ON THE ASYMPTOTIC VALUES FOR REGULAR FUNCTIONS WITH BOUNDED CHARACTERISTIC

Dedicated to Professor Yûsaku Komatu on his 60th birthday

By Chuji Tanaka

1. Introduction.

Let $f(z)\left(z=r e^{i \theta}\right)$ be regular and of bounded type in the unit disk $D=$ $\{z ;|z|<1\}$. In general, from the boundedness of the boundary cluster set at $z=1$, we can not conclude the boundedness of $f(z)$ in the neighborhood of $z=1$ inside D. Indeed, putting $f(z)=\exp \{(1+z) /(1-z)\}, f(z)$ is regular and of bounded type in D, because $f(z)$ is the quotient of two bounded regular functions: 1 and $\exp \{-(1+z) /(1-z)\}$. Then we have easily

$$
\left|f\left(e^{i \theta}\right)\right|=1 \quad \text { for } \quad \theta \neq 0, \quad \lim _{r \rightarrow 1-0} f(r)=\infty
$$

which shows that the boundedness of the boundary cluster set at $z=1$ does not always mean the boundedness of $f(z)$ in the neighborhood of $z=1$ inside D.

The object of this note is to establish some additional conditions such that, from the boundedness of the boundary cluster set at $z=1$, we can conclude the boundedness of $f(z)$ in the neighborhood of $z=1$ inside D. As its applications, we shall establish theorems of Lindelöf or Montel-type on the asymptotic values of $f(z)$, including F . W. Gehring's theorems ([4]). Our method is based on the integral representation of $f(z)$.

Contents

1. Introduction.
2. Theorems of Lindelöf-type (I).
3. F. W. Gehring's theorem.
4. The least harmonic majorant of $\log ^{+}|f(z)|$.
5. Theorems of Lindelöf-type (II).
6. Theorems of P. Montel-type.

2. Theorems of Lindelöf-type (I).

Let D be the unit disk: $|z|<1, \Gamma$ its boundary, which is divided into two $\operatorname{arcs} \Gamma_{2}(i=1,2)$ by two points z_{0} and z_{1} on Γ. Suppose that $f(z)\left(z=r e^{i \theta}\right)$ is
regular and of bounded characteristic in D. As usual ([10] 1-2), we define the boundary cluster sets $C_{\Gamma_{i}}\left(f, z_{0}\right)(i=1,2)$ along $\Gamma_{\imath}(i=1,2)$ respectively. If $C_{\Gamma_{i}}\left(f, z_{0}\right)$ is bounded, we say that $f(z)$ is bounded at z_{0} along Γ_{2}. Theorem 1 reads as follows :

ThEOREM 1. Let $f(z)\left(z=r e^{i \theta}\right)$ be regular and of bounded characteristic in D. Suppose that $f(z)$ is bounded at $z_{0}=1$ along $\Gamma_{2}(i=1,3)$, where Γ_{1} is the upper arc and Γ_{3} is the Jordan arc terminating at $z_{0}=1$ and contained in the domain \mathscr{D}_{4} :

$$
D \cap\{z ; \pi / 2<\arg (z-1) \leqq 3 \pi / 2-\Delta\}
$$

Δ being a positive constant less than π. Under these conditions, $f(z)$ is bounded in the domain bounded by $\Gamma_{2}(i=1,3)$ and $|z-1|=\varepsilon, \varepsilon$ being a sufficiently small positive constant.

As its corollaries, we obtain
Corollary 1. Let $f(z)$ be regular and of bounded characterstic in D. Suppose that $f(z)$ is bounded at z_{0} along $\Gamma_{2}(i=1,2,3)$, where Γ_{3} is the Jordan arc terminating at z_{0} and contained in a Stolz-domain with vertex at z_{0}. Under these conditions, $f(z)$ is bounded in $D \cap U\left(z_{0}, \varepsilon\right)^{(*)}, \varepsilon$ being a sufficiently small positive constant.

Corollary 2. Let $f(z)$ be regular and of bounded characteristic in D. If $f(z)$ tends to a finite value $a_{2}(i=1,2)$ as z approaches z_{0} along $\Gamma_{\imath}(i=1,2)$ respectively, and $f(z)$ is bounded on Γ_{3} terminating at z_{0} and contained in a Stolzdomain with vertex at z_{0}, then $a_{1}=a_{2}$ and $f(z)$ tends to $a_{1}=a_{2}$ uniformly as z tends to z_{0} inside D.

To establish theorem 1, we need some lemmas.
Lemma 1. ([5], [11], p. 3). There exists a domain G bounded by a part of Γ_{1} and a curve L in D terminating at z_{0} such that

$$
C_{\Gamma_{1}}\left(f, z_{0}\right)=C_{G}\left(f, z_{0}\right),
$$

$C_{G}\left(f, z_{0}\right)$ being the interior cluster set at z_{0} with respect to G.
Lemma 2. Let us put

$$
g(z)=1 / 2 \pi \cdot \int_{-\pi}^{+\pi} G(\varphi) P\left(e^{\imath \varphi}, z\right) d \varphi \quad \text { for } \quad|z|<1
$$

where $G(\varphi) \in L(-\pi,+\pi), P\left(e^{\imath \varphi}, z\right)=\left(1-|z|^{2}\right) /\left|e^{\imath \varphi}-z\right|^{2}$.
(1) If $|G(\varphi)| \leqq m<+\infty$ almost everywhere in $(-\delta,+\delta)(\delta>0)$, then

$$
\varlimsup_{\substack{z \rightarrow 1 \\ \mid z<1<1}}|g(z)| \leqq m . \quad([13], \text { p. 48) }
$$

(2) If $|G(\varphi)| \leqq m<+\infty$ almost everywhere in $(0,+\delta)$, then for a fixed $\Delta(0<\Delta<\pi)$ we have uniformly
(*) $U\left(z_{0}, \varepsilon\right)$ is ε-neighborhood of z_{0}.

$$
\lim _{\substack{z \rightarrow 1 \\ z \in \mathscr{A}}}(z-1) \cdot g(z)=0
$$

where $\mathscr{D}_{\Delta}=D \cap\{z ; \pi / 2<\arg (z-1) \leqq 3 \pi / 2-\Delta\}$.
Proof. Put

$$
g(z)=\int_{0}^{+\delta_{1}}+\int_{-\delta_{1}}^{0}+\int_{\delta_{1}}^{\pi}+\int_{-\pi}^{-\delta_{1}}=I_{1}+I_{2}+I_{3}+I_{4},
$$

where $\delta_{1}\left(0<\delta_{1}<\delta\right)$ will tend to zero later.
By the assumption: $|G(\varphi)| \leqq m$ almost everywhere in ($0,+\delta$),

$$
\begin{equation*}
\left|I_{1}\right| \leqq m / 2 \pi \cdot \int_{0}^{\delta_{1}} P\left(e^{\imath \varphi}, z\right) d \varphi<m / 2 \pi \cdot \int_{-\pi}^{+\pi} P\left(e^{\imath \varphi}, z\right) d \varphi=m \tag{2.1}
\end{equation*}
$$

Putting $z=r e^{i \theta}$, we have for $\delta_{1} \leqq \varphi \leqq \pi,|\theta| \leqq \delta_{1} / 2$,

$$
\begin{aligned}
& \varphi-\theta \geqq \delta_{1} / 2, \\
& \left|e^{\imath \varphi}-z\right|^{2} \geqq 1-2 r \cos \left(\delta_{1} / 2\right)+r^{2} \geqq \sin ^{2}\left(\delta_{1} / 2\right),
\end{aligned}
$$

so that

$$
\left|I_{3}\right| \leqq \frac{1-r^{2}}{2 \pi \sin ^{2}\left(\frac{\delta_{1}}{2}\right)} \cdot \int_{\delta_{1}}^{\pi}|G(\varphi)| d \varphi<\frac{1-r^{2}}{2 \pi \sin ^{2}\left(\frac{\delta_{1}}{2}\right)} \cdot \int_{-\pi}^{+\pi}|G(\varphi)| d \varphi .
$$

Similarly

$$
\left|I_{4}\right|<\frac{1-r^{2}}{2 \pi \sin ^{2}\left(\frac{\delta_{1}}{2}\right)} \cdot \int_{-\pi}^{+\pi}|G(\varphi)| d \varphi
$$

Hence

$$
\begin{equation*}
\left|I_{3}+I_{4}\right|<\frac{1-r^{2}}{\pi \sin ^{2}\left(\frac{\delta_{1}}{2}\right)} \cdot \int_{-\pi}^{+\pi}|G(\varphi)| d \varphi . \tag{2.2}
\end{equation*}
$$

Since $\mathscr{D}_{\Delta} \supset \mathscr{D}_{\Delta^{\prime}}$ for $0<\Delta<\Delta^{\prime}<\pi$, we can assume that

$$
0<\delta_{1}<\Delta<\pi / 4
$$

By the elementary calculations, we have

$$
\frac{\left|z-e^{2 \varphi}\right|}{|z-1|}>\sin (\Delta / 2) \quad \text { for } \quad-\delta_{1} \leqq \varphi \leqq 0, z \in \mathscr{D}_{\Delta} .
$$

Hence

$$
\begin{align*}
\left|I_{2}\right| & \leqq \frac{1-|z|^{2}}{|z-1|^{2}} \cdot \frac{1}{2 \pi \sin ^{2}\left(\frac{\Delta}{2}\right)} \cdot \int_{-\delta_{1}}^{0}|G(\varphi)| d \varphi \tag{2.3}\\
& <\frac{1}{|z-1|} \cdot \frac{1}{\pi \sin ^{2}\left(\frac{\Delta}{2}\right)} \cdot \int_{-\delta_{1}}^{0}|G(\varphi)| d \varphi
\end{align*}
$$

