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1. Introduction.

Let f(z) (z=reiθ) be regular and of bounded type in the unit disk D=
{z;\z\<l}. In general, from the boundedness of the boundary cluster set at
z= \, we can not conclude the boundedness of f(z) in the neighborhood of z—\
inside D. Indeed, putting /(V)=exp{(l+z)/(l—z)},f(z) is regular and of bounded
type in D, because f(z) is the quotient of two bounded regular functions: 1 and
exp { — (l+z)/(l—z)}. Then we have easily

1/(01=1 for ΘΦO, lim/(r)=oo,
r — 1 - 0

which shows that the boundedness of the boundary cluster set at z=l does not
always mean the boundedness of f(z) in the neighborhood of z=l inside D.

The object of this note is to establish some additional conditions such that,
from the boundedness of the boundary cluster set at 2=1, we can conclude the
boundedness of f(z) in the neighborhood of z=l inside D. As its applications,
we shall establish theorems of Lindelδf or Montel-type on the asymptotic values
of f(z), including F. W. Gehring's theorems ([4]). Our method is based on the
integral representation of f(z).
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2. Theorems of Lindelδf-type (I).

Let D be the unit disk: \z\ <1, Γ its boundary, which is divided into two
arcs Γτ (i=l, 2) by two points z0 and zx on Γ. Suppose that f(z) (z=reiθ) is
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regular and of bounded characteristic in D. As usual ([10] 1-2), we define the
boundary cluster sets CΓi(f, z0) (2=1, 2) along Γ% (2=1, 2) respectively. If CΓi(f, zQ)
is bounded, we say that f(z) is bounded at z0 along Γt. Theorem 1 reads as
follows:

THEOREM 1. Let f(z) (z=reiθ) be regular and of bounded characteristic in
D. Suppose that f{z) is bounded at zo=l along Γ\ ( ί=l , 3), where Γ1 is the upper
arc and Γ3 is the Jordan arc terminating at zo—l and contained in the domain S)Δ:

Dr\{z; π/2<arg(z-l)^3π/2-Δ} ,

Δ being a positive constant less than π. Under these conditions, f(z) is bounded
in the domain bounded by Γτ (2=1,3) and \z— l ] = ε , ε being a sufficiently small
positive constant.

As its corollaries, we obtain

COROLLARY 1. Let f(z) be regular and of bounded characteristic in D.
Suppose that f(z) is bounded at z0 along Γx (2=1,2,3), where Γz is the Jordan
arc terminating at z0 and contained in a Stolz-domain with vertex at z0. Under
these conditions, f{z) is bounded in Df~\U(z0, e)Cίi0, ε being a sufficiently small positive
constant.

COROLLARY 2. Let f(z) be regular and of bounded characteristic in D. If
f(z) tends to a finite value a% (2=1,2) as z approaches z0 along Γ% (2=1,2) re-
spectively, and f{z) is bounded on Γz terminating at z0 and contained in a Stolz-
domain with vertex at z0, then aλ=a2 and f(z) tends to a1—a2 uniformly as z tends
to z0 inside D.

To establish theorem 1, we need some lemmas.

LEMMA 1. ([5], [11], p. 3). There exists a domain G bounded by a part of
Γx and a curve L in D terminating at z0 such that

CΓl(f, Zo)=Cσ(f, z0),

CG(f, Zo) being the interior cluster set at z0 with respect to G.
LEMMA 2. Let us put

C π φ for \z\<l,

where % ) e L ( - c , +π), P(e*>, z)={l-\z\*)/\eιi>-z\\
(1) // |G(^) |^m<+oo almost everywhere in (~δ,+δ) (<5>0), then

([13], p. 48)

(2) If \G(φ)\^m<+oo almost everywhere in (0,+δ), then for a fixed
Δ (0<Δ<π) we have uniformly

(*) U(z0, ε) is ε-neighborhood of z0.
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where S)Δ=Dr\{z\ π/2<arg (z-l)^3π/2-zf}.

Proof. Put

*(*)=! +f +f +f =h
«>0 ^ - < 5 i «><5i J-π

where ^ (0<5x<^) will tend to zero later.

By the assumption: \G(φ)\^m almost everywhere in (0,

(2.1) I h\ ^m/2π- f 1P{e%φ, z)dφ<m/2π f *P(e%*, z)dφ=

Putting z—reiθ, we have for δ^φ^π, \θ\^δ1/2,

m .

so that

i r i -̂-* -L r \G{ψ)\dφ<
27Γsin2(JίM "δl 2π$ϊtf

Similarly

Hence

(2.2) | h + h | < 1 - r I . f +π\ G(φ) | dφ .

Since 2)ΔZ)®Δ, for 0<i<J / <7r, we can assume that

By the elementary calculations, we have

-ί |^^J->sin(J/2) for -δ^φ^Q,

Hence

(2.3) | / 2 |

By (2.1), (2.2) and (2.3),
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i r o

(2.4) lim I (z—1) -g(z) 1 ^ , Λ x I G(φ) \ dφ .
z-*\ i f ίl \ «/ _^ ^
z€-<Dj ft s in ( Λ J

Letting δj—>+0 in (2.4), we have

which proves part (2) of our lemma.

