{i\varphi_0}$ and $F(e^{i\varphi_0})\neq 0$. Since

$$(z-e^{i\varphi_0})^n = e^{i\lambda^*} \cdot \exp\left\{1/2\pi \cdot \int_{-\pi}^{+\pi} n \cdot \log|e^{i\varphi}-e^{i\varphi_0}| \cdot Q(e^{i\varphi},z)d\varphi\right\},\,$$

 λ^* : a real constant, by (2.5) and (2.6)

^(*) If the number of zeros is finite, z=1 is not the limit point of zeros.

(2.7) $\exp \{H(z)\}$

$$=F(z)/B(z)\cdot\exp\left\{-1/2\pi\cdot\int_{-\pi}^{+\pi}G(\varphi)\cdot Q(e^{i\varphi},z)d\varphi\right\}\cdot\exp\left(i(\lambda^*-\lambda)\right),$$

where $H(z)=1/2\pi \cdot \int_{-\pi}^{+\pi} Q(e^{i\varphi}, z)d\mu(\varphi)$, $G(\varphi)=\log |F(e^{i\varphi})|\neq\infty$ in the neighborhood $\varphi=\varphi_0$. Since $z=e^{i\varphi_0}$ ($\varphi_0\neq0$) is not the limit point of zeros, B(z) is regular and of modulus one on the arc: $A(e^{i\varphi}, \varphi_0-\varepsilon\leq\varphi\leq\varphi_0+\varepsilon)$, ε being a sufficiently small positive constant ([15], p. 410). Hence by (2.6) and lemma 2 (1), the right hand side of (2.7) is not equal to 0 or ∞ on A. In other words, R(H(z)) is not equal to $\pm\infty$ on A. Then we can conclude that $\mu(\varphi)\equiv$ constant on A.

Indeed, if $\mu(\varphi) \equiv \text{constant}$ on A, $\mu(\varphi)$ admits the following representation:

$$\mu(\varphi) = \mu_1(\varphi) + \mu_2(\varphi) + \mu_3(\varphi)$$

where all functions $\mu_i(\varphi)$ (i=1,2,3) are of bounded variation $\mu_1(\varphi)$ is absolutely continuous, $\mu_2(\varphi)$ is continuous and $\mu'_2(\varphi)=0$ a.e., and $\mu_3(\varphi)$ is a step-function. Since $\mu'(\varphi)=0$, $\mu'_i(\varphi)=0$ (i=2,3) a.e., $\mu'_1(\varphi)\equiv 0$ a.e., i.e. $\mu_1(\varphi)\equiv 0$. If $\mu_2(\varphi)$ is a constant, then $\mu_3(\varphi)$ is certainly not a constant, so that

$$H(z) = \frac{1}{2\pi} \cdot \int_{CA} Q(e^{i\varphi}, z) d\mu(\varphi) + \sum_{n=1}^{\infty} Q(e^{i\varphi_n}, z) \cdot J_n,$$

where $\{e^{i\varphi_n}\} \in A$, $\sum_{n=1}^{\infty} |J_n| < +\infty$. Hence R(H(z)) is equal to $\pm \infty$ on A, which is impossible. If $\mu_2(\varphi)$ is not a constant, then it is well known that $\mu'_2(\varphi) = \pm \infty$ at a non-denumeable set of points on A. Since $\mu_3(\varphi)$ is discontinuous at an enumerable set of points on A, there exists a non-denumerable set E of points on A such that $\mu'(\varphi) = \pm \infty$ for $e^{i\varphi} \in E$. Hence, by P. Fatou's theorem, R(H(z)) is equal to $\pm \infty$ on E, which is again impossible. Thus $\mu(\varphi) \equiv \text{constant on } A$.

Since $z=e^{i\varphi_0}\neq 1$ is arbitrary, $d\mu(\varphi)=0$ in $(-\pi, +\pi)$ except at $\varphi=0$. Hence H(z) reduces to the form: $C \cdot Q(1, z)$ (C: real constant), which proves our lemma.

Now we can establish theorem 1.

Proof of theorem 1. By lemma 1, there exist two analytic Jordan arcs Γ_i^* (i=1,2), closely near Γ_i (i=1,2) and contained in D except at z=1, such that f(z) is bounded on Γ_1^* and Γ_2^* is contained in $C(\mathcal{D}_d)$. Denote by D^* the subdomain of D bounded by a part of Γ_i^* (i=1,2) and a cross-cut connecting Γ_1^* and Γ_2^* . If we map conformally D onto $|\zeta| < 1$ in such a manner that z=1 goes into $\zeta=1$, then by Lindelöf-Carathéodory's theorem ([2], p. 92) the image of Γ_3 is also contained in the domain of the same character as \mathcal{D}_d . Therefore, without any loss of generality, we can assume that f(z) is regular on Γ except at z=1.

By lemma 3, we have easily

(2.8)
$$\log^+|f(z)| \leq 1/2\pi \cdot \int_0^{2\pi} \log^+|f(e^{i\varphi})| \cdot P(e^{i\varphi}, z) d\varphi + C^+ \cdot \frac{1-|z|^2}{|1-z|^2} ,$$

ASYMPTOTIC VALUES FOR REGULAR FUNCTIONS

where $C^+ = \max(C, 0)$. Since f(z) is bounded at z=1 along Γ_1 , by lemma 2 (2)

(2.9)
$$1/2\pi \cdot \int_{-\pi}^{+\pi} \log^+ |f(e^{i\varphi})| \cdot P(e^{i\varphi}, z) d\varphi < \frac{\varepsilon_1}{|z-1|}$$

in $U(1, \delta_1) \cap \mathcal{D}_{\mathcal{A}}$, where ε_1 : any given positive constant, and δ_1 : a positive constant dependent upon ε_1 . By (2.8) and (2.9)

$$|f(z)| < \exp\left\{O\left(\left|\frac{1}{z-1}\right|\right)\right\}$$
 for $z \in U(1, \delta_1) \cap \mathcal{D}_A$.

Hence

(2.10)
$$|f(z)| < \exp\left\{\varepsilon_2 \cdot \left|\frac{1}{z-1}\right|^{\frac{\pi}{\alpha}}\right\} \quad \text{for} \quad z \in U(1, \delta_2) \cap \mathcal{D}_{\mathbf{d}},$$

where $\alpha = \pi - \mathcal{A}$, ε_2 : any given positive constant and δ_2 ; a positive constant dependent upon ε_2 . Since f(z) is bounded on Γ_i (i=1,3), by (2.10) and Phragmen-Lindelöf's theorem ([16], pp. 64-66), f(z) is also bounded in the domain bounded by Γ_i (i=1,3) and $|z-1| = \varepsilon$, ε being a sufficiently small positive constant, which is to be proved.

In corollary 1, we can replace the boundedness of f(z) on Γ_3 by another conditions;

THEOREM 2. Let f(z) be regular and of bounded characteristic in D. Suppose that f(z) is bounded at $z=z_0$ along Γ_i (i=1,2) and that f(z) is also bounded on the sequence of curves $\{C_n\}$, where C_n is the cross-cut connecting both chordal sides of a Stolz-domain with vertex at z_0 , and C_n tends to z_0 as $n \to +\infty$. Under these conditions, f(z) is bounded in $U(z_0, \varepsilon) \cap D$, ε being a sufficiently small positive constant.