By (2.1), (2.2) and (2.3),

$$
\begin{equation*}
\varlimsup_{\substack{z=1 \\ z \in \mathscr{Q}_{\Delta}}}|(z-1) \cdot g(z)| \leqq \frac{1}{\pi \sin ^{2}\left(\frac{\Delta}{2}\right)} \cdot \int_{-\delta_{1}}^{0}|G(\varphi)| d \varphi \tag{2.4}
\end{equation*}
$$

Letting $\delta_{1} \rightarrow+0$ in (2.4), we have

$$
\overline{\substack{z \rightarrow 1 \\ z \in \mathscr{Q}}}|(z-1) \cdot g(z)|=0
$$

which proves part (2) of our lemma.
Lemma 3. Suppose that $f(z)$ is regular in \bar{D} except at $z=1$, and of bounded characteristic in D. Then $f(z)$ has the following integral representation:

$$
f(z)=B(z) \cdot \exp \left\{1 / 2 \pi \cdot \int_{-\pi}^{+\pi} \log \left|f\left(e^{\imath \varphi}\right)\right| \cdot Q\left(e^{\imath \varphi}, z\right) d \varphi\right\} \cdot \exp \{C \cdot Q(1, z)+i \lambda\},
$$

where $B(z)$: Blaschke products extended over the zeros of $f(z)$, which may have the unique limit point: $z=1,{ }^{(*)}$

$$
Q\left(e^{\imath \varphi}, z\right)=\left(e^{\imath \varphi}+z\right) /\left(e^{\imath \varphi}-z\right), \quad C, \lambda: \text { real constants } .
$$

Proof. It is well konwn ([12], p. 79) that $f(z)$ has the following integral representation ;

$$
\begin{equation*}
f(z)=B(z) \cdot D_{1}(z) \cdot D_{2}(z), \tag{2.5}
\end{equation*}
$$

where $B(z)$: Blaschke products extended over the zeros of $f(z)$,

$$
\begin{aligned}
& D_{1}(z)=\exp \left\{1 / 2 \pi \cdot \int_{-\pi}^{+\pi} \log \left|f\left(e^{2 \varphi}\right)\right| \cdot Q\left(e^{\imath \varphi}, z\right) d \varphi\right\} \\
& D_{2}(z)=\exp \left\{1 / 2 \pi \cdot \int_{-\pi}^{+\pi} Q\left(e^{\imath \varphi}, z\right) d \mu(\varphi)+i \lambda\right\}
\end{aligned}
$$

$\mu(\varphi)$: the real function of bounded variation with $\mu^{\prime}(\varphi)=0$ for almost all $\varphi \in[-\pi,+\pi], \lambda$: a real constant.

Since $f(z)$ is regular on $|z|=1$ except at $z=1$, its zeros may have the unique limit point : $z=1$. In the neighbourhood of $z=e^{2 \varphi_{0}}\left(\varphi_{0} \neq 0\right), f(z)$ can be represented by

$$
\begin{equation*}
f(z)=\left(z-e^{2 \varphi_{0}}\right)^{n} \cdot F(z), \tag{2.6}
\end{equation*}
$$

where n : non negative integer, $F(z)$ is regular at $z=e^{\imath \varphi_{0}}$ and $F\left(e^{\imath \varphi_{0}}\right) \neq 0$. Since

$$
\left(z-e^{2 \varphi_{0}}\right)^{n}=e^{i \lambda \cdot} \cdot \exp \left\{1 / 2 \pi \cdot \int_{-\pi}^{+\pi} n \cdot \log \left|e^{2 \varphi}-e^{2 \varphi_{0}}\right| \cdot Q\left(e^{2 \varphi}, z\right) d \varphi\right\},
$$

λ^{*} : a real constant, by (2.5) and (2.6)
${ }^{*}$) If the number of zeros is finite, $z=1$ is not the limit point of zeros.

$$
\begin{align*}
& \exp \{H(z)\} \tag{2.7}\\
&=F(z) / B(z) \cdot \exp \left\{-1 / 2 \pi \cdot \int_{-\pi}^{+\pi} G(\varphi) \cdot Q\left(e^{\imath \varphi}, z\right) d \varphi\right\} \cdot \exp \left(i\left(\lambda^{*}-\lambda\right)\right),
\end{align*}
$$

where $H(z)=1 / 2 \pi \cdot \int_{-\pi}^{+\pi} Q\left(e^{\imath \varphi}, z\right) d \mu(\varphi), G(\varphi)=\log \left|F\left(e^{\imath \varphi}\right)\right| \neq \infty$ in the neighborhood $\varphi=\varphi_{0}$. Since $z=e^{\imath \varphi_{0}}\left(\varphi_{0} \neq 0\right)$ is not the limit point of zeros, $B(z)$ is regular and of modulus one on the arc : $A\left(e^{\imath \varphi}, \varphi_{0}-\varepsilon \leqq \varphi \leqq \varphi_{0}+\varepsilon\right)$, ε being a sufficiently small positive constant ([15], p. 410). Hence by (2.6) and lemma 2 (1), the right hand side of (2.7) is not equal to 0 or ∞ on A. In other words, $R(H(z))$ is not equal to $\pm \infty$ on A. Then we can conclude that $\mu(\varphi) \equiv$ constant on A.

Indeed, if $\mu(\varphi) \equiv$ constant on $A, \mu(\varphi)$ admits the following representation:

$$
\mu(\varphi)=\mu_{1}(\varphi)+\mu_{2}(\varphi)+\mu_{3}(\varphi),
$$

where all functions $\mu_{i}(\varphi)(i=1,2,3)$ are of bounded variation $\mu_{1}(\varphi)$ is absolutely continuous, $\mu_{2}(\varphi)$ is continuous and $\mu_{2}^{\prime}(\varphi)=0$ a. e., and $\mu_{3}(\varphi)$ is a step-function. Since $\mu^{\prime}(\varphi)=0, \mu_{i}^{\prime}(\varphi)=0(i=2,3)$ a. e., $\mu_{1}^{\prime}(\varphi) \equiv 0$ a. e., i.e. $\mu_{1}(\varphi) \equiv 0$. If $\mu_{2}(\varphi)$ is a constant, then $\mu_{3}(\varphi)$ is certainly not a constant, so that

$$
H(z)=1 / 2 \pi \cdot \int_{C A} Q\left(e^{\imath \varphi}, z\right) d \mu(\varphi)+\sum_{n=1}^{\infty} Q\left(e^{\imath \varphi_{n}}, z\right) \cdot J_{n},
$$

where $\left\{e^{\imath \varphi_{n}}\right\} \in A, \sum_{n=1}^{\infty}\left|J_{n}\right|<+\infty$. Hence $R(H(z))$ is equal to $\pm \infty$ on A, which is impossible. If $\mu_{2}(\varphi)$ is not a constant, then it is well known that $\mu_{2}^{\prime}(\varphi)= \pm \infty$ at a non-denumeable set of points on A. Since $\mu_{3}(\varphi)$ is discontinuous at an enumerable set of points on A, there exists a non-denumerable set E of points on A such that $\mu^{\prime}(\varphi)= \pm \infty$ for $e^{2 \varphi} \in E$. Hence, by P. Fatou's theorem, $R(H(z))$ is equal to $\pm \infty$ on E, which is again impossible. Thus $\mu(\varphi) \equiv$ constant on A.

Since $z=e^{2 \varphi_{0}} \neq 1$ is arbitrary, $d \mu(\varphi)=0$ in $(-\pi,+\pi)$ except at $\varphi=0$. Hence $H(z)$ reduces to the form : $C \cdot Q(1, z)$ (C : real constant), which proves our lemma.

Now we can establish theorem 1.
Proof of theorem 1. By lemma 1, there exist two analytic Jordan arcs $\Gamma_{i}^{*}(i=1,2)$, closely near $\Gamma_{i}(i=1,2)$ and contained in D except at $z=1$, such that $f(z)$ is bounded on Γ_{1}^{*} and Γ_{2}^{*} is contained in $C\left(\mathscr{D}_{4}\right)$. Denote by D^{*} the subdomain of D bounded by a part of $\Gamma_{\imath}^{*}(i=1,2)$ and a cross-cut connecting Γ_{1}^{*} and Γ_{2}^{*}. If we map conformally D onto $|\zeta|<1$ in such a manner that $z=1$ goes into $\zeta=1$, then by Lindelöf-Carathéodory's theorem ([2], p. 92) the image of Γ_{3} is also contained in the domain of the same character as \mathscr{D}_{4}. Therefore, without any loss of generality, we can assume that $f(z)$ is regular on Γ except at $z=1$.

By lemma 3, we have easily

$$
\begin{equation*}
\log ^{+}|f(z)| \leqq 1 / 2 \pi \cdot \int_{0}^{2 \pi} \log ^{+}\left|f\left(e^{2 \varphi}\right)\right| \cdot P\left(e^{2 \varphi}, z\right) d \varphi+C^{+} \cdot \frac{1-|z|^{2}}{|1-z|^{2}}, \tag{2.8}
\end{equation*}
$$

where $C^{+}=\max (C, 0)$. Since $f(z)$ is bounded at $z=1$ along Γ_{1}, by lemma 2 (2)

$$
\begin{equation*}
1 / 2 \pi \cdot \int_{-\pi}^{+\pi} \log ^{+}\left|f\left(e^{\imath \varphi}\right)\right| \cdot P\left(e^{\imath \varphi}, z\right) d \varphi<\frac{\varepsilon_{1}}{|z-1|} \tag{2.9}
\end{equation*}
$$

in $U\left(1, \delta_{1}\right) \cap \mathscr{D}_{\Delta}$, where ε_{1} : any given positive constant, and δ_{1} : a positive constant dependent upon ε_{1}. By (2.8) and (2.9)

$$
|f(z)|<\exp \left\{O\left(\left|\frac{1}{z-1}\right|\right)\right\} \quad \text { for } \quad z \in U\left(1, \delta_{1}\right) \cap \mathscr{D}_{\Delta}
$$

Hence

$$
\begin{equation*}
|f(z)|<\exp \left\{\varepsilon_{2} \cdot\left|\frac{1}{z-1}\right|^{\frac{\pi}{\alpha}}\right\} \quad \text { for } \quad z \in U\left(1, \delta_{2}\right) \cap \mathscr{D}_{\Delta} \tag{2.10}
\end{equation*}
$$

where $\alpha=\pi-\Delta, \varepsilon_{2}$: any given positive constant and δ_{2}; a positive constant dependent upon ε_{2}. Since $f(z)$ is bounded on $\Gamma_{2}(i=1,3)$, by (2.10) and PhragmenLindelöf's theorem ([16], pp. 64-66), $f(z)$ is also bounded in the domain bounded by $\Gamma_{\imath}(\imath=1,3)$ and $|z-1|=\varepsilon, \varepsilon$ being a sufficiently small positive constant, which is to be proved.