LEMMA 3. Suppose that f(z) is regular in D except at z=l, and of bounded
characteristic in D, Then f{z) has the following integral representation:

exp {CQ(1, z)+iλ] ,

where B(z): Blaschke products extended over the zeros of f(z), which may have
the unique limit point: 2=l,Cϊ|°

Q(eψf z)=(eιr+z)/(et<p—z), C, λ: real constants.

Proof. It is well konwn ([12], p. 79) that f(z) has the following integral
representation

(2.5) f{z)=B{z).Dx{z).DJίz)9

where B{z): Blaschke products extended over the zeros of f(z),

+J log | / ( ^ ) I Q(e*9 z)dφ] ,

Q(e*t z)dμ{φ)+iλ} ,

: the real function of bounded variation with μ'(φ)=0
for almost all #>e[—π, +ττ], ̂ : a real constant..

Since f(z) is regular on | ^ | = 1 except at z=l, its zeros may have the unique
limit point: z=l. In the neighbourhood of z=em (φoΦ0), f{z) can be represented
by

(2.6) Λz)=(z

where n; non negative integer, F(z) is regular at z—eιψ0 and F(eι<po)Φθ. Since

(z- e"P*γ=:eiλ* exp {l/2π J +?Γn log | ex*-e1^ \. (?(β^, z ) d p | ,

^*: a real constant, by (2.5) and (2.6)

(*) If the number of zeros is finite, z=l is not the limit point of zeros.
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(2.7) exp {#(*)}

=F(z)/B(z).exv{-l/2π $+*G(φ) Q(e^, z)dφ}-exp(i(λ*-λ)),

where H(z)=l/2π f ^ ( e ^ , z)dμ(φ), G(φ)=log\F(e^)\Φoo in the neighborhood

φ=φ0. Since £=#^° (^0^0) is not the limit point of zeros, B(z) is regular and
of modulus one on the arc : A(exψ, φo—ε^φ^φo+ε)f ε being a sufficiently small
positive constant ([15], p. 410). Hence by (2.6) and lemma 2 (1), the right hand
side of (2.7) is not equal to 0 or oo on A. In other words, R(H(z)) is not equal
to ±oo on A, Then we can conclude that μ(φ) =constant on A.

Indeed, if μ(φ)^pconstant on A, μ(φ) admits the following representation:

where all functions μiiφ) (z=l, 2, 3) are of bounded variation μ^φ) is absolutely
continuous, μ2(φ) is continuous and μ'2(φ)~0 a. e., and μs(φ) is a step-function.
Since μ'(φ)=Q, μί(φ)=0 (z=2, 3) a. e., μί(φ)=Q a. e., i.e. μΐ{φ)=0. If μ2(φ) is a
constant, then μ3(φ) is certainly not a constant, so that

H(z)=l/2π. f Qie*, z)dμ(φ)+±Q(e*", z) Jn ,
J(7J. n=l

oo

where {έ^jeyl, ΣI77il<+°° Hence R(H(z)) is equal to ±oo on i4, which is
w = l

impossible. If ^ 2 ( 0 is not a constant, then it is well known that μ'2(<p)=±oo at
a non-denumeable set of points on A. Since μs(^) is discontinuous at an enumer-
able set of points on A, there exists a non-denumerable set E of points on A
such that μ'(φ)=±oo for e%φ^E. Hence, by P. Fatou's theorem, R(H(z)) is equal
to ±oo on E, which is again impossible. Thus μ(φ)=constant on A.

Since z=etφ°Φl is arbitrary, dμ(φ)=0 in (—π, +π) except at φ=0. Hence
H(z) reduces to the form: C Q(l,z) (C: real constant), which proves our lemma.

Now we can establish theorem 1.

Proof of theorem 1. By lemma 1, there exist two analytic Jordan arcs
Γ* (i=l, 2), closely near Γx (i=l, 2) and contained in D except at z=l, such
that f(z) is bounded on Γf and Γf is contained in C(£)j). Denote by D* the
subdomain of D bounded by a part of Γ* (z=l, 2) and a cross-cut connecting
Γf and Γf. If we map conformally D onto | ζ | <1 in such a manner that >ε=l
goes into ζ=l , then by Lindelδf-Caratheodory's theorem ([2], p. 92) the image
of Γz is also contained in the domain of the same character as S)Δ. Therefore,
without any loss of generality, we can assume that f{z) is regular on Γ except
at z=l.

By lemma 3, we have easily

(2.8) log+1/(0) I rgl/2ττ. fjlog* \f(e*) \ P{e*, z)dφ+C+* j ' J
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where C+=max(C, 0). Since f(z) is bounded at z—\ along Γ1} by lemma 2 (2)

(2.9) l/2ττ.J_+Jlog+1/(^)

in £7(1, ̂ I ) Π ^ J , where εx: any given positive constant, and ^ : a positive constant
dependent upon εx. By (2.8) and (2.9)

\f(z) I <exp

Hence

(2.10)

for

for

£7(1,

where α=τr—J, ε2: any given positive constant and δ2; a positive constant
dependent upon ε2. Since f(z) is bounded on /\ (z=l,3), by (2.10) and Phragmen-
Lindelδf s theorem ([16], pp. 64-66), f(z) is also bounded in the domain bounded
by Γt (ι=l,3) and \z— l | = ε , ε being a sufficiently small positive constant, which
is to be proved.