To establish theorem 2, we need

LEMMA 4. Let Blaschke products B(z) have zeros with the unique limit point: z=1. Then there exists a set E of φ with outer capacity zero contained in $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ such that, for fixed $\varphi \in E$,

$$\lim_{\substack{z \to 1 \\ z \in C_{\varphi}}} |z - 1| \cdot \log |B(z)| = 0,$$

where C_{φ} is the circular arc which connects $z=\pm 1$ and has the tangent: $\arg(z-1)=\varphi$ at z=1.

Although R. P. Boas ([1], p. 115) has proved this lemma in the case of Blaschke products in the upper half-plane: I(z)>0, we get lemma 4 by a suitable linear transformation.

Proof of theorem 2. Without any loss of generality, we can assume that $z_0=1$. As in theorem 1, we can suppose that f(z) is regular on |z|=1 except at z=1. Using f(z)+k (k: a suitable constant) instead of f(z), if necessary, we can further assume that there exist two constants k_i (i=1, 2) such that

CHUJI TANAKA

(2.11)
$$0 < k_1 \le |f(z)| \le k_2 < +\infty$$
 on Γ_i $(i=1, 2)$.

By lemma 3, we have

(2.12)
$$|f(z)| = |B(z)| \exp\left(C\frac{1-|z|^2}{|1-z|^2}\right) \cdot \exp\left(D(z)\right),$$

where $D(z)=1/2\pi \cdot \int_{-\pi}^{+\pi} \log |f(e^{i\varphi})| \cdot P(e^{i\varphi}, z) d\varphi$. By (2.11) and lemma 2 (1), D(z) is bounded in $U(1, \varepsilon) \cap D$, ε being a sufficiently small positive constant. By lemma 3 and lemma 4, there exists a circular arc C_{φ} contained in a Stolz-domain with vertex at z=1 such that

$$|B(z)| > \exp\left(-\frac{\varepsilon_1}{|1-z|}\right)$$

in the neighborhood of z=1 on C_{φ} , where ε_1 : any given positive constant. Therefore, denoting by z_n the intersection point between C_n and C_{φ} , by (2.12) we have for $n \ge N(\varepsilon_1)$

(2.13)
$$|f(z_n)| > \exp\left\{\frac{1}{|1-z_n|} \left(C \cdot \frac{1-|z_n|^2}{|1-z_n|} - \varepsilon_1\right)\right\} \exp(D(z_n)).$$

Since z_n is contained in a Stolz-domain with vertex at z=1, there exists a positive constant k_3 such that

(2.14)
$$\frac{1-|z_n|}{|1-z_n|} \ge k_3 > 0.$$

By (2.13) and (2.14), we can conclude that $C \leq 0$. Indeed, if C > 0, by (2.13) and (2.14)

(2.15)
$$|f(z_n)| > \exp\left\{\frac{1}{|1-z_n|}(Ck_3-\varepsilon_1)+D(z_n)\right\},$$

so that, putting $Ck_3 - \varepsilon_1 > 0$, the right hand side of (2.15) is unbounded as $n \to +\infty$, which is contrary to the boundedness of $f(z_n)$ $(n=1, 2, \cdots)$. Since $C \leq 0$, by (2.12)

 $|f(z)| \leq \exp(D(z))$,

so that, from the boundedness of D(z) in $U(1, \varepsilon) \cap D$, we can conclude the boundness of f(z) in $U(1, \varepsilon) \cap D$, which is to be proved.

As an immediate consequence of theorem 2, we get

COROLLARY 3. Let f(z) be regular and of bounded characteristic in D. Suppose that f(z) tends to a finite value a_i (i=1,2) as $z \rightarrow z_0$ along Γ_i (i=1,2)respectively, and that f(z) is bounded on the sequence of curves $\{C_n\}$, where C_n is the cross-cut connecting both chordal sides of a Stolz-domain with vertex at z_0 and C_n tends to z_0 as $n \rightarrow +\infty$. Under these conditions, $a_1=a_2$ and f(z) tends to $a_1=a_2$ uniformly as $z \rightarrow z_0$ inside D.

3. F. W. Gehring's theorem.

F. W. Gehring has proved the following interesting theorem.

F. W. Gehring's theorem ([4], p. 284). Suppose that f(z) is regular and of bounded characteristic in D. Then following propositions hold:

(1) For each z_0 on Γ , $A(z_0, f)$ (the set of asymptotic values at z_0) contains at most two finite values.

(2) If $A_{\mathbf{A}}(z_0, f)$ (the set of angular asymptotic values at z_0 on Γ) containes a finite value, then $A(z_0, f)$ contains only one finite value.

He has proved this theorem using the systematic use of the harmonic majorant of $\log^+|f(z)|$ and modified A. J. Macintyre's theorem ([8], p. 38), which is, however, not familiar to us. We can establish this theorem as the application of theorem 1 and corollary 3.

Proof of F.W. Gehring's theorem. We may assume that $z_0=1$. If A(1, f) contains three finite values a_i (i=1,2,3), there exist three Jordan arcs Γ_i (i=1,2,3) in $D\cup\Gamma$ such that $f(z)\rightarrow a_i$ (i=1,2,3) as $z\rightarrow 1$ along Γ_i (i=1,2,3) respectively. By the preliminary conformal mapping, from the beginning we can assume that $\Gamma_1\cup\Gamma_2$ forms a part of Γ and that Γ_3 is contained in D except at z=1.

For a sufficiently small positive Δ , following two cases may occur:

(A) $\Gamma_{\mathfrak{s}}$ intersects infinitely many times both chordal sides of a Stolz-domain with vertex at z=1:

$$D \cap \{z; \pi/2 + \Delta \leq \arg(z-1) \leq 3\pi/2 - \Delta\}$$
.

(B) Γ_{3} is contained in one of two domains D_{i} (i=1, 2):

$$\begin{split} D_1 = D &\cap \{z \; ; \; \pi/2 < \arg \left(z - 1 \right) \leq 3\pi/2 - \mathcal{A} \} \; , \\ D_2 = D &\cap \{z \; ; \; \pi/2 + \mathcal{A} \leq \arg \left(z - 1 \right) < 3\pi/2 \} \; . \end{split}$$

In case (A), by corollary 3 we have $a_1=a_2$, which is impossible. In case (B), if $\Gamma_3 \in D_1$ or D_2 , by theorem 1 we have $a_3=a_1$ or $a_3=a_2$ respectively, which is again impossible. Thus part (1) is completely established.

Now we proceed to the second part. Suppose that $f(z) \rightarrow a_i$ (i=1,3) as $z \rightarrow 1$ along Γ_i (i=1,3) respectively, where a_i (i=1,3) are finite and that Γ_s is contained in a Stolz-domain with vertex at z=1. Without any loss of generality, we can assume that Γ_1 is a cross-cut of D, and that Γ_s is contained in one of two Jordan domains into which D is split by Γ_1 . By the preliminary conformal mapping and the similar arguments as in the proof of theorem 1, from the beginning we can assume that Γ_1 is a part of Γ and that Γ_s is contained in D_1 . Then, by theorem 1, we have $a_1=a_3$, which is impossible. Thus, part (2) is also established.