In corollary 1 , we can replace the boundedness of $f(z)$ on Γ_{3} by another conditions;

ThEOREM 2. Let $f(z)$ be regular and of bounded characteristic in D. Suppose that $f(z)$ is bounded at $z=z_{0}$ along $\Gamma_{\imath}(i=1,2)$ and that $f(z)$ is also bounded on the sequence of curves $\left\{C_{n}\right\}$, where C_{n} is the cross-cut connecting both chordal sides of a Stolz-domain with vertex at z_{0}, and C_{n} tends to z_{0} as $n \rightarrow+\infty$. Under these conditions, $f(z)$ is bounded in $U\left(z_{0}, \varepsilon\right) \cap D$, ε being a sufficiently small positive constant.

To establish theorem 2, we need
Lemma 4. Let Blaschke products $B(z)$ have zeros with the unique limit point: $z=1$. Then there exists a set E of φ with outer capacity zero contained in $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ such that, for fixed $\varphi \overline{\in E}$,

$$
\lim _{\substack{z \rightarrow 1 \\ z \in C_{\varphi}}}|z-1| \cdot \log |B(z)|=0,
$$

where C_{φ} is the circular arc which connects $z= \pm 1$ and has the tangent: $\arg (z-1)=\varphi$ at $z=1$.

Although R.P. Boas ([1], p. 115) has proved this lemma in the case of Blaschke products in the upper half-plane : $I(z)>0$, we get lemma 4 by a suitable linear transformation.

Proof of theorem 2. Without any loss of generality, we can assume that $z_{0}=1$. As in theorem 1, we can suppose that $f(z)$ is regular on $|z|=1$ except at $z=1$. Using $f(z)+k$ (k : a suitable constant) instead of $f(z)$, if necessary, we can further assume that there exist two constants $k_{2}(i=1,2)$ such that

$$
\begin{equation*}
0<k_{1} \leqq|f(z)| \leqq k_{2}<+\infty \quad \text { on } \quad \Gamma_{\imath}(i=1,2) . \tag{2.11}
\end{equation*}
$$

By lemma 3, we have

$$
\begin{equation*}
|f(z)|=|B(z)| \exp \left(C \frac{1-|z|^{2}}{|1-z|^{2}}\right) \cdot \exp (D(z)) \tag{2.12}
\end{equation*}
$$

where $D(z)=1 / 2 \pi \cdot \int_{-\pi}^{+\pi} \log \left|f\left(e^{i \varphi}\right)\right| \cdot P\left(e^{i \varphi}, z\right) d \varphi$. By (2.11) and lemma $2(1), D(z)$ is bounded in $U(1, \varepsilon) \cap D, \varepsilon$ being a sufficiently small positive constant. By lemma 3 and lemma 4, there exists a circular arc C_{φ} contained in a Stolz-domain with vertex at $z=1$ such that

$$
|B(z)|>\exp \left(-\frac{\varepsilon_{1}}{|1-z|}\right)
$$

in the neighborhood of $z=1$ on C_{φ}, where ε_{1} : any given positive constant. Therefore, denoting by z_{n} the intersection point between C_{n} and C_{φ}, by (2.12) we have for $n \geqq N\left(\varepsilon_{1}\right)$

$$
\begin{equation*}
\left|f\left(z_{n}\right)\right|>\exp \left\{\frac{1}{\left|1-z_{n}\right|}\left(C \cdot \frac{1-\left|z_{n}\right|^{2}}{\left|1-z_{n}\right|}-\varepsilon_{1}\right)\right\} \exp \left(D\left(z_{n}\right)\right) . \tag{2.13}
\end{equation*}
$$

Since z_{n} is contained in a Stolz-domain with vertex at $z=1$, there exists a positive constant k_{3} such that

$$
\begin{equation*}
\frac{1-\left|z_{n}\right|}{\left|1-z_{n}\right|} \geqq k_{3}>0 \tag{2.14}
\end{equation*}
$$

By (2.13) and (2.14), we can conclude that $C \leqq 0$. Indeed, if $C>0$, by (2.13) and (2.14)

$$
\begin{equation*}
\left|f\left(z_{n}\right)\right|>\exp \left\{\frac{1}{\left|1-z_{n}\right|}\left(C k_{3}-\varepsilon_{1}\right)+D\left(z_{n}\right)\right\} \tag{2.15}
\end{equation*}
$$

so that, putting $C k_{3}-\varepsilon_{1}>0$, the right hand side of (2.15) is unbounded as $n \rightarrow+\infty$, which is contrary to the boundedness of $f\left(z_{n}\right)(n=1,2, \cdots)$. Since $C \leqq 0$, by (2.12)

$$
|f(z)| \leqq \exp (D(z))
$$

so that, from the boundedness of $D(z)$ in $U(1, \varepsilon) \cap D$, we can conclude the boundness of $f(z)$ in $U(1, \varepsilon) \cap D$, which is to be proved.

As an immediate consequence of theorem 2, we get
Corollary 3. Let $f(z)$ be regular and of bounded characteristic in D. Suppose that $f(z)$ tends to a finite value $a_{\imath}(i=1,2)$ as $z \rightarrow z_{0}$ along $\Gamma_{\imath}(i=1,2)$ respectively, and that $f(z)$ is bounded on the sequence of curves $\left\{C_{n}\right\}$, where C_{n} is the cross-cut connecting both chordal sides of a Stolz-domain with vertex at z_{0} and C_{n} tends to z_{0} as $n \rightarrow+\infty$. Under these conditions, $a_{1}=a_{2}$ and $f(z)$ tends to $a_{1}=a_{2}$ uniformly as $z \rightarrow z_{0}$ inside D.

3. F. W. Gehring's theorem.

F. W. Gehring has proved the following interesting theorem.
F.W. Gehring's theorem ([4], p. 284). Suppose that $f(z)$ is regular and of bounded characteristic in D. Then following propositions hold:
(1) For each z_{0} on $\Gamma, A\left(z_{0}, f\right)$ (the set of asymptotic values at z_{0}) contains at most two finite values.
(2) If $A_{\Delta}\left(z_{0}, f\right)$ (the set of angular asymptotic values at z_{0} on Γ) containes a finite value, then $A\left(z_{0}, f\right)$ contains only one finite value.

He has proved this theorem using the systematic use of the harmonic majorant of $\log ^{+}|f(z)|$ and modified A. J. Macintyre's theorem ([8], p. 38), which is, however, not familiar to us. We can establish this theorem as the application of theorem 1 and corollary 3.

Proof of F.W. Gehring's theorem. We may assume that $z_{0}=1$. If $A(1, f)$ contains three finite values $a_{2}(i=1,2,3)$, there exist three Jordan $\operatorname{arcs} \Gamma_{2}(i=$ $1,2,3)$ in $D \cup \Gamma$ such that $f(z) \rightarrow a_{\imath}(\imath=1,2,3)$ as $z \rightarrow 1$ along $\Gamma_{\imath}(i=1,2,3)$ respectively. By the preliminary conformal mapping, from the beginning we can assume that $\Gamma_{1} \cup \Gamma_{2}$ forms a part of Γ and that Γ_{3} is contained in D except at $z=1$.

For a sufficiently small positive Δ, following two cases may occur:
(A) Γ_{3} intersects infinitely many times both chordal sides of a Stolz-domain with vertex at $z=1$:

$$
D \cap\{z ; \pi / 2+\Delta \leqq \arg (z-1) \leqq 3 \pi / 2-\Delta\} .
$$

(B) Γ_{3} is contained in one of two domains $D_{\imath}(i=1,2)$:

$$
\begin{aligned}
& D_{1}=D \cap\{z ; \pi / 2<\arg (z-1) \leqq 3 \pi / 2-\Delta\}, \\
& D_{2}=D \cap\{z ; \pi / 2+\Delta \leqq \arg (z-1)<3 \pi / 2\} .
\end{aligned}
$$

In case (A), by corollary 3 we have $a_{1}=a_{2}$, which is impossible. In case (B), if $\Gamma_{3} \in D_{1}$ or D_{2}, by theorem 1 we have $a_{3}=a_{1}$ or $a_{3}=a_{2}$ respectively, which is again impossible. Thus part (1) is completely established.

Now we proceed to the second part. Suppose that $f(z) \rightarrow a_{\imath}(i=1,3)$ as $z \rightarrow 1$ along $\Gamma_{2}(i=1,3)$ respectively, where $a_{\imath}(i=1,3)$ are finite and that Γ_{3} is contained in a Stolz-domain with vertex at $z=1$. Without any loss of generality, we can assume that Γ_{1} is a cross-cut of D, and that Γ_{3} is contained in one of two Jordan domains into which D is split by Γ_{1}. By the preliminary conformal mapping and the similar arguments as in the proof of theorem 1, from the beginning we can assume that Γ_{1} is a part of Γ and that Γ_{3} is contained in D_{1}. Then, by theorem 1, we have $a_{1}=a_{3}$, which is impossible. Thus, part (2) is also established.