In corollary 1, we can replace the boundedness of f(z) on Γz by another
conditions

THEOREM 2. Let f(z) be regular and of bounded characteristic in D. Suppose
that f{z) is bounded at z=z0 along Γ% (2=1, 2) and that f(z) is also bounded on
the sequence of curves {Cn}, where Cn is the cross-cut connecting both chordal
sides of a Stolz-domain with vertex at z0, and Cn tends to z0 as n->+oo. Under
these conditions, f(z) is bounded in U(zo,ε)rΛD, ε being a sufficiently small positive
constant.

To establish theorem 2, we need

LEMMA 4. Let Blaschke products B(z) have zeros with the unique limit point:
z =\. Then there exists a set E of φ with outer capacity zero contained in

(—-, 4 ^ ) such that, for fixed φ^E,

lim\z-l\.log\B(z)\=0,

where Cφ is the circular arc which connects z=±l and has the tangent:
z— l)=φ at z=l.

Although R. P. Boas ([1], p. 115) has proved this lemma in the case of
Blaschke products in the upper half-plane : I(z)>0, we get lemma 4 by a suitable
linear transformation.

Proof of theorem 2. Without any loss of generality, we can assume that
zo=l. As in theorem 1, we can suppose that f{z) is regular on \z\—\ except
at z=l. Using f(z)+k (k: a suitable constant) instead of f(z), if necessary, we
can further assume that there exist two constants k% (f=l, 2) such that
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(2.11) 0<fe 1 ^ |/^) |^fe 2 <+oo on 7\ (i=l,2)

By lemma 3, we have

(2.12) \f(z)I = I B ( z ) I e x p ( c | ^ | | ) exp(D(z)),

where D(z)=l/2π- f +*log | / ( ^ ) | P ( ^ , z)dφ. By (2.11) and lemma 2 (1), D{z) is
J -π

bounded in [7(1, ε)Γ\D, ε being a sufficiently small positive constant. By lemma
3 and lemma 4, there exists a circular arc Cψ contained in a Stolz-domain with
vertex at z=l such that

|B(z)|>exp(—jjzt^

in the neighborhood of z=l on Cφi where ε1: any given positive constant.
Therefore, denoting by zn the intersection point between Cn and Cφi by (2.12)
we have for n^

(2.13) \f(zn) I >exp

Since ^n is contained in a Stolz-domain with vertex at 2=1, there exists a
positive constant &3 such that

(2.14)

By (2.13) and (2.14), we can conclude that C^O. Indeed, if C>0, by (2.13) and
(2.14)

(2.15) \f(zn) I >exp { ^}z^ (Ck,-eι) +D(zn)} ,

so that, putting Ck3—ε1>0f the right hand side of (2.15) is unbounded as n->+oo,
which is contrary to the boundedness of f(zn) (n=l, 2, •••). Since C^O, by (2.12)

so that, from the boundedness of D(z) in £/(l, ε)r\D, we can conclude the
boundness of /(*) in /7(1, ε)r\D, which is to be proved.

As an immediate consequence of theorem 2, we get

COROLLARY 3. Let f(z) be regular and of bounded characteristic in D.
Suppose that f{z) tends to a finite value az (i=l,2) as z^>z0 along Γx (i=l,2)
respectively, and that f(z) is bounded on the sequence of curves {Cn}, where Cn

is the cross-cut connecting both chordal sides of a Stolz-domain with vertex at z0

and Cn tends to z0 as n-^+oo. Under these conditions, ax=a2 and f(z) tends to
a1=a2 uniformly as z->z0 inside D.
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3. F. W. Gehring's theorem.

F. W. Gehring has proved the following interesting theorem.

F. W. Gehring9s theorem ([4], p. 284). Suppose that f{z) is regular and of
bounded characteristic in D. Then following propositions hold:

(1) For each z0 on Γ, A{z0, f) {the set of asymptotic values at z0) contains
at most two finite values.

(2) // Aj(z0, f) {the set of angular asymptotic values at z0 on Γ) containes
a finite value, then A{z0, f) contains only one finite value.

He has proved this theorem using the systematic use of the harmonic
majorant of log+|/(2r)| and modified A. J. Macintyre's theorem ([8], p. 38), which
is, however, not familiar to us. We can establish this theorem as the application
of theorem 1 and corollary 3.

Proof of F.W. Gehring1 s theorem. We may assume that zo=l. If A{1, f)
contains three finite values a% ( i=l , 2,3), there exist three Jordan arcs Γ% {i—
1,2,3) in D\JΓ such that f{z)-*a% (z=l,2,3) as *->l along Γt (ι=l,2,3) re-
spectively. By the preliminary conformal mapping, from the beginning we can
assume that Γ1

yJΓ2 forms a part of Γ and that Γz is contained in D except at
z=l.