CHUJI TANAKA

4. The least harmonic majorant of $\log^+|f(z)|$.

Let f(z) be regular and of bounded characteristic in *D*. The subharmonic function: $\log^+|f(z)|$ has the harmonic majorant: h(z) in *D*. Indeed, by (2.5) we get easily h(z) as follows;

(4.1)
$$\log^{+}|f(z)| \leq h(z) = 1/2\pi \cdot \int_{-\pi}^{+\pi} \log^{+}|f(e^{i\varphi})| \cdot P(e^{i\varphi}, z) d\varphi + 1/2\pi \cdot \int_{-\pi}^{+\pi} P(e^{i\varphi}, z) d^{+}\mu(\varphi) ,$$

where $P(e^{i\varphi}, z) = \frac{1 - |z|^2}{|e^{i\varphi} - z|^2}$, $\log^+ x = \max(\log x, 0), d\mu^+(\varphi) = \max(d\mu(\varphi), 0).$

We shall now prove the following theorem which is interesting in itself.

THEOREM 3. h(z) is the least harmonic majorant of $\log^+|f(z)|$ in |z| < 1.

Proof. We divide the proof in three parts.

(1) Let us define a positive harmonic function u(z, r) $(0 \le r < 1)$ such that

(4.2)
$$\begin{aligned} u(z,r) = \log^+ |f(re^{i\theta})| & \text{on } |z| = r, \\ u(z,r) : \text{ harmonic in } |z| < r. \end{aligned}$$

It is well-known that u(z, r) is given by Poisson integral;

(4.3)
$$u(z, r) = 1/2\pi \cdot \int_0^{2\pi} \log^+ |f(re^{i\varphi})| \cdot P(re^{i\varphi}, z) d\varphi ,$$

where $P(re^{i\varphi}, z) = \frac{r^2 - |z|^2}{|re^{i\varphi} - z|^2}$ (|z| < r). Since $\log^+ |f(z)|$ is subharmonic, by (4.2)

$$(4.4) \qquad \qquad \log^+|f(z)| \leq u(z, r) \qquad \text{in} \quad |z| \leq r.$$

Hence

$$u(z, r) = \log^+ |f(z)| \le u(z, R)$$
 on $|z| = r < R < 1$,

so that

$$0 \leq u(z, r) \leq u(z, R) \quad \text{in} \quad |z| \leq r < R < 1.$$

Therefore $\{u(z, r)\}$ $(0 \le r < 1)$ is an increasing sequence of r. Because of the bounded characteristic of f(z), there exists a finite constant M such that

$$u(0, r) = 1/2\pi \cdot \int_{0}^{2\pi} \log^{+} |f(re^{i\theta})| d\theta < M < +\infty$$

By A. Harnack's theorem, u(z, r) converges to u(z) uniformly in the wider sense in |z| < 1, so that letting $r \rightarrow 1$ in (4.3) and (4.4), we have for |z| < 1

(4.5)
$$\log^+ |f(z)| \leq u(z)$$
$$= \lim_{r \to 1} 1/2\pi \cdot \int_0^{2\pi} \log^+ |f(re^{i\varphi})| \cdot P(re^{i\varphi}, z) d\varphi \,.$$

Then u(z) is the least harmonic majorant of $\log^+|f(z)|$. Indeed, if v(z) is any harmonic majorant of $\log^+|f(z)|$, by (4.2),

$$u(z, r) = \log^+ |f(z)| \le v(z)$$
 on $|z| = r$,

so that

$$u(z, r) \leq v(z)$$
 for $|z| \leq r$.

Letting $r \to 1$, we have $u(z) \le v(z)$, which shows that u(z) is the least harmonic majorant of $\log^+ |f(z)|$ in |z| < 1.

(2) Putting
$$F_r(\varphi) = \int_0^{\varphi} \log^+ |f(re^{i\theta})| d\theta$$
, we get easily

$$\int_0^{2\pi} |dF_r(\varphi)| = \int_0^{2\pi} \log^+ |f(re^{i\theta})| d\theta < M < +\infty,$$
(4.6)
 $|F_r(\varphi)| \leq \int_0^{2\pi} \log^+ |f(re^{i\theta})| d\theta < M < +\infty.$

Hence, by E. Helly's first theorem ([12], p. 15), there exist a sequence $\{r_n\}$ $(0 < r_1 < r_2 \cdots < r_n \rightarrow 1)$ and a function $F_1(\varphi)$ non-negative and non-decreasing such that

(4.7)
$$F_1(\varphi) = \lim_{n \to \infty} F_{r_n}(\varphi) = \lim_{n \to +\infty} \int_0^{\varphi} \log^+ |f(r_n e^{i\theta})| d\theta.$$

By (4.6), (4.7) and E. Helly's second theorem ([12], p. 15),

(4.8)
$$\lim_{n \to +\infty} \int_{0}^{2\pi} \log^{+} |f(r_{n}e^{i\varphi})| \cdot P(e^{i\varphi}, z) d\varphi = \lim_{n \to +\infty} \int_{0}^{2\pi} P(e^{i\varphi}, z) dF_{r_{n}}(\varphi)$$
$$= \int_{0}^{2\pi} P(e^{i\varphi}, z) dF_{1}(\varphi) .$$

Let us put for $r_n > r$ $(z = re^{i\theta})$

$$\begin{split} u(z, r_n) &= I_1 + I_2 \\ &= 1/2\pi \cdot \int_0^{2\pi} \log^+ |f(r_n e^{i\varphi})| \cdot P(e^{i\varphi}, z) d\varphi \\ &+ 1/2\pi \cdot \int_0^{2\pi} \log^+ |f(r_n e^{i\varphi})| \{ P(r_n e^{i\varphi}, z) - P(e^{i\varphi}, z) \} d\varphi \,. \end{split}$$

Since

$$P(Re^{i\varphi}, re^{i\theta}) = 1 + 2\sum_{k=1}^{+\infty} (r/R)^k \cos(k(\theta - \varphi)) \quad \text{for} \quad R > r,$$

we have

$$\begin{split} |I_2| \! &\leq \! 2 \sum_{k=1}^{+\infty} \left\{ (r/r_n)^k \! - \! r^k \right\} \! 1/2\pi \cdot \! \int_0^{2\pi} \! \log^+ |f(r_n e^{\imath \varphi})| \, d\varphi \\ &< \! 2 \! \cdot \! \left\{ \frac{r_n}{r_n \! - \! r} \! - \! \frac{1}{1 \! - \! r} \right\} \! M \, , \end{split}$$

so that

$$I_2 \longrightarrow 0$$
 as $n \rightarrow +\infty$.

Hence, by (4.5) and (4.8)

(4.9)
$$u(z) = 1/2\pi \cdot \int_{0}^{2\pi} P(e^{i\varphi}, z) dF_{1}(\varphi) ,$$

where $F_1(\varphi) = \lim_{n \to \infty} \int_0^{\varphi} \log^+ |f(r_n e^{i\theta})| d\theta$. Since $F_1(\varphi)$ is non-decreasing, by the decomposition theorem of functions of bounded variation, we can put

(4.10)
$$F_1(\varphi) = \int_0^{\varphi} F(\theta) d\theta + \mu_1(\varphi) ,$$

where $F(\theta) \in L(0, 2\pi)$, $\mu'_1(\varphi) = 0$ a.e. and $d\mu_1(\varphi) \ge 0$.