4. The least harmonic majorant of $\log ^{+}|f(z)|$.

Let $f(z)$ be regular and of bounded characteristic in D. The subharmonic function: $\log ^{+}|f(z)|$ has the harmonic majorant: $h(z)$ in D. Indeed, by (2.5) we get easily $h(z)$ as follows;

$$
\begin{align*}
\log ^{+}|f(z)| & \leqq h(z) \tag{4.1}\\
& =1 / 2 \pi \cdot \int_{-\pi}^{+\pi} \log ^{+}\left|f\left(e^{2 \varphi}\right)\right| \cdot P\left(e^{\imath \varphi}, z\right) d \varphi+1 / 2 \pi \cdot \int_{-\pi}^{+\pi} P\left(e^{\imath \varphi}, z\right) d^{+} \mu(\varphi),
\end{align*}
$$

where $P\left(e^{2 \varphi}, z\right)=\frac{1-|z|^{2}}{\left|e^{i \varphi}-z\right|^{2}}, \log ^{+} x=\max (\log x, 0), d \mu^{+}(\varphi)=\max (d \mu(\varphi), 0)$.
We shall now prove the following theorem which is interesting in itself.
Theorem 3. $h(z)$ is the least harmonic majorant of $\log ^{+}|f(z)|$ in $|z|<1$.
Proof. We divide the proof in three parts.
(1) Let us define a positive harmonic function $u(z, r)(0 \leqq r<1)$ such that

$$
\begin{align*}
& u(z, r)=\log ^{+}\left|f\left(r e^{i \theta}\right)\right| \quad \text { on } \quad|z|=r, \tag{4.2}\\
& u(z, r): \text { harmonic in }|z|<r .
\end{align*}
$$

It is well-known that $u(z, r)$ is given by Poisson integral ;

$$
\begin{equation*}
u(z, r)=1 / 2 \pi \cdot \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{2 \varphi}\right)\right| \cdot P\left(r e^{2 \varphi}, z\right) d \varphi \tag{4.3}
\end{equation*}
$$

where $P\left(r e^{i \varphi}, z\right)=\frac{r^{2}-|z|^{2}}{\left|r e^{i \varphi}-z\right|^{2}}(|z|<r)$. Since $\log ^{+}|f(z)|$ is subharmonic, by (4.2)

$$
\begin{equation*}
\log ^{+}|f(z)| \leqq u(z, r) \quad \text { in } \quad|z| \leqq r \tag{4.4}
\end{equation*}
$$

Hence

$$
u(z, r)=\log ^{+}|f(z)| \leqq u(z, R) \quad \text { on } \quad|z|=r<R<1,
$$

so that

$$
0 \leqq u(z, r) \leqq u(z, R) \quad \text { in } \quad|z| \leqq r<R<1 .
$$

Therefore $\{u(z, r)\}(0 \leqq r<1)$ is an increasing sequence of r. Because of the bounded characteristic of $f(z)$, there exists a finite constant M such that

$$
u(0, r)=1 / 2 \pi \cdot \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta<M<+\infty .
$$

By A. Harnack's theorem, $u(z, r)$ converges to $u(z)$ uniformly in the wider sense in $|z|<1$, so that letting $r \rightarrow 1$ in (4.3) and (4.4), we have for $|z|<1$

$$
\begin{align*}
\log ^{+}|f(z)| & \leqq u(z) \tag{4.5}\\
& =\lim _{r \rightarrow 1} 1 / 2 \pi \cdot \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{2 \varphi}\right)\right| \cdot P\left(r e^{2 \varphi}, z\right) d \varphi
\end{align*}
$$

Then $u(z)$ is the least harmonic majorant of $\log ^{+}|f(z)|$. Indeed, if $v(z)$ is any harmonic majorant of $\log ^{+}|f(z)|$, by (4.2),

$$
u(z, r)=\log ^{+}|f(z)| \leqq v(z) \quad \text { on } \quad|z|=r,
$$

so that

$$
u(z, r) \leqq v(z) \quad \text { for } \quad|z| \leqq r .
$$

Letting $r \rightarrow 1$, we have $u(z) \leqq v(z)$, which shows that $u(z)$ is the least harmonic majorant of $\log ^{+}|f(z)|$ in $|z|<1$.
(2) Putting $F_{r}(\varphi)=\int_{0}^{\varphi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta$, we get easily

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|d F_{r}(\varphi)\right|=\int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta<M<+\infty \\
& \left|F_{r}(\varphi)\right| \leqq \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta<M<+\infty
\end{aligned}
$$

Hence, by E. Helly's first theorem ([12], p. 15), there exist a sequence $\left\{r_{n}\right\}$ ($0<r_{1}<r_{2} \cdots<r_{n} \rightarrow 1$) and a function $F_{1}(\varphi)$ non-negative and non-decreasing such that

$$
\begin{equation*}
F_{1}(\varphi)=\lim _{n \rightarrow \infty} F_{r_{n}}(\varphi)=\lim _{n \rightarrow+\infty} \int_{0}^{\varphi} \log ^{+}\left|f\left(r_{n} e^{i \theta}\right)\right| d \theta \tag{4.7}
\end{equation*}
$$

By (4.6), (4.7) and E. Helly's second theorem ([12], p. 15),

$$
\begin{align*}
\lim _{n \rightarrow+\infty} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r_{n} e^{2 \varphi}\right)\right| \cdot P\left(e^{2 \varphi}, z\right) d \varphi & =\lim _{n \rightarrow+\infty} \int_{0}^{2 \pi} P\left(e^{2 \varphi}, z\right) d F_{r_{n}}(\varphi) \tag{4.8}\\
& =\int_{0}^{2 \pi} P\left(e^{2 \varphi}, z\right) d F_{1}(\varphi)
\end{align*}
$$

Let us put for $r_{n}>r\left(z=r e^{i \theta}\right)$

$$
\begin{aligned}
u\left(z, r_{n}\right)= & I_{1}+I_{2} \\
= & 1 / 2 \pi \cdot \int_{0}^{2 \pi} \log ^{+}\left|f\left(r_{n} e^{2 \varphi}\right)\right| \cdot P\left(e^{\imath \varphi}, z\right) d \varphi \\
& +1 / 2 \pi \cdot \int_{0}^{2 \pi} \log ^{+}\left|f\left(r_{n} e^{2 \varphi}\right)\right|\left\{P\left(r_{n} e^{2 \varphi}, z\right)-P\left(e^{\imath \varphi}, z\right)\right\} d \varphi
\end{aligned}
$$

Since

$$
P\left(R e^{\imath \varphi}, r e^{i \theta}\right)=1+2 \sum_{k=1}^{+\infty}(r / R)^{k} \cos (k(\theta-\varphi)) \quad \text { for } \quad R>r,
$$

we have

$$
\begin{aligned}
\left|I_{2}\right| & \leqq 2 \sum_{k=1}^{+\infty}\left\{\left(r / r_{n}\right)^{k}-r^{k}\right\} 1 / 2 \pi \cdot \int_{0}^{2 \pi} \log ^{+}\left|f\left(r_{n} e^{2 \varphi}\right)\right| d \varphi \\
& <2 \cdot\left\{\frac{r_{n}}{r_{n}-r}-\frac{1}{1-r}\right\} M,
\end{aligned}
$$

so that

$$
I_{2} \longrightarrow 0 \quad \text { as } n \rightarrow+\infty
$$

Hence, by (4.5) and (4.8)

$$
\begin{equation*}
u(z)=1 / 2 \pi \cdot \int_{0}^{2 \pi} P\left(e^{\imath \varphi}, z\right) d F_{1}(\varphi), \tag{4.9}
\end{equation*}
$$

where $F_{1}(\varphi)=\lim _{n \rightarrow \infty} \int_{0}^{\varphi} \log ^{+}\left|f\left(r_{n} e^{i \theta}\right)\right| d \theta$. Since $F_{1}(\varphi)$ is non-decreasing, by the decomposition theorem of functions of bounded variation, we can put

$$
\begin{equation*}
F_{1}(\varphi)=\int_{0}^{\varphi} F(\theta) d \theta+\mu_{1}(\varphi), \tag{4.10}
\end{equation*}
$$

where $F(\theta) \in L(0,2 \pi), \mu_{1}^{\prime}(\varphi)=0$ a. e. and $d \mu_{1}(\varphi) \geqq 0$.
Since $u(z)$ is the least harmonic majorant of $\log ^{+}|f(z)|$ in $|z|<1$, we have

$$
\log ^{+}\left|f\left(r e^{2 \varphi}\right)\right| \leqq u\left(r e^{2 \varphi}\right) \leqq h\left(r e^{2 \varphi}\right) \quad \text { on } \quad|z|=r<1
$$

Therefore, by P. Fatou's theorem and (4.1), (4.9),

$$
\log ^{+}\left|f\left(e^{\imath \varphi}\right)\right| \leqq F_{1}^{\prime}(\varphi) \leqq \log ^{+}\left|f\left(e^{\imath \varphi}\right)\right| \quad \text { a. e., }
$$

i. e. $\quad F_{1}^{\prime}(\varphi)=\log ^{+}\left|f\left(e^{2 \varphi}\right)\right| \quad$ a. e.