For a sufficiently small positive Δ, following two cases may occur:
(A) ΓB intersects infinitely many times both chordal sides of a Stolz-domain

with vertex at z=l:

(B) Γz is contained in one of two domains D% ( i=l , 2):

In case (A), by corollary 3 we have aλ=a2, which is impossible. In case (B),
if Γ^Dλ or D2, by theorem 1 we have as=a1 or a%—a2 respectively, which is
again impossible. Thus part (1) is completely established.

Now we proceed to the second part. Suppose that f{z)-~>aτ (z=l, 3) as z-^1
along Γ% ( ϊ=l,3) respectively, where at ( i=l,3) are finite and that Γ 3 is con-
tained in a Stolz-domain with vertex at z—\. Without any loss of generality,
we can assume that Γλ is a cross-cut of D, and that Γs is contained in one of
two Jordan domains into which D is split by Γx. By the preliminary conformal
mapping and the similar arguments as in the proof of theorem 1, from the
beginning we can assume that Γx is a part of Γ and that Γ8 is contained in Dλ.
Then, by theorem 1, we have a1=a3f which is impossible. Thus, part (2) is also
established.
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4. The least harmonic majorant of log+ |/(z)|.

Let f(z) be regular and of bounded characteristic in D. The subharmonic
function: log+|/(z)| has the harmonic majorant: h(z) in D. Indeed, by (2.5) we
get easily h(z) as follows;

(4.1) log+ \f(z)\ ^h(z)

=l/2τr f log+ \f(eιφ)\ -P(eιφ, z)dφ+l/2π- \ P(e%ψ, z)d+μ(φ),

where P(eιφ, z)= . iφ_ ' . 2 , log+ x=max (log x, 0), dμ+(φ)=m2LX (dμ(φ), 0).

We shall now prove the following theorem which is interesting in itself.

T H E O R E M 3. h(z) is the least harmonic majorant of log+\f(z)\ in \z\<l.

Proof. We divide the proof in three parts.

(1) Let us define a positive harmonic function u(z, r) (O^Ξr<l) such that

u(z,r)=log+\f(reiθ)\ on \z\=r,
(4.2)

u(z, r): harmonic in \z\ <r.

It is well-known that u(z, r) is given by Poisson integral

(4.3) u(z, r)=l/2π § *\og+ \f(retφ) \ - P(reιφ, z)dψ ,

where P(re^, z)=-~}^- (\z\<r). Since log+|/(^)| is subharmonic, by (4.2)

(4.4) log+\f(z)\^u(zyr) in \z\^r.

Hence

u(z, r)=log+\f(z)\^u(z,R) on

so that

r)^u(z, R) in \z

Therefore {u(z, r)} (0^r<l) is an increasing sequence of r. Because of the
bounded characteristic of f(z), there exists a finite constant M such that

u(0,r)=l/2π (2π\og+\f(reiθ)\dθ<M<+oo.
J 0

By A. Harnack's theorem, u(z, r) converges to u{z) uniformly in the wider sense
in | * | < 1 , so that letting r-*l in (4.3) and (4.4), we have for \z\<l

(4.5) log+|/(*)

=lim l/2τr. f 2riog+ \f{re^) \ P(re^f z)dφ .
r-*l J o
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Then u(z) is the least harmonic majorant of log+\f(z)\. Indeed, if v(z) is
any harmonic majorant of log+\f(z)\, by (4.2),

on \z\=r,

so that

for \

Letting r—>1, we have u(z)^v(z), which shows that u(z) is the least harmonic
majorant of log+|/O)| in M < 1 .

(2) Putting Fr(φ)= f *Ίog+ \f(reiθ) \ dθ, we get easily
J 0

27Γ| d F r ( 0 I = f 27t\og+ \f(reiθ) \ dθ<M< +00 ,
1 J n

(4.6)
l^f π iog+ |/(re iOI^<M<+oo.

J 0

Hence, by E. Helly's first theorem ([12], p. 15), there exist a sequence {rn}
(0<r1<r2 <rn-^l) and a function Fλ{ψ) non-negative and non-decreasing such
that

(47) F ^ - h m Frn(φ)= lim f W \f(rne
ίθ) \ dθ .

n->°° n^+oo J o

By (4.6), (4.7) and E. Helly's second theorem ([12], p. 15),

J
ι 2π n 2π

lθg+ |/(rnβH ) I • P( β v Z ) ^ = Jim f P(e\ z)dFrn{ψ)
•~ , 0 n-*+ooJ Q

Let us put for r n > r (z=reiθ)

=l/2τr. f 2?riog+ I/Cr^) I P ( ^ , ,
" 0

τ l / Z f t ' I IOg Iy \^"n ) I i * \ 71̂  j ^ / ΛΓ\Q , Zjfd(p ,

Since

r^)=l+2Σ(r/i?)fecos(^-^)) for i?>r,

we have

I /, I ^ 2 Σ fe} 1/2TΓ f 2 r iog + \f{rne^) \ dφ
J o



104 CHUJI TANAKA

so that

I2—>0 as n-H-oo.