Since u(z) is the least harmonic majorant of $\log^+|f(z)|$ in |z| < 1, we have

 $\log^+ |f(re^{i\varphi})| \leq u(re^{i\varphi}) \leq h(re^{i\varphi})$ on |z| = r < 1.

Therefore, by P. Fatou's theorem and (4.1), (4.9),

i. e.
$$\begin{aligned} \log^+ |f(e^{i\varphi})| &\leq F_1'(\varphi) \leq \log^+ |f(e^{i\varphi})| & \text{a. e.}, \\ F_1'(\varphi) &= \log^+ |f(e^{i\varphi})| & \text{a. e.}. \end{aligned}$$

Hence, by (4.9) and (4.10) we get next integral representation of the least harmonic majorant u(z):

(4.11)
$$u(z) = 1/2\pi \cdot \int_{0}^{2\pi} P(e^{i\varphi}, z) dF_{1}(\varphi) ,$$

where $F_1(\varphi) = \lim_{n \to \infty} \int_0^{\varphi} \log^+ |f(r_n e^{i\theta})| d\theta = \int_0^{\varphi} \log^+ |f(e^{i\theta})| d\theta + \mu_1(\varphi), \quad \mu_1'(\varphi) = 0$ a.e. and $d\mu_1(\varphi) \ge 0.$

(3) Let us put

$$G_r(\varphi) = \int_0^{\varphi} \log^+ |1/f(re^{i\theta})| d\theta$$

Since $\log^+ |1/f(re^{i\theta})| \leq |\log|f(re^{i\theta})||$, we get

$$\begin{split} &\int_{0}^{2\pi} |dG_{r}(\varphi)| = \int_{0}^{2\pi} \log^{+} |1/f(re^{i\theta})| d\theta \leq \int_{0}^{2\pi} |\log|f(re^{i\theta})| |d\theta < N < +\infty, \\ &|G_{r}(\varphi)| \leq \int_{0}^{2\pi} \log^{+} |1/f(re^{i\theta})| d\theta \leq \int_{0}^{2\pi} |\log|f(re^{i\theta})| |d\theta < N < +\infty, \end{split}$$

where N is a positive finite constant, because f(z) is of bounded characteristic. Therefore, by similar arguments as in (2), we can select a subsequence $\{r_{n_k}\}$ of $\{r_n\}$ and a function $G_1(\varphi)$ non-negative and non-decreasing such that

(4.12)
$$G_1(\varphi) = \lim_{k \to \infty} G_{r_{n_k}}(\varphi) = \lim_{k \to \infty} \int_0^{\varphi} \log^+ |1/f(r_{n_k}e^{i\theta})| \, d\theta \, .$$

Hence, by the decomposition-theorem of functions of bounded variation, we have

(4.13)
$$G_1(\varphi) = \int_0^{\varphi} G(\theta) d\theta + \mu_2(\varphi) ,$$

where $G(\theta) \in L(0, 2\pi)$ and $\mu'_2(\varphi) = 0$ a.e., $d\mu_2(\varphi) \ge 0$.

By (2.5), we can put

$$f(z) = B(z) \cdot \exp\left\{1/2\pi \cdot \int_0^{2\pi} \frac{e^{i\varphi} + z}{e^{i\varphi} - z} dF(\varphi) + i\lambda\right\},\,$$

where $F(\varphi) = \int_{0}^{\varphi} \log |f(e^{i\theta})| d\theta + \mu(\varphi) = \lim_{r \to 1-0} \int_{0}^{\varphi} \log |f(re^{i\theta})| d\theta$ for except perhaps an enumerable set of φ ([9], p. 198, p. 201).

By (4.11), (4.12) and (4.13)

$$\begin{split} F(\varphi) = &\lim_{k \to \infty} \int_0^{\varphi} \log^+ |f(r_{n_k} e^{i\theta})| \, d\theta - \lim_{k \to \infty} \int_0^{\varphi} \log^+ |1/f(r_{n_k} e^{i\theta})| \, d\theta \\ = &\int_0^{\varphi} \{\log^+ |f(e^{i\theta})| - G(\theta)\} \, d\theta + \{\mu_1(\varphi) - \mu_2(\varphi)\} \, . \end{split}$$

By the uniqueness of the decomposition of $F(\varphi)$, we have

$$\begin{split} &\int_{_{0}}^{\varphi}\!\log|f(e^{i\theta})|\,d\theta\!=\!\int_{_{0}}^{\varphi}\{\log^{+}|f(e^{i\theta})|-\!G(\theta)\}\,d\theta\;,\\ &\mu(\varphi)\!=\!\mu_{1}(\varphi)\!-\!\mu_{2}(\varphi)\;, \end{split}$$

so that

(4.14)
$$\int_{0}^{\varphi} G(\theta) d\theta = \int_{0}^{\varphi} \log^{+} |1/f(e^{i\theta})| d\theta,$$
$$d^{+}\mu(\varphi) = \max \left\{ (d\mu_{1}(\varphi) - d\mu_{2}(\varphi)), 0 \right\} \leq d\mu_{1}(\varphi).$$

Hence, by (4.1) and (4.11), $h(z) \leq u(z)$. On the other hand, since u(z) is the least harmonic majorant of $\log^+|f(z)|$ in |z| < 1, it is evident that $u(z) \leq h(z)$. Thus we have h(z)=u(z), which is to be proved.

Remark. By (4.14), we have

$$\lim_{k\to\infty}\int_0^{\varphi}\log^+|1/f(r_{n_k}e^{i\theta})|d\theta=\int_0^{\varphi}\log^+|1/f(e^{i\theta})|d\theta+\mu_2(\varphi).$$

5. Theorems of Lindelöf-type (II).

Using the least harmonic majorant h(z), we can establish several theorems somewhat different from theorem 1-2.

THEOREM 4. Let f(z) be regular and of bounded characteristic in D. Suppose that f(z) is bounded at z_0 along Γ_i (i=1,2) and that $h(z_n)$ is bounded on the sequence of points $\{z_n\}$, contained in a Stolz-domain with vertex at $z=z_0$ and tending to $z=z_0$ as $n \to +\infty$. Under these conditions, f(z) is bounded in $U(z_0, \varepsilon)$

CHUJI TANAKA

$\cap D$, ε being a sufficiently small positive constant.

As its consequence, we obtain next corollary which is a generalization of the corollary in the preceding paper ([14], pp. 98-99).

COROLLARY 4. Let f(z) be regular and of bounded characteristic in D. Suppose that f(z) tends to a finite value a_i (i=1,2) as z approaches z_0 along Γ_i (i=1,2) respectively, and that $h(z_n)$ is bounded on the sequence of points $\{z_n\}$ contained in a Stolz-domain with vertex at $z=z_0$ and tending to $z=z_0$ as $n\to\infty$. Under these conditions, $a_1=a_2$ and f(z) tends uniformly to $a_1=a_2$ as $z\to z_0$ inside D.