Hence, by (4.9) and (4.10) we get next integral representation of the least harmonic majorant $u(z)$:

$$
\begin{equation*}
u(z)=1 / 2 \pi \cdot \int_{0}^{2 \pi} P\left(e^{\imath \varphi}, z\right) d F_{1}(\varphi), \tag{4.11}
\end{equation*}
$$

where $F_{1}(\varphi)=\lim _{n \rightarrow \infty} \int_{0}^{\varphi} \log ^{+}\left|f\left(r_{n} e^{i \theta}\right)\right| d \theta=\int_{0}^{\varphi} \log ^{+}\left|f\left(e^{i \theta}\right)\right| d \theta+\mu_{1}(\varphi), \quad \mu_{1}^{\prime}(\varphi)=0 \quad$ a. e. and $d \mu_{1}(\varphi) \geqq 0$.
(3) Let us put

$$
G_{r}(\varphi)=\int_{0}^{\varphi} \log ^{+}\left|1 / f\left(r e^{i \theta}\right)\right| d \theta .
$$

Since $\log ^{+}\left|1 / f\left(r e^{i \theta}\right)\right| \leqq|\log | f\left(r e^{i \theta}\right)| |$, we get

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|d G_{r}(\varphi)\right|=\int_{0}^{2 \pi} \log ^{+}\left|1 / f\left(r e^{i \theta}\right)\right| d \theta \leqq \int_{0}^{2 \pi}|\log | f\left(r e^{i \theta}\right)| | d \theta<N<+\infty, \\
& \left|G_{r}(\varphi)\right| \leqq \int_{0}^{2 \pi} \log ^{+}\left|1 / f\left(r e^{i \theta}\right)\right| d \theta \leqq \int_{0}^{2 \pi}|\log | f\left(r e^{i \theta}\right)| | d \theta<N<+\infty,
\end{aligned}
$$

where N is a positive finite constant, because $f(z)$ is of bounded characteristic. Therefore, by similar arguments as in (2), we can select a subsequence $\left\{r_{n_{k}}\right\}$ of $\left\{r_{n}\right\}$ and a function $G_{1}(\varphi)$ non-negative and non-decreasing such that

$$
\begin{equation*}
G_{1}(\varphi)=\lim _{k \rightarrow \infty} G_{r_{n_{k}}}(\varphi)=\lim _{k \rightarrow \infty} \int_{0}^{\varphi} \log ^{+}\left|1 / f\left(r_{n_{k}} e^{i \theta}\right)\right| d \theta \tag{4.12}
\end{equation*}
$$

Hence, by the decomposition-theorem of functions of bounded variation, we have

$$
\begin{equation*}
G_{1}(\varphi)=\int_{0}^{\varphi} G(\theta) d \theta+\mu_{2}(\varphi), \tag{4.13}
\end{equation*}
$$

where $G(\theta) \in L(0,2 \pi)$ and $\mu_{2}^{\prime}(\varphi)=0$ a. e., $d \mu_{2}(\varphi) \geqq 0$.
By (2.5), we can put

$$
f(z)=B(z) \cdot \exp \left\{1 / 2 \pi \cdot \int_{0}^{2 \pi} \frac{e^{i \varphi}+z}{e^{i \varphi}-z} d F(\varphi)+i \lambda\right\}
$$

where $F(\varphi)=\int_{0}^{\varphi} \log \left|f\left(e^{i \theta}\right)\right| d \theta+\mu(\varphi)=\lim _{r \rightarrow 1-0} \int_{0}^{\varphi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta$ for except perhaps an enumerable set of φ ([9], p. 198, p. 201).

By (4.11), (4.12) and (4.13)

$$
\begin{aligned}
F(\varphi) & =\lim _{k \rightarrow \infty} \int_{0}^{\varphi} \log ^{+}\left|f\left(r_{n_{k}} e^{i \theta}\right)\right| d \theta-\lim _{k \rightarrow \infty} \int_{0}^{\varphi} \log ^{+}\left|1 / f\left(r_{n_{k}} e^{i \theta}\right)\right| d \theta \\
& =\int_{0}^{\varphi}\left\{\log ^{+}\left|f\left(e^{i \theta}\right)\right|-G(\theta)\right\} d \theta+\left\{\mu_{1}(\varphi)-\mu_{2}(\varphi)\right\} .
\end{aligned}
$$

By the uniqueness of the decomposition of $F(\varphi)$, we have

$$
\begin{aligned}
& \int_{0}^{\varphi} \log \left|f\left(e^{i \theta}\right)\right| d \theta=\int_{0}^{\varphi}\left\{\log ^{+}\left|f\left(e^{i \theta}\right)\right|-G(\theta)\right\} d \theta, \\
& \mu(\varphi)=\mu_{1}(\varphi)-\mu_{2}(\varphi),
\end{aligned}
$$

so that

$$
\begin{align*}
& \int_{0}^{\varphi} G(\theta) d \theta=\int_{0}^{\varphi} \log ^{+}\left|1 / f\left(e^{i \theta}\right)\right| d \theta, \tag{4.14}\\
& d^{+} \mu(\varphi)=\max \left\{\left(d \mu_{1}(\varphi)-d \mu_{2}(\varphi)\right), 0\right\} \leqq d \mu_{1}(\varphi) .
\end{align*}
$$

Hence, by (4.1) and (4.11), $h(z) \leqq u(z)$. On the other hand, since $u(z)$ is the least harmonic majorant of $\log ^{+}|f(z)|$ in $|z|<1$, it is evident that $u(z) \leqq h(z)$. Thus we have $h(z)=u(z)$, which is to be proved.

Remark. By (4.14), we have

$$
\lim _{k \rightarrow \infty} \int_{0}^{\varphi} \log ^{+}\left|1 / f\left(r_{n_{k}} e^{i \theta}\right)\right| d \theta=\int_{0}^{\varphi} \log ^{+}\left|1 / f\left(e^{i \theta}\right)\right| d \theta+\mu_{2}(\varphi) .
$$

5. Theorems of Lindelöf-type (II).

Using the least harmonic majorant $h(z)$, we can establish several theorems somewhat different from theorem 1-2.

Theorem 4. Let $f(z)$ be regular and of bounded characteristic in D. Suppose that $f(z)$ is bounded at z_{0} along $\Gamma_{2}(i=1,2)$ and that $h\left(z_{n}\right)$ is bounded on the sequence of points $\left\{z_{n}\right\}$, contained in a Stolz-domain with vertex at $z=z_{0}$ and tending to $z=z_{0}$ as $n \rightarrow+\infty$. Under these conditions, $f(z)$ is bounded in $U\left(z_{0}, \varepsilon\right)$
$\cap D, \varepsilon$ being a sufficiently small positive constant.
As its consequence, we obtain next corollary which is a generalization of the corollary in the preceding paper ([14], pp. 98-99).

Corollary 4. Let $f(z)$ be regular and of bounded characteristic in D. Suppose that $f(z)$ tends to a finite value $a_{\imath}(i=1,2)$ as z approaches z_{0} along Γ_{\imath} $(i=1,2)$ respectvely, and that $h\left(z_{n}\right)$ is bounded on the sequence of points $\left\{z_{n}\right\}$ contained in a Stolz-domain with vertex at $z=z_{0}$ and tending to $z=z_{0}$ as $n \rightarrow \infty$. Under these conditions, $a_{1}=a_{2}$ and $f(z)$ tends unıformly to $a_{1}=a_{2}$ as $z \rightarrow z_{0}$ inside D.

Proof. We may put $z_{0}=1$. Considering $f(z)+k$ (k : a suitable constant) instead of $f(z)$, if necessary, we can assume that there exist two constants k_{\imath} $(i=1,2)$ such that

$$
\begin{equation*}
0<k_{1} \leqq|f(z)| \leqq k_{2}<+\infty \tag{5.1}
\end{equation*}
$$

in the neighborhood of the open arc: $A\left(e^{i \theta} ; 0<|\theta|<\delta\right)$. By (5.1), Blaschke product: $B(z)$ has no limit point of zeros in the neighborhood of $e^{i \theta} \in A$. Hence, by (2.5) and similar arguments as in the proof of lemma 3, we can conclude that $d \mu(\varphi)=0$ in the neighborhood of $\varphi=\theta$. Therefore, by (2.5) we can put

$$
\begin{equation*}
f(z)=B(z) \cdot D_{1}(z) \cdot D_{2}(z), \tag{5.2}
\end{equation*}
$$

where

$$
D_{2}(z)=\exp \left\{1 / 2 \pi \cdot \int_{C A} Q\left(e^{2 \varphi}, z\right) d \mu(\varphi)+C \cdot Q(1, z)+i \lambda\right\},
$$

$C A$: the complementary arc of A, C and λ : real constants, so that, by (4.1)

$$
\begin{equation*}
h(z)=h_{1}(z)+h_{2}(z)+C^{+} \cdot P(1, z), \tag{5.3}
\end{equation*}
$$

where

$$
h_{1}(z)=1 / 2 \pi \cdot \int_{-\pi}^{+\pi} \log ^{+}\left|f\left(e^{\imath \varphi}\right)\right| \cdot P\left(e^{\imath \varphi}, z\right) d \varphi, \quad h_{2}(z)=1 / 2 \pi \cdot \int_{C A} P\left(e^{2 \varphi}, z\right) d^{+} \mu(\varphi) .
$$

By (5.1), (5.3) and lemma 2 (1), $h_{i}(z)(i=1,2)$ is bounded in the heighborhood of $z=1$, so that from the boundedness of $h\left(z_{n}\right)$ on $\left\{z_{n}\right\}$, we can conclude that $C^{+} \cdot P\left(1, z_{n}\right)$ is bounded on $\left\{z_{n}\right\}$. Since $\left\{z_{n}\right\}$ is contained in a Stolz-domain with vertex at $z=1$, there exists a positive constant k_{3} such that

$$
P\left(1, z_{n}\right)>\frac{k_{3}}{\left|1-z_{n}\right|} .
$$

Hence, $C^{+} \cdot \frac{k_{3}}{\left|1-z_{n}\right|}$ is bounded on $\left\{z_{n}\right\}$, which is possible only if $C^{+}=0$. Thus, by (5.3) and (4.1),

$$
\log ^{+}|f(z)| \leqq h_{1}(z)+h_{2}(z),
$$

from which we can conclude the boundedness of $f(z)$ in the neighborhood of $z=1$, which is to be proved.

In theorem 4, we have assumed the both-sided boundedness at z_{0}. If we assume only the one-sided boundedness at z_{0}, what we can say about the boundedness of $f(z)$ in D ? We shall give an answer to this question in the following theorem.