Hence, by (4.5) and (4.8)
Λ 2 7 Γ

Jo
/» φ

where F ^ ^ l i m log+ \f(rne
iθ)\dθ. Since Fx{φ) is non-decreasing, by the

n-*oo J o

decomposition theorem of functions of bounded variation, we can put

(4.10) F1(φ)=ΓF(θ)dθ+μι(φ)f

where F(0)GΞL(O, 2ττ), μί(φ)=0 a. e. and dμ^φ^O.
Since u(z) is the least harmonic majorant of log+ \f(z)\ in M < 1 , we have

log+ \f{rexψ)I ^u(rel^)^h(re^) on |z | = r < l .

Therefore, by P. Fatou's theorem and (4.1), (4.9),

log+ | / ( O I ^F{(φ)^\og+ \f{?*) I a. e.,

i e. F[{φ)=\og+\fφη\ a. e.

Hence, by (4.9) and (4.10) we get next integral representation of the least
harmonic majorant u{z):

(4.11) u(z)= 1/2*. f ̂ Pie^ z)dFλ{φ),

where F1(ίo)=lim flog+l/(Vw)I^=[ ί°log+1/(^)1^+^(0, ^ ( 0 = 0 a.e. and

(3) Let us put

Since log+1l/f{reiβ)\ < \\og\f(reiβ)\ \, we get

f 2"|dGr(ψ)I = Γ2>riog+1l//(re")|dθ^ ί **|log|/(rew)11dθ<N< + ~ ,

Λ 27? _ /» 27Γ

I ̂  log + | l //(re^) |^^ I log I / ( r θ I \dθ<N <+oo ,

where A/" is a positive finite constant, because f(z) is of bounded characteristic.
Therefore, by similar arguments as in (2), we can select a subsequence {rnk}
of {rn} and a function G ^ ) non-negative and non-decreasing such that

(4.12) G 1(^=lim Grn (ψ)= lim f Ίog+
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Hence, by the decomposition-theorem of functions of bounded variation, we have

(4.13) Gι{ψ)

where G(0) e L(0, 2ττ) and μ'2(φ)=0 a. e., dμ2(φ)^0.
By (2.5), we can put

f(z)=B(z) exp {i/2π j**-ξ^dF(φ)+iλ},

where F(φ)=( log\f(eiθ)\dθ+μ(φ)= lim ί^log|f(reiθ)\dθ for except perhaps an

enumerable set of φ ([9], p. 198, p. 201).
By (4.11), (4.12) and (4.13)

F(φ)=\]m f \>g+ \f{rn/
d) I dθ-\im f *Ίog+1

= f ί°{log+ |/(ew) I -G(θ)}dθ+ {μλψ)-
^ 0

By the uniqueness of the decomposition of F(φ), we have

Clog\f(eiθ)\dθ=C{log+\f(eίθ)\-Gmdθ,
Jo Jo

so that

(4.14)

Hence, by (4.1) and (4.11), h(z)Su(z). On the other hand, since u(z) is the least
harmonic majorant of \og+\f(z)\ in | ^ | < 1 , it is evident that u{z)<.h(z). Thus
we have h(z)=u(z), which is to be proved.

Remark. By (4.14), we have

lim f *log+1 l/f{rnke
iθ) \ dθ= f ί°log+1 l//(e*

5. Theorems of Lindelof-type (II).

Using the least harmonic majorant h(z), we can establish several theorems
somewhat different from theorem 1-2.

THEOREM 4. Let f(z) be regular and of bounded characteristic in D. Suppose
that f{z) is bounded at z0 along Γ\ (2=1, 2) and that h(zn) is bounded on the
sequence of points {zn}, contained in a Stolz-domain with vertex at z—zQ and
tending to z=z0 as n^+oo. Under these conditions, f(z) is bounded in U(zo,ε)
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Γ\D, ε being a sufficiently small positive constant.

As its consequence, we obtain next corollary which is a generalization of
the corollary in the preceding paper ([14], pp. 98-99).

COROLLARY 4. Let f(z) be regular and of bounded characteristic in D.
Suppose that f{z) tends to a finite value a% (z=l, 2) as z approaches z0 along Γx

(z=l, 2) respectively, and that h(zn) is bounded on the sequence of points {zn}
contained in a Stolz-domain with vertex at z=z0 and tending to z=zQ as n—>oo.
Under these conditions, aλ=a2 and f(z) tends uniformly to aλ=a2 as z—>z0 inside
D.