Proof. We may put $z_0=1$. Considering f(z)+k (k: a suitable constant) instead of f(z), if necessary, we can assume that there exist two constants k_i (i=1,2) such that

$$(5.1) 0 < k_1 \le |f(z)| \le k_2 < +\infty$$

in the neighborhood of the open arc: $A(e^{i\theta}; 0 < |\theta| < \delta)$. By (5.1), Blaschke product: B(z) has no limit point of zeros in the neighborhood of $e^{i\theta} \in A$. Hence, by (2.5) and similar arguments as in the proof of lemma 3, we can conclude that $d\mu(\varphi)=0$ in the neighborhood of $\varphi=\theta$. Therefore, by (2.5) we can put

(5.2)
$$f(z) = B(z) \cdot D_1(z) \cdot D_2(z) ,$$

where

$$D_2(z) = \exp\left\{1/2\pi \cdot \int_{\mathcal{C}A} Q(e^{i\varphi}, z) d\mu(\varphi) + C \cdot Q(1, z) + i\lambda\right\},$$

CA: the complementary arc of A, C and λ : real constants, so that, by (4.1)

(5.3)
$$h(z) = h_1(z) + h_2(z) + C^+ \cdot P(1, z),$$

where

$$h_1(z) = 1/2\pi \cdot \int_{-\pi}^{+\pi} \log^+ |f(e^{i\varphi})| \cdot P(e^{i\varphi}, z) d\varphi, \quad h_2(z) = 1/2\pi \cdot \int_{CA} P(e^{i\varphi}, z) d^+ \mu(\varphi).$$

By (5.1), (5.3) and lemma 2 (1), $h_i(z)$ (i=1,2) is bounded in the heighborhood of z=1, so that from the boundedness of $h(z_n)$ on $\{z_n\}$, we can conclude that $C^+ \cdot P(1, z_n)$ is bounded on $\{z_n\}$. Since $\{z_n\}$ is contained in a Stolz-domain with vertex at z=1, there exists a positive constant k_3 such that

$$P(1, z_n) > \frac{k_3}{|1-z_n|}$$
.

Hence, $C^+ \cdot \frac{k_3}{|1-z_n|}$ is bounded on $\{z_n\}$, which is possible only if $C^+=0$. Thus, by (5.3) and (4.1),

$$\log^+|f(z)| \leq h_1(z) + h_2(z)$$
,

from which we can conclude the boundedness of f(z) in the neighborhood of z=1, which is to be proved.

In theorem 4, we have assumed the both-sided boundedness at z_0 . If we assume only the one-sided boundedness at z_0 , what we can say about the boundedness of f(z) in D? We shall give an answer to this question in the following theorem.

THEOREM 5. Let f(z) be regular and of bounded characteristic in D. Suppose that f(z) is bounded at $z_0=1$ along the upper arc Γ_1 , and that the sequence of $\{h(a_n)\}$ is bounded: $h(a_n) < M < +\infty$ $(n=1, 2, \cdots)$, where

- (1) $|a_n| < 1$, $\lim_{n \to \infty} a_n = 1$,
- (2) $a_n \in \mathcal{D}_{\mathcal{A}} = D \cap \{z; \pi/2 < \arg(z-1) \leq 3\pi/2 \mathcal{A}\} \ (0 < \mathcal{A} < \pi),$
- (3) $\lim_{n \to +\infty} d(a_n, a_{n+1}) < +\infty$, d(a, b) being the non-Euclidean distance between a and b.

Under these conditions, f(z) is bounded in the domain bounded by Γ_1 , Γ_3 , and $|z-1|=\varepsilon$ (ε : a sufficiently small positive constant), where Γ_3 is the Jordan arc terminating at $z_0=1$ and composed of the segments connecting a_n and a_{n+1} .

To establish theorem 5, we need some lemmas.

LEMMA 5. ([14], p. 99) Let f(z) be regular and of bounded characteristic in D:

$$1/2\pi \cdot \int_{0}^{2\pi} \log^{+} |f(re^{i\theta})| d\theta < M < +\infty \qquad (0 \le r < 1).$$

Then

$$\log |f(z)| \leq 2M \frac{1+R}{1-R} - \frac{1-R}{1+R} \cdot 1/2\pi \cdot \int_0^{2\pi} |\log |f(e^{i\theta})| \, |\, d\theta$$

for $|z| \leq R < 1$.

LEMMA 6. ([14], p. 100) Let $\{f_n(z)\}$ $(n=1, 2, \cdots)$ be a sequence of regular functions in D. The necessary and sufficient condition for $\{f_n(z)\}$ to be of uniformly bounded characteristic:

$$1/2\pi \cdot \int_{0}^{2\pi} \log^{+} |f_{n}(re^{i\theta})| d\theta < M < +\infty$$
,

where $0 \leq r < 1$, M: a constant independent of n, is the existence of a sequence of positive harmonic functions $\{u_n(z)\}$ such that

- (i) $\log^+|f_n(z)| \leq u_n(z) \ in \ |z| < 1$,
- (ii) $u_n(0) < M < +\infty$.

Proof of theorem 5. Let us put

$$f_n(w) = f\left(\frac{w+a_n}{1+\bar{a}_nw}\right), \qquad h_n(w) = h\left(\frac{w+a_n}{1+\bar{a}_nw}\right).$$

Then

(5.4)
$$\log^+ |f_n(w)| \leq h_n(w), \quad h_n(0) = h(a_n) < M < +\infty.$$

By (5.4) and lemma 6, the sequence of regular functions $\{f_n(w)\}$ in |w| < 1 is of uniformly bounded characteristic:

(5.5)
$$1/2\pi \cdot \int_{0}^{2\pi} \log^{+} |f_{n}(Re^{i\varphi})| d\varphi < M < +\infty \qquad (n=1, 2, \cdots).$$

Hence, by (5.5) and lemma 5,

(5.6)
$$\log |f_n(w)| \leq 2M \cdot \frac{1+R}{1-R} - \frac{1-R}{1+R} \cdot 1/2\pi \cdot \int_0^{2\pi} |\log |f_n(e^{i\varphi})| |d\varphi < 2M \cdot \frac{1+R}{1-R}.$$

Since $|w| \leq R$ is mapped onto $D(a_n, \rho) = \{z; d(a_n, z) \leq \rho\}$ $(\rho = \tanh^{-1} R)$ by the linear transformation: $z = \frac{w + a_n}{1 + \bar{a}_n w}$, by (5.6) f(z) is uniformly bounded in the sequence of non-Euclidean disks: $\{D(a_n, \rho)\}$. Therefore, if we take ρ so large that

$$\lim_{n\to+\infty}d(a_n,a_{n+1})<\rho<+\infty$$

then f(z) is bounded on Γ_3 . Hence, by theorem 1, f(z) is also bounded in the domain bounded by Γ_1 , Γ_3 and $|z-1|=\varepsilon$, which is to be proved.

By what is proved above, the next theorem is also obtained;

THEOREM 5*. Let f(z) be regular and of bounded characteristic in D. If $h(a_n)$ $(n=1, 2, \dots; |a_n| < 1)$ is bounded, then f(z) is uniformly bounded in $\bigcup_n D(a_n, \rho)$ for any positive finite ρ .

6. Theorems of P. Montel-type.

As an application of theorem 5, we can prove the following theorem of P. Montel-type, which generalizes a theorem in the preceding paper ([14], p. 99).