Theorem 5. Let $f(z)$ be regular and of bounded characteristic in D. Sup. pose that $f(z)$ is bounded at $z_{0}=1$ along the upper arc Γ_{1}, and that the sequence of $\left\{h\left(a_{n}\right)\right\}$ is bounded: $h\left(a_{n}\right)<M<+\infty(n=1,2, \cdots)$, where
(1) $\left|a_{n}\right|<1, \lim _{n \rightarrow \infty} a_{n}=1$,
(2) $a_{n} \in \mathscr{D}_{\Delta}=D \cap\{z ; \pi / 2<\arg (z-1) \leqq 3 \pi / 2-\Delta\}(0<\Delta<\pi)$,
(3) $\lim _{n \rightarrow+\infty} d\left(a_{n}, a_{n+1}\right)<+\infty, d(a, b)$ being the non-Euclidean distance between a and b.
Under these conditions, $f(z)$ is bounded in the domain bounded by Γ_{1}, Γ_{3}, and $|z-1|=\varepsilon$ (ε : a sufficiently small positive constant), where Γ_{3} is the Jordan arc terminating at $z_{0}=1$ and composed of the segments connecting a_{n} and a_{n+1}.

To establish theorem 5, we need some lemmas.
Lemma 5. ([14], p. 99) Let $f(z)$ be regular and of bounded characteristic in D :

$$
1 / 2 \pi \cdot \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta<M<+\infty \quad(0 \leqq r<1) .
$$

Then

$$
\log |f(z)| \leqq 2 M \frac{1+R}{1-R}-\frac{1-R}{1+R} \cdot 1 / 2 \pi \cdot \int_{0}^{2 \pi}|\log | f\left(e^{i \theta}\right)| | d \theta
$$

for $|z| \leqq R<1$.
Lemma 6. ([14], p. 100) Let $\left\{f_{n}(z)\right\}(n=1,2, \cdots)$ be a sequence of regular functions in D. The necessary and sufficient condition for $\left\{f_{n}(z)\right\}$ to be of untformly bounded characteristic:

$$
1 / 2 \pi \cdot \int_{0}^{2 \pi} \log ^{+}\left|f_{n}\left(r e^{i \theta}\right)\right| d \theta<M<+\infty
$$

where $0 \leqq r<1, M$: a constant independent of n, is the existence of a sequence of positve harmonic functions $\left\{u_{n}(z)\right\}$ such that

(ii) $u_{n}(0)<M<+\infty$.

Proof of theorem 5. Let us put

$$
f_{n}(w)=f\left(\frac{w+a_{n}}{1+\bar{a}_{n} w}\right), \quad h_{n}(w)=h\left(\frac{w+a_{n}}{1+\bar{a}_{n} w}\right) .
$$

Then

$$
\begin{equation*}
\log ^{+}\left|f_{n}(w)\right| \leqq h_{n}(w), \quad h_{n}(0)=h\left(a_{n}\right)<M<+\infty . \tag{5.4}
\end{equation*}
$$

By (5.4) and lemma 6, the sequence of regular functions $\left\{f_{n}(w)\right\}$ in $|w|<1$ is of uniformly bounded characteristic :

$$
\begin{equation*}
1 / 2 \pi \cdot \int_{0}^{2 \pi} \log ^{+}\left|f_{n}\left(R e^{i \varphi}\right)\right| d \varphi<M<+\infty \quad(n=1,2, \cdots) \tag{5.5}
\end{equation*}
$$

Hence, by (5.5) and lemma 5,

$$
\begin{align*}
\log \left|f_{n}(w)\right| & \leqq 2 M \cdot \frac{1+R}{1-R}-\frac{1-R}{1+R} \cdot 1 / 2 \pi \cdot \int_{0}^{2 \pi}|\log | f_{n}\left(e^{2 \varphi}\right)| | d \varphi \tag{5.6}\\
& <2 M \cdot \frac{1+R}{1-R}
\end{align*}
$$

Since $|w| \leqq R$ is mapped onto $D\left(a_{n}, \rho\right)=\left\{z ; d\left(a_{n}, z\right) \leqq \rho\right\}\left(\rho=\tanh ^{-1} R\right)$ by the linear transformation: $z=\frac{w+a_{n}}{1+\bar{a}_{n} w}$, by (5.6) $f(z)$ is uniformly bounded in the sequence of non-Euclidean disks: $\left\{D\left(a_{n}, \rho\right)\right\}$. Therefore, if we take ρ so large that

$$
\varlimsup_{n \rightarrow+\infty} d\left(a_{n}, a_{n+1}\right)<\rho<+\infty,
$$

then $f(z)$ is bounded on Γ_{3}. Hence, by theorem 1, $f(z)$ is also bounded in the domain bounded by Γ_{1}, Γ_{3} and $|z-1|=\varepsilon$, which is to be proved.

By what is proved above, the next theorem is also obtained;
Theorem 5*. Let $f(z)$ be regular and of bounded characteristic in D. If $h\left(a_{n}\right)\left(n=1,2, \cdots ;\left|a_{n}\right|<1\right)$ is bounded, then $f(z)$ is uniformly bounded in $\bigcup_{n} D\left(a_{n}, \rho\right)$ for any positive finite ρ.

6. Theorems of P. Montel-type.

As an application of theorem 5, we can prove the following theorem of P. Montel-type, which generalizes a theorem in the preceding paper ([14], p. 99).

THEOREM 6. Let $f(z)$ be regular and of bounded characteristic in D. Suppose that $f(z)$ tends to a finite value α as $z \rightarrow z_{0}=1$ along Γ_{1}. If the sequence of $\left\{h\left(a_{n}\right)\right\}(n=1,2, \cdots)$ ss bounded, where $\left|a_{n}\right|<1, \lim _{n \rightarrow+\infty} a_{n}=1, \arg \left(1-a_{n}\right)=\psi,|\psi|<\pi / 2$, $(n=1,2, \cdots)$ and $\lim _{n \rightarrow+\infty} d\left(a_{n}, a_{n+1}\right)<+\infty$, then $f(z)$ tends uniformly to α as $z \rightarrow z_{0}=1$ inside $\mathscr{D}_{\Delta}, \Delta$ being any positive constant less than $\pi / 2-|\psi|$.

To establish theorem 6, we begin with
Lemma 7. Let L be the chord connecting $z=1$ and $z=e^{i 2 \varphi}(0<\varphi \leqq \pi / 2)$, and l be the segment on L with end points z_{1} and z_{2}. If the non-Euclidean distance between z_{1} and z_{2} is finite:

$$
d\left(z_{1}, z_{2}\right)<k<+\infty,
$$

then there exists a constant K depending upon only k such that

$$
\int_{z \in \iota} \frac{|d z|}{1-|z|^{2}}<K \cdot d\left(z_{1}, z_{2}\right) .
$$

Proof. Put

$$
\begin{equation*}
w(z)=\frac{z-z_{1}}{1-\bar{z}_{1} z} . \tag{6.1}
\end{equation*}
$$

The chord L is mapped onto the circular arc A in w-pl. passing through three points: $w(1)=e^{i(\pi+2 \varphi)}, w\left(z_{1}\right)=0, w\left(e^{i 2 \varphi}\right)=-1$.

Since the non-Euclidean metric is invariant under the transformation (6.1), and the inequality : $d\left(z_{1}, z_{2}\right)<k<+\infty$ is equivalent to the inequality:

$$
\left|\frac{z_{2}-z_{1}}{1-\bar{z}_{1} z_{2}}\right|<\tanh k,
$$

we have

$$
\begin{equation*}
\left|w\left(z_{2}\right)\right|<\tanh k, \quad d\left(z_{1}, z_{2}\right)=\int_{C} \frac{|d w|}{1-|w|^{2}}, \tag{6.2}
\end{equation*}
$$

where C is the segment connecting $w=0$ and $w=w\left(z_{2}\right)$. Let us denote by l^{*} the circular arc on A with end points $w=0$ and $w\left(z_{2}\right)$, which is the image of l under the transformation (6.1). Then, by (6.2) we have

$$
\begin{aligned}
\int_{z \in l} & \frac{|d z|}{1-|z|^{2}} \\
& =\int_{w \in l^{*}} \frac{|d w|}{1-|w|^{2}}<\frac{1}{1-(\tanh k)^{2}} \cdot \int_{w \in \iota^{*}}|d w| \\
& <\frac{1}{1-(\tanh k)^{2}} \cdot \frac{\pi}{2} \cdot \int_{w \in C}|d w|^{(*)}<\frac{1}{1-(\tanh k)^{2}} \cdot \frac{\pi}{2} \cdot \int_{w \in C} \frac{|d w|}{1-|w|^{2}} .
\end{aligned}
$$

Putting $K=\frac{1}{1-(\tanh k)^{2}} \cdot \frac{\pi}{2}$, we have

$$
\int_{z \in \iota} \frac{|d z|}{1-|z|^{2}}<K \cdot d\left(z_{1}, z_{2}\right),
$$

which is to be proved.
Lemma 8. Let us define the non-Euclidean circle:

$$
\begin{equation*}
d(z, a)=\rho \quad(0<\rho<+\infty), \tag{6.3}
\end{equation*}
$$

where a lines on the chord L connecting $z=1$ and $z=e^{i 2 \varphi}\left(0<\varphi \leqq \frac{\pi}{2}\right)$. If a varies along L from $z=1$ to $z=e^{i 2 \varphi}$, then the envelope of (6.3) is composed of two circular arcs, which connect $z=1$ and $z=e^{i 2 \varphi}$ and make the angle:

$$
2 \cdot \tan ^{-1}\left(\sin \varphi \cdot \frac{2 r}{1-r^{2}}\right), \quad r=\tanh \rho
$$

(*) The length of the circular arc is less than its chordal length multiplied by $\pi / 2$.
at $z=1$.
Proof. Put

$$
\begin{equation*}
w(z)=\frac{z-a}{1-\bar{a} z} . \tag{6.4}
\end{equation*}
$$

(6.3) is equivalent to $\left|\frac{z-a}{1-\bar{a} z}\right|=r(r=\tanh \rho)$, so that (6.3) is mapped onto the fixed circle: $|w|=r$. By (6.4) L is mapped onto the fixed circular arc passing through three fixed points:

$$
w(1)=e^{i(\pi+2 \varphi)}, \quad w(a)=0, \quad w\left(e^{i 2 \varphi}\right)=-1 .
$$

Hence the fixed two circular arcs $A_{\imath}(\imath=1,2)$ which pass through $w(1)=e^{i(\pi+2 \varphi)}$ and $w\left(e^{i 2 \varphi}\right)=-1$, and touch the circle: $|w|=r$, are evidently the image of the envelope of (6.3) as a varies along L from $z=1$ to $z=e^{i 2 \varphi}$. By the simple calculation, we can show that two arcs $A_{\imath}(i=1,2)$ make the angle: $2 \tan ^{-1}(\sin \varphi$. $\left.\frac{2 r}{1-r^{2}}\right)$ at $w=e^{i(\pi+2 \varphi)}$, from which our lemma easily follows.