Proof We may put zo=l. Considering f(z)+k (k: a suitable constant)
instead of f(z), if necessary, we can assume that there exist two constants kt

(i=l,2) such that

(5.1) 0 < A ^ | / ( z ) | ^ * 8 < + o o

in the neighborhood of the open arc: A(eiΘ 0< \θ\<δ). By (5.1), Blaschke
product: B{z) has no limit point of zeros in the neighborhood of e ^ e A Hence,
by (2.5) and similar arguments as in the proof of lemma 3, we can conclude that
dμ(φ)=0 in the neighborhood of ψ—θ. Therefore, by (2.5) we can put

(5.2) /(^)=S(2r).Z)1^).D2(2)>

where

D2(z)=exp {l/2τr. J Q(έ*>, z)dμ(φ) + C-Q(\, z)+iλ} ,

CΛ : the complementary arc of A, C and λ: real constants, so that, by (4.1)

(5.3) h(2)=h1(z)+ht(z)+C+'P(l9 z),

where

A,(2)=1/2JΓ. f +>Γlog+ \f{e^) I P(e^, z)dφ, h2(z)=l/2π • f P(e\ z)d+μ{φ).
J-π JCA

By (5.1), (5.3) and lemma 2 (1), hf(z) (z—1, 2) is bounded in the heighborhood of
z=l, so that from the boundedness of h(zn) on {zn}, we can conclude that
C+ P(1, zn) is bounded on {zn}. Since {zn} is contained in a Stolz-domain with
vertex at z—1, there exists a positive constant k3 such that

Hence, C+ >._3—r is bounded on {zn}, which is possible only if C+=0. Thus,

by (5.3) and (4.1)!
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from which we can conclude the boundedness of f{z) in the neighborhood of
z—\, which is to be proved.

In theorem 4, we have assumed the both-sided boundedness at z0. If we
assume only the one-sided boundedness at z0, what we can say about the bounded-
ness of f{z) in D? We shall give an answer to this question in the following
theorem.

THEOREM 5. Let f(z) be regular and of bounded characteristic in D. Sup-
pose that f{z) is bounded at zo=l along the upper arc Γlf and that the sequence
of {h(an)} is bounded: h(an)<M< + oo (n=l , 2, •••), where

(1) | α n | < l , \iman=1,
71—>oo

(2) an<Ξ:£DΔ=Dr\{z', 7r/2<arg (z— l)rg3ττ/2—Δ] (0<Δ<π),
(3) lim d{an, an+1)<+oo, d(a, b) being the non-Euclidean distance between a

and b.
Under these conditions, f{z) is bounded in the domain bounded by Γl9 Γ3, and
I jar— 11 =e (ε : a sufficiently small positive constant), where Γs is the Jordan arc
terminating at zo=l and composed of the segments connecting an and an+1.

To establish theorem 5, we need some lemmas.

LEMMA 5. ([14], p. 99) Let f(z) be regular and of bounded characteristic
in D:

2π\og+\f(reiθ)\dθ<M<+™
0

Then

for \z\^R<l.
L E M M A 6. ([14], p. 100) Let {fn{z)} ( n = 1 , 2, •••) be a sequence of regular

functions in D. The necessary and sufficient condition for {fn(z)} to be of uni-
formly bounded characteristic:

l/2πΛ27C\og+\fn(reiθ)\dθ<M<+oo ,
, 2τr

' 0

where 0 ^ r < l , M: a constant independent of n, is the existence of a sequence of
positive harmonic functions {un(z)} such that

(ΐ) lθg+\fn(z)\£Un(z) ™ \z\<l,
(ii) un(0)<M<+oo.

Proof of theorem 5. Let us put

Then

(5.4) \og+\fn{w)\SK{w), Λn(0)=A(flB)<M<+oo.
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By (5.4) and lemma 6, the sequence of regular functions { / » } in \w\<l is of
uniformly bounded characteristic:

(5.5)

Hence, by (5.5) and lemma 5,

(5.6)

1+R

Since |w|^/? is mapped onto D(an, ρ)={z; d(an, z)^ρ) (p=tanh~1 R) by the

linear transformation: z— ™~^?n , by (5.6) f{z) is uniformly bounded in the

sequence of non-Euclidean disks: {D(an, p)}. Therefore, if we take p so large
that

timd(an, an+1)<p<+oo,

then f{z) is bounded on Γs. Hence, by theorem 1, f(z) is also bounded in the
domain bounded by ΓlfΓB and \z—l\=e, which is to be proved.

By what is proved above, the next theorem is also obtained;

THEOREM 5*. Let f(z) be regular and of bounded characteristic in D. If
h(an) ( n = l , 2, ••• |an\ <1) is bounded, then f(z) is uniformly bounded in \JD(an, p)

n

for any positive finite p.

6. Theorems of P. Montel-type.

As an application of theorem 5, we can prove the following theorem of P.
Montel-type, which generalizes a theorem in the preceding paper ([14], p. 99).

THEOREM 6. Let f(z) be regular and of bounded characteristic in D. Sup-
pose that f(z) tends to a finite value a as z-*zo=l along Γλ. If the sequence of
{h(an)} ( n = l , 2, •••) is bounded, where | α n | < l , lim α n = l , arg(l—an)=ψ, \ψ\<π/2,

( n = l , 2, •••) and lim d(an, an+1)<+oo, then f(z) tends uniformly to a as z-*zύ—l

inside 3)Δi Δ being any positive constant less than π/2— \ψ\.