THEOREM 6. Let f(z) be regular and of bounded characteristic in D. Suppose that f(z) tends to a finite value α as $z \rightarrow z_0 = 1$ along Γ_1 . If the sequence of $\{h(a_n)\}$ $(n=1, 2, \cdots)$ is bounded, where $|a_n| < 1$, $\lim_{n \to +\infty} a_n = 1$, $\arg(1-a_n) = \psi$, $|\psi| < \pi/2$, $(n=1, 2, \cdots)$ and $\lim_{n \to +\infty} d(a_n, a_{n+1}) < +\infty$, then f(z) tends uniformly to α as $z \rightarrow z_0 = 1$ inside \mathcal{D}_4 , \mathcal{A} being any positive constant less than $\pi/2 - |\psi|$.

To establish theorem 6, we begin with

LEMMA 7. Let L be the chord connecting z=1 and $z=e^{i2\varphi}$ $(0 < \varphi \leq \pi/2)$, and l be the segment on L with end points z_1 and z_2 . If the non-Euclidean distance between z_1 and z_2 is finite:

$$d(z_1, z_2) \! < \! k \! < \! + \! \infty$$
 ,

then there exists a constant K depending upon only k such that

$$\int_{z \in l} \frac{|dz|}{1 - |z|^2} < K \cdot d(z_1, z_2) \, .$$

Proof. Put

(6.1)
$$w(z) = \frac{z - z_1}{1 - \bar{z}_1 z}$$

The chord L is mapped onto the circular arc A in w-pl. passing through three points: $w(1)=e^{i(\pi+2\varphi)}$, $w(z_1)=0$, $w(e^{i2\varphi})=-1$.

Since the non-Euclidean metric is invariant under the transformation (6.1), and the inequality: $d(z_1, z_2) < k < +\infty$ is equivalent to the inequality:

$$\left|\frac{z_2-z_1}{1-\bar{z}_1z_2}\right| < \tanh k,$$

we have

(6.2)
$$|w(z_2)| < \tanh k$$
, $d(z_1, z_2) = \int_C \frac{|dw|}{1 - |w|^2}$

where C is the segment connecting w=0 and $w=w(z_2)$. Let us denote by l^* the circular arc on A with end points w=0 and $w(z_2)$, which is the image of l under the transformation (6.1). Then, by (6.2) we have

$$\begin{split} &\int_{z \in l} \frac{|dz|}{1 - |z|^2} \\ &= \int_{w \in l^*} \frac{|dw|}{1 - |w|^2} < \frac{1}{1 - (\tanh k)^2} \cdot \int_{w \in l^*} |dw| \\ &< \frac{1}{1 - (\tanh k)^2} \cdot \frac{\pi}{2} \cdot \int_{w \in c} |dw|^{(*)} < \frac{1}{1 - (\tanh k)^2} \cdot \frac{\pi}{2} \cdot \int_{w \in c} \frac{|dw|}{1 - |w|^2} \,. \end{split}$$

Putting $K = \frac{1}{1 - (\tanh k)^2} \cdot \frac{\pi}{2}$, we have

$$\int_{z \in l} \frac{|dz|}{1 - |z|^2} < K \cdot d(z_1, z_2),$$

which is to be proved.

LEMMA 8. Let us define the non-Euclidean circle:

(6.3)
$$d(z, a) = \rho \quad (0 < \rho < +\infty),$$

where a lines on the chord L connecting z=1 and $z=e^{i2\varphi}\left(0<\varphi\leq\frac{\pi}{2}\right)$. If a varies along L from z=1 to $z=e^{i2\varphi}$, then the envelope of (6.3) is composed of two circular arcs, which connect z=1 and $z=e^{i2\varphi}$ and make the angle:

$$2 \cdot \tan^{-1} \left(\sin \varphi \cdot \frac{2r}{1-r^2} \right), \quad r= \tanh \rho$$

(*) The length of the circular arc is less than its chordal length multiplied by $\pi/2$.

at z=1.

Proof. Put

(6.4)
$$w(z) = \frac{z-a}{1-\bar{a}z} \; .$$

(6.3) is equivalent to $\left|\frac{z-a}{1-\bar{a}z}\right| = r (r=\tanh\rho)$, so that (6.3) is mapped onto the fixed circle: |w|=r. By (6.4) L is mapped onto the fixed circular arc passing through three fixed points:

$$w(1) = e^{i(\pi + 2\varphi)}, \quad w(a) = 0, \quad w(e^{i2\varphi}) = -1.$$

Hence the fixed two circular arcs A_i (i=1,2) which pass through $w(1)=e^{i(\pi+2\varphi)}$ and $w(e^{i2\varphi})=-1$, and touch the circle: |w|=r, are evidently the image of the envelope of (6.3) as a varies along L from z=1 to $z=e^{i2\varphi}$. By the simple calculation, we can show that two arcs A_i (i=1,2) make the angle: $2 \tan^{-1} \left(\sin \varphi \cdot \frac{2r}{1-r^2}\right)$ at $w=e^{i(\pi+2\varphi)}$, from which our lemma easily follows.

LEMMA 9. Denote by $\{a_n\}$ ($|a_n| < 1$) the sequence of points such that

$$\lim_{n\to+\infty} a_n = 1, \quad \arg(1-a_n) = -\vartheta, \quad 0 \leq \vartheta < \pi/2, \quad \lim_{n\to+\infty} d(a_n, a_{n+1}) < +\infty.$$

Put

$$D(\rho) = \bigcup_{n\geq 1} D(a_n, \rho),$$

where $D(a_n, \rho) = \{z; d(z, a_n) \leq \rho\}$. If ρ is sufficiently large, then $D(\rho)$ covers the fixed Stolz-domain with vertex at z=1 in the neighborhood of z=1.

Proof. By the assumptions, there exists a positive finite constant k such that

(6.5)
$$d(a_n, a_{n+1}) < k \quad (n=1, 2, \cdots).$$

Denote by a any point on the segment l_n connecting a_n and a_{n+1} , and by b any boundary point of the domain: $D(a_n, \rho) \cup D(a_{n+1}, \rho)$ respectively. By (6.5) and lemma 7,

$$\begin{aligned} d(a, b) > \rho - \max \left\{ d(a_n, a), d(a_{n+1}, a) \right\} > \rho - \int_{z \in I_n} \frac{|dz|}{1 - |z|^2} > \rho - 0(k) \\ = \rho(1 - o(1)), \end{aligned}$$

so that, for any given $\varepsilon > 0$, there exists $\rho(\varepsilon)$ independent of n such that

 $d(a, b) > \rho(1-\varepsilon)$ for $\rho \ge \rho(\varepsilon)$.

Hence

(6.6)
$$D(\rho) \supset \bigcup_{\substack{|a-1| \leq |a_1-1| \\ a \in L}} D(a, \rho(1-\varepsilon)),$$

where L is the chord connecting z=1 and $z=e^{i(\pi-2\vartheta)}$. Since

$$2 \cdot \tan^{-1} \left(\cos \vartheta \cdot \frac{2r}{1-r^2} \right) \longrightarrow \pi \quad \text{as} \quad \rho \to +\infty \ (r = \tanh \left(\rho(1-\varepsilon) \right) \right),$$

by (6.6) and lemma 8, $D(\rho)$ covers the fixed Stolz-domain with vertex at z=1 in the neighborhood of z=1, provided that ρ is sufficiently large. Thus our lemma is completely established.