Lemma 9. Denote by $\left\{a_{n}\right\}\left(\left|a_{n}\right|<1\right)$ the sequence of points such that

$$
\lim _{n \rightarrow+\infty} a_{n}=1, \quad \arg \left(1-a_{n}\right)=-\vartheta, \quad 0 \leqq \vartheta<\pi / 2, \quad \lim _{n \rightarrow+\infty} d\left(a_{n}, a_{n+1}\right)<+\infty .
$$

Put

$$
D(\rho)=\bigcup_{n \geqq 1} D\left(a_{n}, \rho\right),
$$

where $D\left(a_{n}, \rho\right)=\left\{z ; d\left(z, a_{n}\right) \leqq \rho\right\}$. If ρ is sufficiently large, then $D(\rho)$ covers the fixed Stolz-domain with vertex at $z=1$ in the neighborhood of $z=1$.

Proof. By the assumptions, there exists a positive finite constant k such that

$$
\begin{equation*}
d\left(a_{n}, a_{n+1}\right)<k \quad(n=1,2, \cdots) . \tag{6.5}
\end{equation*}
$$

Denote by a any point on the segment l_{n} connecting a_{n} and a_{n+1}, and by b any boundary point of the domain: $D\left(a_{n}, \rho\right) \cup D\left(a_{n+1}, \rho\right)$ respectively. By (6.5) and lemma 7,

$$
\begin{aligned}
d(a, b) & >\rho-\max \left\{d\left(a_{n}, a\right), d\left(a_{n+1}, a\right)\right\}>\rho-\int_{z \in I_{n}} \frac{|d z|}{1-|z|^{2}}>\rho-0(k) \\
& =\rho(1-o(1)),
\end{aligned}
$$

so that, for any given $\varepsilon>0$, there exists $\rho(\varepsilon)$ independent of n such that

$$
d(a, b)>\rho(1-\varepsilon) \quad \text { for } \quad \rho \geqq \rho(\varepsilon) .
$$

Hence

$$
\begin{equation*}
D(\rho) \supset \bigcup_{\left|a-1 \leq \leq 1 \leq a_{1-1}\right|}^{a \in L} \mid \tag{6.6}
\end{equation*}
$$

where L is the chord connecting $z=1$ and $z=e^{i(\pi-29)}$. Since

$$
2 \cdot \tan ^{-1}\left(\cos \vartheta \cdot \frac{2 r}{1-r^{2}}\right) \longrightarrow \pi \quad \text { as } \quad \rho \rightarrow+\infty(r=\tanh (\rho(1-\varepsilon))),
$$

by (6.6) and lemma $8, D(\rho)$ covers the fixed Stolz-domain with vertex at $z=1$ in the neighborhood of $z=1$, provided that ρ is sufficiently large. Thus our lemma is completely established.

Now we can prove theorem 6.
Proof of theorem 6. We first assume that $-\pi / 2<\psi \leqq 0$. Putting $0<\Delta^{\prime}<\Delta$ $<\frac{\pi}{2}-|\psi|$, if ρ is sufficiently large, then by lemma $9, D(\rho)$ covers the Stolzdomain with vertex at $z=1$:

$$
\left\{z ;|\arg (z-1)| \leqq \pi / 2-\Delta^{\prime}\right\} \cap U(1, \varepsilon),
$$

ε being a small positive constant. Therefore, by theorem 5 and $5^{*}, f(z)$ is bounded in $\mathscr{D}_{\Delta^{\prime}} \cap U(1, \varepsilon)$, so that by classical P. Montel's theorem $f(z)$ tends uniformly to α as $z \rightarrow 1$ inside $\mathscr{D}_{\Delta} \subset \mathscr{D}_{4}$.

The case: $0<\psi<\pi / 2$ also can be treated by similar arguments.
Next we shall sharpen theorem 6 as follows.
Theorem 7. Let $f(z)$ be regular and of bounded characteristic in D. Suppose that there exists the measurable set E contained in $(0,+\delta)(\delta>0)$ such that
(1) $f\left(e^{2 \varphi}\right)$ tends to a finite value α as $\varphi \rightarrow+0$ along E.
(2) the lower density $\lambda^{(*)}$ of E at $\varphi=0$ is positive.

Furthermore, if the sequence of $\left\{h\left(a_{n}\right)\right\}(n=1,2, \cdots)$ is bounded, where

$$
\left|a_{n}\right|<1, \quad \lim _{n \rightarrow+\infty} a_{n}=1, \quad \arg \left(1-a_{n}\right)=\psi \quad(|\psi|<\pi / 2)
$$

and

$$
\varlimsup_{n \rightarrow+\infty} d\left(a_{n}, a_{n+1}\right)<+\infty
$$

then $f(z)$ tends uniformly to α as $z \rightarrow 1$ inside the Stolz-domain with vertex at $z=1$.

Remark. (1) In the case of the bounded regular function in D, this theorem has been proved by M. L. Cartwright [3] and Y. Kawakami [6] independently. (2) Theorem 7 is a generalization of the theorem due to the author ([14], p. 98).

We begin with
Lemma 10. Let E be the measurable set contained in the upper arc:

$$
\text { (*) } \left.\lambda=\lim _{\varphi \rightarrow+0} 1 / \varphi \cdot m(E \cap 0, \varphi)\right) \text {. }
$$

$A\left(e^{i \theta} ; 0<\theta<\delta\right)$ which has the positive lower density λ at $\theta=0$;

$$
\lim _{t \rightarrow 0} 1 / t \cdot m E(t)=\lambda>0,
$$

where $E(t)=E \cap\left(e^{i \theta} ; 0<\theta<t\right)$. Let $E(w, a)$ be the image of E_{a} by the linear transformation: $w=\frac{z-a}{1-\bar{a} z}(|a|<1)$, where E_{a} is defined as follows:

$$
\begin{aligned}
E_{a} & =E(2 \varphi) & & \text { if } \arg a=\varphi>0, \\
& =E(1-|a|) & & \text { if } \arg a=0, \\
& =E(\varphi) & & \text { if } \arg a=-\varphi<0 .
\end{aligned}
$$

If a tends to 1 along the fixed chord: $\arg (1-a)=\psi(|\psi|<\pi / 2)$, then

$$
\underset{\substack{a \rightarrow 1 \\ \arg (1-a)=\psi}}{ } m E(w, a) \geqq \lambda \cdot k(\psi),
$$

where $k(\psi)$ is a positive constant dependent upon only ψ.
Proof. We have easily

$$
\begin{equation*}
m E(w, a)=\int_{E_{a}} \frac{1-|a|^{2}}{|1-\bar{a} z|^{2}}|d z| \tag{6.8}
\end{equation*}
$$

We distinguish three cases : $-\pi / 2<\phi<0, \psi=0,0<\phi<\pi / 2$.
(1) First we assume that $-\pi / 2<\psi<0$. Put

$$
a=|a| \cdot e^{i \varphi} \quad(\varphi>0), \quad z=\exp (i(1+\alpha) \varphi) \quad(-1 \leqq \alpha \leqq+1) .
$$

Then

$$
\begin{aligned}
|d w| & =\frac{1-|a|^{2}}{|1-\bar{a} z|^{2}}|d z|=\frac{1-|a|^{2}}{\left|e^{-i \alpha \varphi}-|a|\right|^{2}} \cdot \varphi|d \alpha| \\
& \geqq \frac{1-|a|^{2}}{\left|e^{i \varphi}-|a|^{2}\right.} \cdot \varphi|d \alpha| .
\end{aligned}
$$

Hence, by (6.8)

$$
\begin{equation*}
m E(w, a)=\int_{E(2 \varphi)} \frac{1-|a|^{2}}{|1-\bar{a} z|^{2}}|d z| \geqq \frac{\left(1-|a|^{2}\right)}{\left|e^{i \varphi}-|a|\right|^{2}} \cdot \int_{z \in E(2 \varphi)} \varphi|d \alpha| . \tag{6.9}
\end{equation*}
$$

By the definition of λ, for any positive ε, there exists $t(\varepsilon)$ such that

$$
m E(t)>t(\lambda-\varepsilon) \quad \text { for } \quad 0<t<t(\varepsilon)
$$

so that

$$
\int_{z \in E(2 \varphi)} \varphi|d \alpha|>2 \varphi(\lambda-\varepsilon) \quad \text { for } \quad 0<\varphi<t(\varepsilon) / 2
$$

Therefore, by (6.9)

$$
\begin{equation*}
m E(w, a) \geqq \frac{\left(1-|a|^{2}\right) \varphi}{\left|e^{i \varphi}-|a|\right|^{2}} \cdot 2(\lambda-\varepsilon) \quad \text { for } \quad 0<\varphi<1 / 2 \cdot t(\varepsilon) . \tag{6.10}
\end{equation*}
$$