To establish theorem 6, we begin with

LEMMA 7. Let L be the chord connecting z=\ and z=eί2φ (0<φ^π/2), and
I be the segment on L with end points zx and z2. If the non-Euclidean distance
between zx and z2 is finite:
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then there exists a constant K depending upon only k such that

Proof. Put

(6.1) w(z):

The chord L is mapped onto the circular arc A in w-pl. passing through three
points: w(l)=eUπ+2^\ w(z1)=Of w(ei2?)=-l.

Since the non-Euclidean metric is invariant under the transformation (6.1),
and the inequality: d(zlf z2)<k<Jroo is equivalent to the inequality:

τΞfγ~ <tanh&,

we have

(6.2) I w(z2) I < tanh k , d(zίf z2) =
c

where C is the segment connecting w=0 and w=w(z2). Let us denote by /* the
circular arc on A with end points w=0 and w(z2), which is the image of / under
the transformation (6.1). Then, by (6.2) we have

L-ι*r
\dw_r \dw\ 1 r , , ,

"Jw&*l-\w\2 "̂  l - ( t a n h ^ ) 2 ΊW€U*{ '

1 — I w 12

P u t t i n g g = l -

which is to be proved.

LEMMA 8. Let us define the non-Euclidean circle:

(6.3) d(z,a)=:p (0<p<+oo),

where a lines on the chord L connecting z—\ and z=ei2ψ ( θ < ^ - 5 - \ // a

varies along L from z—1 to z=eί2φ, then the envelope of (6.3) is composed of two
circular arcs, which connect z—\ and z—ei2ψ and make the angle:

2-tan"1 (sin φ--jz^~) » r=tanh p

(*) The length of the circular arc is less than its chordal length multiplied by π/2.
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at z=L

Proof. Put

(6.4) w(z)= z a

(6.3) is equivalent to

l-άz '

z—a
1—άz

—r (r—tanh p), so that (6.3) is mapped onto the

fixed circle: \w\=r. By (6.4) L is mapped onto the fixed circular arc passing
through three fixed points:

ei^2<P\ u/(α)=0, w(ei2η=-l.

Hence the fixed two circular arcs A% (z=l, 2) which pass through w(l)=eiCa+*&

and w(ei2<p)=—1, and touch the circle: \w\=r, are evidently the image of the

envelope of (6.3) as a varies along L from z=l to z=ei2ψ. By the simple calcu-

lation, we can show that two arcs A% ( i=l , 2) make the angle: 2 tan"1 (sin φ

2r \
, _ o ) at w=£ίC7Γ+2ίO), from which our lemma easily follows.

LEMMA 9. Denote by {an} ( | α n | < l ) the sequence of points such that

l i m α n = l , arg( l—a n )=—# , 0^-5<π/2, lim d(an, α n + i )<+oo .

Put

D(p)=\JD{an,p),

where D(an, ρ)={z; d(z, an)^ρ). If p is sufficiently large, then D(p) covers the
fixed Stolz-domain with vertex at z=l in the neighborhood of z=l.

Proof By the assumptions, there exists a positive finite constant k such
that

(6.5) d(an,an+1)<k ( n = l , 2, •••).

Denote by a any point on the segment /„ connecting an and αn + 1, and by b any
boundary point of the domain: D(an, p)UD(an+1, p) respectively. By (6.5) and
lemma 7,

d(a, 6)> / o-max {d(an, a), d(an+1, a)}>p-\ \d*},2 >p-0(k)

= P ( 1 - O ( D ) ,

so that, for any given e>0, there exists ρ(ε) independent of n such that

d(a,b)>p(l-ε) for />δ/o(β).

Hence

(6.6) D(P)-Ώ U Dia.pO.-e)),
l α l l ^ l α j i l
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where L is the chord connecting z=l and z=*eKπ~m. Since

2-tan"1 (cosτ9 i 2 J — > π as p-» + oo ( r^tanh^l—ε))),

by (6.6) and lemma 8, D(ρ) covers the fixed Stolz-domain with vertex at z=l
in the neighborhood of z=l, provided that p is sufficiently large. Thus our
lemma is completely established.

Now we can prove theorem 6.

Proof of theorem 6. We first assume that —π/2<ψ^0. Putting 0< J ' < J

<~2—\φ\, if p is sufficiently large, then by lemma 9, D(ρ) covers the Stolz-

domain with vertex at z—\ :

{z; |arg(z-l) |^r/2-J '}n£/(l ,β),

ε being a small positive constant. Therefore, by theorem 5 and 5*, f{z) is
bounded in £)j>Γ\U(l, ε), so that by classical P. MonteΓs theorem f{z) tends
uniformly to a as z-+l inside £)J(Z£>J>.

The case: 0<^<π/2 also can be treated by similar arguments.

Next we shall sharpen theorem 6 as follows.

THEOREM 7. Let f(z) be regular and of bounded characteristic in D. Suppose
that there exists the measurable set E contained in (0, +δ) (d>0) such that

(1) f(eιφ) tends to a finite value a as φ-^+0 along E.
(6.7)

(2) the lower density ^ (* ) of E at φ=0 is positive.