Now we can prove theorem 6.

Proof of theorem 6. We first assume that $-\pi/2 < \psi \leq 0$. Putting $0 < \Delta' < \Delta < \frac{\pi}{2} - |\psi|$, if ρ is sufficiently large, then by lemma 9, $D(\rho)$ covers the Stolz-domain with vertex at z=1:

$$\{z; |\arg(z-1)| \leq \pi/2 - \Delta'\} \cap U(1, \varepsilon),$$

 ε being a small positive constant. Therefore, by theorem 5 and 5*, f(z) is bounded in $\mathcal{D}_{\mathbf{A}'} \cap U(1, \varepsilon)$, so that by classical P. Montel's theorem f(z) tends uniformly to α as $z \to 1$ inside $\mathcal{D}_{\mathbf{A}} \subset \mathcal{D}_{\mathbf{A}'}$.

The case: $0 < \phi < \pi/2$ also can be treated by similar arguments.

Next we shall sharpen theorem 6 as follows.

THEOREM 7. Let f(z) be regular and of bounded characteristic in D. Suppose that there exists the measurable set E contained in $(0, +\delta)$ $(\delta > 0)$ such that

(1) $f(e^{i\varphi})$ tends to a finite value α as $\varphi \rightarrow +0$ along E.

(6.7)

(2) the lower density $\lambda^{(*)}$ of E at $\varphi=0$ is positive.

Furthermore, if the sequence of $\{h(a_n)\}$ $(n=1, 2, \dots)$ is bounded, where

 $|a_n| < 1$, $\lim_{n \to +\infty} a_n = 1$, $\arg(1-a_n) = \psi$ $(|\psi| < \pi/2)$

and

$$\overline{\lim_{n \to +\infty}} d(a_n, a_{n+1}) < +\infty$$
 ,

then f(z) tends uniformly to α as $z \rightarrow 1$ inside the Stolz-domain with vertex at z=1.

Remark. (1) In the case of the bounded regular function in *D*, this theorem has been proved by M. L. Cartwright [3] and Y. Kawakami [6] independently. (2) Theorem 7 is a generalization of the theorem due to the author ([14], p. 98).

We begin with

LEMMA 10. Let E be the measurable set contained in the upper arc: (*) $\lambda = \lim_{\varphi \to +0} 1/\varphi \cdot m(E_{\bigcap}0, \varphi)$). $A(e^{i\theta}; 0 < \theta < \delta)$ which has the positive lower density λ at $\theta = 0$;

 $\lim_{t\to 0} 1/t \cdot mE(t) = \lambda > 0,$

where $E(t) = E \cap (e^{i\theta}; 0 < \theta < t)$. Let E(w, a) be the image of E_a by the linear transformation: $w = \frac{z-a}{1-\bar{a}z}$ (|a|<1), where E_a is defined as follows:

$$\begin{split} E_a = E(2\varphi) & if \quad \arg a = \varphi > 0, \\ = E(1 - |a|) & if \quad \arg a = 0, \\ = E(\varphi) & if \quad \arg a = -\varphi < 0 \end{split}$$

If a tends to 1 along the fixed chord: $\arg(1-a)=\psi(|\psi|<\pi/2)$, then

$$\lim_{\substack{a \to 1 \\ \arg(1-a) = \psi}} mE(w, a) \ge \lambda \cdot k(\psi),$$

where $k(\phi)$ is a positive constant dependent upon only ϕ .

(6.8)
$$mE(w, a) = \int_{E_a} \frac{1 - |a|^2}{|1 - \bar{a}z|^2} |dz| .$$

We distinguish three cases: $-\pi/2 < \phi < 0$, $\phi = 0$, $0 < \phi < \pi/2$.

(1) First we assume that $-\pi/2 < \phi < 0$. Put

$$a = |a| \cdot e^{i\varphi} \quad (\varphi > 0), \qquad z = \exp(i(1+\alpha)\varphi) \quad (-1 \le \alpha \le +1).$$

Then

$$\begin{split} |dw| &= \frac{1 - |a|^2}{|1 - \bar{a}z|^2} |dz| = \frac{1 - |a|^2}{|e^{-i\alpha\varphi} - |a||^2} \cdot \varphi |d\alpha| \\ &\geq \frac{1 - |a|^2}{|e^{i\varphi} - |a||^2} \cdot \varphi |d\alpha| \,. \end{split}$$

Hence, by (6.8)

(6.9)
$$mE(w, a) = \int_{E(2\varphi)} \frac{1 - |a|^2}{|1 - \bar{a}z|^2} |dz| \ge \frac{(1 - |a|^2)}{|e^{i\varphi} - |a||^2} \cdot \int_{z \in E(2\varphi)} \varphi |d\alpha| .$$

By the definition of λ , for any positive ε , there exists $t(\varepsilon)$ such that

 $mE(t) > t(\lambda - \varepsilon)$ for $0 < t < t(\varepsilon)$,

so that

$$\int_{z \in E(2\varphi)} \varphi |d\alpha| > 2\varphi(\lambda - \varepsilon) \quad \text{for} \quad 0 < \varphi < t(\varepsilon)/2.$$

Therefore, by (6.9)

ASYMPTOTIC VALUES FOR REGULAR FUNCTIONS

(6.10)
$$mE(w, a) \ge \frac{(1-|a|^2)\varphi}{|e^{i\varphi}-|a||^2} \cdot 2(\lambda-\varepsilon) \quad \text{for} \quad 0 < \varphi < 1/2 \cdot t(\varepsilon) .$$

By the sin-rule, we have

$$\frac{\varphi}{1-|a|} = \frac{\sin\left(\varphi+|\psi|\right)}{\sin\left(\frac{\pi-\varphi}{2}-|\psi|\right)} \cdot \frac{\varphi}{|1-e^{i\varphi}|} ,$$

so that

(6.11)
$$\lim_{\varphi \to +0} \frac{\varphi}{1-|a|} = \tan\left(|\phi|\right).$$

Since

$$\frac{(1-|a|^2)\varphi}{|e^{i\varphi}-|a||^2} = (1+|a|)\frac{\varphi}{1-|a|} \cdot \frac{1}{\left|1+\imath\frac{\varphi}{1-|a|}+o(1)\right|^2}$$

by (6.11), we have by (6.10)

$$\lim_{\substack{a\to 1\\\arg(1-a)=\phi}} mE(w, a) \geq 2 \cdot \sin(2|\psi|) \cdot (\lambda - \varepsilon).$$

Letting $\varepsilon \rightarrow +0$,

(6.12)
$$\lim_{\substack{a\to 1\\ \arg(1-a)=\phi}} mE(w, a) \ge 2 \cdot \sin(2|\psi|) \cdot \lambda ,$$

(2) Next we assume that $\psi=0$. In this case, put

$$\varphi = (1 - |a|), \quad z = \exp(i\alpha\varphi) \quad (0 \le \alpha \le 1).$$

By the slight modification of the above arguments, we get easily

(6.13)
$$\lim_{a \to 1} mE(w, a) \ge \lambda.$$

(3) Finally we assume that $0 < \psi < \pi/2$. Put

$$a = |a|e^{-i\varphi} \quad (\varphi > 0), \qquad z = \exp\left(i(-1+\alpha)\varphi\right) \quad (1 \le \alpha \le 2).$$