By the sin-rule, we have

$$
\frac{\varphi}{1-|a|}=\frac{\sin (\varphi+|\psi|)}{\sin \left(\frac{\pi-\varphi}{2}-|\psi|\right)} \cdot \frac{\varphi}{\left|1-e^{i \varphi}\right|},
$$

so that

$$
\begin{equation*}
\lim _{\varphi \rightarrow+0} \frac{\varphi}{1-|a|}=\tan (|\psi|) . \tag{6.11}
\end{equation*}
$$

Since

$$
\frac{\left(1-|a|^{2}\right) \varphi}{\left|e^{i \varphi}-|a|\right|^{2}}=(1+|a|) \frac{\varphi}{1-|a|} \cdot \frac{1}{\left|1+\imath \frac{\varphi}{1-|a|}+o(1)\right|^{2}}
$$

by (6.11), we have by (6.10)

$$
{\underset{\lim }{a \rightarrow 1}}_{\arg (1-a)=\psi} m E(w, a) \geqq 2 \cdot \sin (2|\psi|) \cdot(\lambda-\varepsilon) .
$$

Letting $\varepsilon \rightarrow+0$,

$$
\begin{equation*}
\underset{\substack{a \rightarrow 1 \\ \arg (1-a)=\psi}}{\lim _{(1-a}} m E(w, a) \geqq 2 \cdot \sin (2|\psi|) \cdot \lambda, \tag{6.12}
\end{equation*}
$$

(2) Next we assume that $\psi=0$. In this case, put

$$
\varphi=(1-|a|), \quad z=\exp (\imath \alpha \varphi) \quad(0 \leqq \alpha \leqq 1) .
$$

By the slight modification of the above arguments, we get easily

$$
\begin{equation*}
\varliminf_{a \rightarrow 1} m E(w, a) \geqq \lambda . \tag{6.13}
\end{equation*}
$$

(3) Finally we assume that $0<\psi<\pi / 2$. Put

$$
a=|a| e^{-\imath \varphi} \quad(\varphi>0), \quad z=\exp (i(-1+\alpha) \varphi) \quad(1 \leqq \alpha \leqq 2) .
$$

By the similar arguments as in (6.9) and (6.10), we have

$$
\begin{equation*}
m E(w, a)=\int_{E(\varphi)} \frac{1-|a|^{2}}{|1-\bar{a} z|^{2}}|d z| \geqq \frac{\left(1-|a|^{2}\right) \varphi}{\left|e^{i 2 \varphi}-|a|\right|^{2}} \cdot(\lambda-\varepsilon) \tag{6.14}
\end{equation*}
$$

for $0<\varphi<t(\varepsilon)$. Since

$$
\frac{\varphi}{1-|a|} \longrightarrow \tan \psi \quad \text { as } \quad a \rightarrow 1 \quad \text { along } \arg (1-a)=\psi,
$$

we have

$$
\frac{\left(1-|a|^{2}\right) \varphi}{\left|e^{i 2 \varphi}-|a|\right|^{2}}=(1+|a|) \cdot \frac{\varphi}{1-|a|} \cdot \frac{1}{\left|1+22 \frac{\varphi}{1-|a|}+o(1)\right|^{2}} \longrightarrow \frac{2 \tan \psi}{1+(2 \tan \psi)^{2}}
$$

Hence, by (6.14) and letting $\varepsilon \rightarrow+0$,

$$
\begin{equation*}
\lim _{\substack{a \rightarrow 1 \\ \arg (1-a)=\psi}} m E(w, a) \geqq \frac{2 \tan \psi}{1+(2 \tan \psi)^{2}} \cdot \lambda . \tag{6.15}
\end{equation*}
$$

Thus, by (6.12), (6.13) and (6.15), our lemma is completely established.
Proof of theorem 7. By lemma 10, there exists a sufficiently large integer N such that

$$
\begin{equation*}
m E\left(w, a_{n}\right)>\lambda / 2 \cdot k(\psi) \quad \text { for } \quad n \geqq N . \tag{6.16}
\end{equation*}
$$

By the linear transformation : $w(z)=\frac{z-a_{n}}{1-\bar{a}_{n} z}, E_{a_{n}}$ is mapped onto $E\left(w, a_{n}\right)$ which has the fixed limit point: $w(1)=e^{i 2 \psi}$. Hence, by (6.16) and (6.7) (1°), we can find a fixed set $E^{*}\left(m E^{*}>0\right)$ lying on $|w|=1$ and a sequence of integers $\left\{n_{k}\right\}$ such that
(1) $\varlimsup_{k \rightarrow+\infty}\left(n_{k+1}-n_{k}\right)<+\infty$,
(2) $E^{*} \subset E\left(w, a_{n_{k}}\right)(k=1,2, \cdots)$,
(3) $f_{n_{k}}(w) \rightarrow \alpha$ for $w \in E^{*}$ as $k \rightarrow+\infty$,
where $f_{n}(w)=f\left(\frac{w+a_{n}}{1+\bar{a}_{n} w}\right)$. Putting $h_{n}(w)=h\left(\frac{w+a_{n}}{1+\bar{a}_{n} w}\right)$, by the assumptions we have

$$
\begin{aligned}
& \log ^{+}\left|f_{n_{k}}(w)\right| \leqq h_{n_{k}}(w) \quad \text { for } \quad|w|<1, \\
& h_{n_{k}}(0)=h\left(a_{n_{k}}\right)<M<+\infty
\end{aligned}
$$

Hence, by lemma 6, the sequence of regular functions $\left\{f_{n_{k}}(w)\right\}$ is of uniformly bounded characteristic;

$$
\begin{equation*}
1 / 2 \pi \cdot \int_{0}^{2 \pi} \log ^{+}\left|f_{n_{k}}\left(R e^{i \theta}\right)\right| d \theta<M<+\infty \quad(0 \leqq R<1, k=1,2, \cdots) \tag{6.18}
\end{equation*}
$$

Setting $F_{k}(w)=f_{n_{k}}(w)-\alpha$, we have

$$
1 / 2 \pi \cdot \int_{0}^{2 \pi} \log ^{+}\left|F_{k}\left(R e^{i \theta}\right)\right| d \theta \leqq M+\log ^{+}|\alpha|+\log 2=M^{*}<+\infty
$$

Therefore, by lemma 5 , for $|w| \leqq R<1$,

$$
\begin{align*}
\log \left|F_{k}(w)\right| & \leqq 2 M^{*} \cdot \frac{1+R}{1-R}-\frac{1-R}{1+R} \cdot 1 / 2 \pi \cdot \int_{0}^{2 \pi}|\log | F_{k}\left(e^{i \theta}\right)| | d \theta \tag{6.19}\\
& \leqq 2 M^{*} \cdot \frac{1+R}{1-R}-\frac{1-R}{1+R} \cdot 1 / 2 \pi \cdot \int_{E^{*}}|\log | F_{k}\left(e^{i \theta}\right)| | d \theta .
\end{align*}
$$

$\mathrm{By}(6.17)$ (3) and (6.19), the sequence $\left\{f_{n_{k}}(w)\right\}$ tends to α uniformly in $|w| \leqq R<1$ as $k \rightarrow+\infty$. Since $|w| \leqq R$ is mapped onto $D\left(a_{n_{k}}, \rho\right)\left(\rho=\tanh ^{-1} R\right)$ by $z=\frac{w+a_{n}}{1+\bar{a}_{n} w}$,
$f(z)$ tends uniformly to α as z tends to 1 inside the sequence of non-Euclidean circles: $D\left(a_{n_{k}}, \rho\right)(k=1,2, \cdots)$. By (6.17) (1) and $\varlimsup_{n \rightarrow+\infty} d\left(a_{n}, a_{n+1}\right)<+\infty$, we have

$$
\varlimsup_{k \rightarrow+\infty} d\left(a_{n_{k}}, a_{n_{k+1}}\right)<+\infty .
$$

Hence, by lemma $9, f(z)$ tends uniformly to α as $z \rightarrow 1$ inside the Stolz-domain with vertex at $z=1$, which is to be proved.

References

[1] R.P. Boas, Entire functions, Academic Press, New York, 1954.
[2] C. Carathéodory, Conformal representation, Cambridge, 1952.
[3] M. L. Cartwright, Some generalizations of Montel's theorem, Proc. Camb. Phil. Soc., 31 (1935), 26-30.
[4] F.W. Gehring, The asymptotic values for analytic functions with bounded characteristic, Quarterly Jour. Math., 9 (1958), 282-289.
[5] W. Gross, Zum Verhalten analytischer Funktionen in der Umgebung singularen Stellen, Math. Zeit., 2 (1918), 243-294.
[6] Y. Kawakami, On Montel's theorem, Nagoya Math. Jour., 10 (1956), 125-127.
[7] A.J. Lohwater, The boundary values of a class of meromorphic functions, Duke Math. Jour., 19 (1952), 243-252.
[8] A. J. Macintyre, On the asymptotic paths of integral functions of finite order, Jour. London Math. Soci. (2), 10 (1935), 34-39.
[9] R. Nevanlinna, Eindeutige analytische Funktionen, Zweite Auflage, Springer, Berlin (1953).
[10] K. Noshiro, Cluster sets, Springer, Berlin (1960).
[11] M. Ohtsuka, On the cluster sets of analytic functions in a Jordan domain, Jour. Math. Soci. Japan, 2 (1950), 1-15.
[12] I. I. Priwalow, Randeigenschaften analytischer Funktionen, Berlin (1956).
[13] C. Tanaka, On the class H_{p} of functions analytic in the unit circle, Yokohama Math. Jour., 4 (1956), 47-53.
[14] C. Tanaka, An extension of Kintchine-Ostrowski's theorem and its applications, Kōdai Math. Sem. Rep., 9 (1957), 97-104.
[15] C. TANAKA, Boundary convergence of Blaschke products in the unit-circle, Proc. Japan Acad., 39 (1963), 410-412.
[16] M. Tsuif, Function theory II, (in Japanese) Asakura, Tokyo (1952).