Furthermore, if the sequence of {h(an)} (w=l, 2, •••) is bounded, where

| α j < l , lim an=l, s.rg(l—an)=ψ (\ψ\<π/2)
n—*+oo

and
lim d(an, an+1)< + oo ,

then f(z) tends uniformly to a as z->l inside the Stolz-domain with vertex at
2=1.

Remark. (1) In the case of the bounded regular function in D, this theorem
has been proved by M. L. Cartwright [3] and Y. Kawakami [6] independently.
(2) Theorem 7 is a generalization of the theorem due to the author ([14], p. 98).

We begin with

LEMMA 10. Let E be the measurable set contained in the upper arc:
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A(eiθ 0<θ<δ) which has the positive lower density λ at 0=0;

where E(t)=Er\(eiθ ;0<θ<t). Let E{w9a) be the image of Ea by the linear

transformation: w=-Λ—— ( | α | < l ) , where Ea is defined as follows:
_L CLZ

Ea=E(2φ) if arga=φ>0,

=E(l-\a\) if argα^O,

—E(ψ) if arga=—φ<0.

If a tends to 1 along the fixed chord: arg(l—a)=ψ (\φ\<π/2), then

\]mmE(w,ά)^λ k(ώ),
α — l

where k(φ) is a positive constant dependent upon only φ.

Proof. We have easily

(6.8) mE(w, α)=J M Z ^ | 2 1^1

We distinguish three cases: —π/2<φ<0, φ=O, 0<φ<π/2.

(i) First we assume that — π/2<φ<0. Put

α = | d | e*P (φ>0), z=exp(i(l+a)φ) ( — l ^ α ^

Then

Hence, by (6.8)

(6.9) m«. ^

By the definition of λ, for any positive ε, there exists t(ε) such that

mE(t)>t(λ-ε) for 0<t<t(ε),

so that

f φ\da\>2φ(λ-ε) for

Therefore, by (6.9)
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(w,a)^ f ^ i ^ %Λ-s) for
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By the sin-rule, we have

Ψ_
\-\a

so that

(6.11)

Since

i n [ — ^ — \ φ \ )

lim

. . Ui-M

by (6.11), we have by (6.10)

\im mE(w, α)Ξ>2 sin

Letting ε->+0,

(6.12)

l - | α |

a-*i
arg (l-α)

(2) Next we assume that ^ = 0 . In this case, put

φ=(l—\a\), z=exp(ιaφ)

By the slight modification of the above arguments, we get easily

(6.13) ]immE(w, a)^λ.
l

(3) Finally we assume that 0<^<ττ/2. Put

a=\a\e-χP (φ>0), z=

By the similar arguments as in (6.9) and (6.10), we have

(6.14) ME{W, a)

for 0<φ<t(ε). Since

tan φ as α—>1 along arg (l—a)=ψ ,

we have

( l - l
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Hence, by (6.14) and letting ε->+0,

arg (1— a)=φ

Thus, by (6.12), (6.13) and (6.15), our lemma is completely established.

Proof of theorem 7. By lemma 10, there exists a sufficiently large integer
N such that

(6.16) πιE(w,an)>λ/2-k(ψ) for n^N.

By the linear transformation : w(z)= ?~^\ > ^ακ is mapped onto E{w, an) which
1 UnZ

has the fixed limit point: w(l)=ei2*. Hence, by (6.16) and (6.7) (1°), we can
find a fixed set £* (m£*>0) lying on |w;|=l and a sequence of integers {nk}
such that

(1) Ytm(nk+1-nk)< + oof

(6.17) (2) E*aE(w, ank) (ft=l, 2, •••),

(3) A > H for w e £ * as £->+oo,

where /w(w)=/( j 1 ^ 0 ^ )- Putting hn(w)=h( ™+^w ), by the assumptions we

have

log+|/njk(u;)| gλΛJk(u0 for k l < l ,

Hence, by lemma 6, the sequence of regular functions {fnk(w)} is of uniformly
bounded characteristic

, 2π

Setting Fk(w)=fnk(w)—a, we have

(6.18) l/2π.Cπ\og+\fnk(Reiθ)\dθ<M< + oo (O^J?<1, *=1,2,
J 0

l/2π f \og+\Fk(Reiθ)\dθ^M+\og'¥\a\+\og2=M*<+oo .

Therefore, by lemma 5, for \w\g>R<l,

(6.19) log|F^)|^2M*.4^-TX& V2π.f27r|log|F,(^)||^

By (6.17) (3) and (6.19), the sequence {fnk(w)} tends to a uniformly in \w\^R<l as

£—+oo. Since \w\^R is mapped onto D(ant, p) (^=tanh"1/?) by z=
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f(z) tends uniformly to a as z tends to 1 inside the sequence of non-Euclidean

circles: D(ank, p) (fe=l,2, •••). By (6.17) (1) and fimrf(fln, an+1)<+oo} we have

ϊϊmd(ank, ank+1)<+oo.

Hence, by lemma 9, /(#) tends uniformly to a as 2r—>1 inside the Stolz-domain

with vertex at ar=l, which is to be proved.
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