By the similar arguments as in (6.9) and (6.10), we have

(6.14)
$$mE(w, a) = \int_{E(\varphi)} \frac{1 - |a|^2}{|1 - \bar{a}z|^2} |dz| \ge \frac{(1 - |a|^2)\varphi}{|e^{i2\varphi} - |a||^2} \cdot (\lambda - \varepsilon)$$

for $0 < \varphi < t(\varepsilon)$. Since

$$\frac{\varphi}{1-|a|} \longrightarrow \tan \psi \quad \text{as} \quad a \to 1 \qquad \text{along } \arg (1-a) = \psi ,$$

we have

$$\frac{(1-|a|^2)\varphi}{|e^{i2\varphi}-|a||^2} = (1+|a|) \cdot \frac{\varphi}{1-|a|} \cdot \frac{1}{\left|1+2i\frac{\varphi}{1-|a|}+o(1)\right|^2} \longrightarrow \frac{2\tan\psi}{1+(2\tan\psi)^2} \,.$$

Hence, by (6.14) and letting $\varepsilon \rightarrow +0$,

(6.15)
$$\lim_{\substack{a\to 1\\arg(1-a)=\phi}} mE(w, a) \ge \frac{2\tan\phi}{1+(2\tan\phi)^2} \cdot \lambda.$$

Thus, by (6.12), (6.13) and (6.15), our lemma is completely established.

Proof of theorem 7. By lemma 10, there exists a sufficiently large integer N such that

(6.16)
$$mE(w, a_n) > \lambda/2 \cdot k(\phi)$$
 for $n \ge N$.

By the linear transformation: $w(z) = \frac{z - a_n}{1 - \bar{a}_n z}$, E_{a_n} is mapped onto $E(w, a_n)$ which has the fixed limit point: $w(1) = e^{i2\psi}$. Hence, by (6.16) and (6.7) (1°), we can find a fixed set E^* ($mE^* > 0$) lying on |w| = 1 and a sequence of integers $\{n_k\}$ such that

(1)
$$\overline{\lim_{k \to +\infty}} (n_{k+1} - n_k) < +\infty$$

(6.17) (2)
$$E^* \subset E(w, a_{n_k}) \ (k=1, 2, \cdots),$$

(3) $f_{n_k}(w) \rightarrow \alpha \text{ for } w \in E^* \text{ as } k \rightarrow +\infty,$

where $f_n(w) = f\left(\frac{w+a_n}{1+\bar{a}_nw}\right)$. Putting $h_n(w) = h\left(\frac{w+a_n}{1+\bar{a}_nw}\right)$, by the assumptions we have

$$\begin{split} \log^+ |f_{n_k}(w)| &\leq h_{n_k}(w) \quad \text{ for } |w| < 1 \text{ ,} \\ h_{n_k}(0) &= h(a_{n_k}) < M < +\infty \text{ .} \end{split}$$

Hence, by lemma 6, the sequence of regular functions $\{f_{n_k}(w)\}$ is of uniformly bounded characteristic;

(6.18)
$$1/2\pi \cdot \int_{0}^{2\pi} \log^{+} |f_{n_{k}}(Re^{i\theta})| d\theta < M < +\infty$$
 $(0 \leq R < 1, k=1, 2, \cdots).$

Setting $F_k(w) = f_{n_k}(w) - \alpha$, we have

$$1/2\pi \cdot \int_{0}^{2\pi} \log^{+} |F_{k}(Re^{i\theta})| d\theta \leq M + \log^{+} |\alpha| + \log 2 = M^{*} < +\infty.$$

Therefore, by lemma 5, for $|w| \leq R < 1$,

(6.19)
$$\log|F_{k}(w)| \leq 2M^{*} \cdot \frac{1+R}{1-R} - \frac{1-R}{1+R} \cdot 1/2\pi \cdot \int_{0}^{2\pi} |\log|F_{k}(e^{i\theta})| |d\theta$$
$$\leq 2M^{*} \cdot \frac{1+R}{1-R} - \frac{1-R}{1+R} \cdot 1/2\pi \cdot \int_{E^{*}} |\log|F_{k}(e^{i\theta})| |d\theta.$$

By (6.17) (3) and (6.19), the sequence $\{f_{n_k}(w)\}$ tends to α uniformly in $|w| \leq R < 1$ as $k \to +\infty$. Since $|w| \leq R$ is mapped onto $D(a_{n_k}, \rho)$ $(\rho = \tanh^{-1} R)$ by $z = \frac{w + a_n}{1 + \bar{a}_n w}$,

f(z) tends uniformly to α as z tends to 1 inside the sequence of non-Euclidean circles: $D(a_{n_k}, \rho)$ $(k=1, 2, \cdots)$. By (6.17) (1) and $\overline{\lim} d(a_n, a_{n+1}) < +\infty$, we have

$$\overline{\lim_{k\to+\infty}} d(a_{n_k}, a_{n_{k+1}}) < +\infty.$$

Hence, by lemma 9, f(z) tends uniformly to α as $z \rightarrow 1$ inside the Stolz-domain with vertex at z=1, which is to be proved.

References

- [1] R. P. BOAS, Entire functions, Academic Press, New York, 1954.
- [2] C. CARATHÉODORY, Conformal representation, Cambridge, 1952.
- [3] M.L. CARTWRIGHT, Some generalizations of Montel's theorem, Proc. Camb. Phil. Soc., 31 (1935), 26-30.
- [4] F.W. GEHRING, The asymptotic values for analytic functions with bounded characteristic, Quarterly Jour. Math., 9 (1958), 282-289.
- [5] W. GROSS, Zum Verhalten analytischer Funktionen in der Umgebung singularen Stellen, Math. Zeit., 2 (1918), 243-294.
- [6] Y. KAWAKAMI, On Montel's theorem, Nagoya Math. Jour., 10 (1956), 125-127.
- [7] A. J. LOHWATER, The boundary values of a class of meromorphic functions, Duke Math. Jour., 19 (1952), 243-252.
- [8] A. J. MACINTYRE, On the asymptotic paths of integral functions of finite order, Jour. London Math. Soci. (2), 10 (1935), 34-39.
- [9] R. NEVANLINNA, Eindeutige analytische Funktionen, Zweite Auflage, Springer, Berlin (1953).
- [10] K. NOSHIRO, Cluster sets, Springer, Berlin (1960).
- [11] M. OHTSUKA, On the cluster sets of analytic functions in a Jordan domain, Jour. Math. Soci. Japan, 2 (1950), 1-15.
- [12] I.I. PRIWALOW, Randeigenschaften analytischer Funktionen, Berlin (1956).
- [13] C. TANAKA, On the class H_p of functions analytic in the unit circle, Yokohama Math. Jour., 4 (1956), 47-53.
- [14] C. TANAKA, An extension of Kintchine-Ostrowski's theorem and its applications, Ködai Math. Sem. Rep., 9 (1957), 97-104.
- [15] C. TANAKA, Boundary convergence of Blaschke products in the unit-circle, Proc. Japan Acad., 39 (1963), 410-412.
- [16] M. TSUJI, Function theory II, (in Japanese) Asakura, Tokyo (1952).

WASEDA UNIVERSITY