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ON ABSOLUTE RIESZ SUMMABILITY FACTORS
OF FOURIFR SERIES

By G.D. DIKSHIT

1. Definitions and Notations.

Let 2 u, be an infinite series and let 0=4,<2,< +-- <1,—c0. For k=0, we
write

RM)="3
n=1

The series X u, is said to be absolutely summable by Riesz discrete method
(R*, A,, k), or summable |R* 1,, k|, if {R*(4,)} is of bounded variation. When
the ‘order’ of summation k=1, the method of summation is equivalent to the
usually known Riesz method |R,4,,1|. In this specialcase the method is also
sometimes known as the method |R, ¢,|, or the method IN, Ual, where {p,}=
{4,—2.-1}. In this paper we are concerned with this special case and we will
denote the method of summation by | R, 4,,1|. Thus the series X u, is summable
IR, 2,, 1] if
oy P

When {4,}={n}, the method is the same as the Cesaro method |C, 1|, and when
{4,}={log n} the method is called the logarithmic method.

Let f(t) be a Lebesgue integrable 2z-periodic function and let the Fourier
series of f(f) be given by

2 Anlig| <

B4R G = B (71—

f(t)rv —|—E(a,, cos nt+b, sin nt)= Z}A NOB
We set
Bty =[x+ fa—1)—2/(0)}

and throughout the paper we write to denote
t
ot)={ 16l du,
pa=(" 18001du

1/n
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RIESZ SUMMABILITY FACTORS 85
Dn(t)z%%—cos t+cos 2t -+« +-cosnt,
n
En(t)=2012u cos vt,
F,,(t):é}s,l,, cos vt ,

SHH=314,0),

+1
(log n)“ z, when S> —%
_ 3 __ 1
h,=1 (loglogn)?, when ==
| 1
1, when B< -5
(log n)f+t, when p>-—1
k,=< loglogn, when f=-1
1, when B<-—1.

K, K, --- denote absolute constants, not necessarily the same, at different occur-
rences.

2. Theorems.

The object of this paper is to establish some general results concerning
absolute summability factors for Fourier series at a point. Actually we prove
the following theorems :

THEOREM 1. Let ¢(t) be a positwe function and let

D(H=0(tp(1/1)), as 1—0,
and
¢'n:¢'(n) .
If {e,} is such that

Hnas > S AL
(2) Dr|ey|gn<o0, Bdes| 4 3 dad(3-) <oo,
= = 1
(6) S1de,|, 3 pad(7-) <o
and
oo 1 n T
© Sa(F)|Be ] oD, @t <o
then e, A1), at t=x, is summable |R, 2,,1]|, if, and only if Zi/{"ilenl | Sp(x)—
n+1
)] <o,
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THEOREM 2. Let B be a real number, and

00=0(t(log Z=Y), as t=0.
If {e,} is such that
) z)lenl(lzgn)’g <

and
(i) XDknlde,| <oo
then e, A b), at t=x, is summable |C, 1|, if, and only if

n%b 5,010 <o
THEOREM 3. Let 8 be a real number, and

B
o()=0(t(log Z=)), as 0.

If {e,} is such that

. [&al

(1> E n(log n)l—-ﬁ <oo
and

(i) Xknlde,| <oo,
then X e, A, (1), at t=x, is summable |R, logn, 1|, 1f, and only 1f

S 1) —f(®)] <o,
THEOREM 4. Let B be any real number and

0()=0(1(10g ZY), as 10,
The series X e, A,(t), at t=x, is
(I) summable |C,1| if {e,} is such that
@ {eahal B, ) B2 coo and (i) Sk, | de,| <oo;
(II) summable |R,logn,1]|, zf {en} is such that

i {2hates, () DLl <o and (i) Shaldea] <co.

3. Remarks.

1. For some of the existing results in this direction one is referred to Cheng
[2], Prasad and Bhatt [9], Matsumoto [7], Pati [8], Liu [6], Hsiang [5] and
S.L. Wang [10]. The special case =0 of Theorem 2 was discussed by
Pati [8]. Even for the special case, our theorem furnishes more general
results than one due to Pati [8].

A theorem on the lines of Theorem 4 for general sequences {4,} can be
deduced from Theorem 1 and it can easily be verified that for corresponding
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logarithmico-exponential sequences dealt with in a known theorem due to
Matsumoto [7, Theorem 2] here one gets more general results.
2. It has been proved elsehwere [3, Lemma 4] that a sufficient condition for

summability |R, 4,,1| of a series > u, is the convergence of Z—ﬁ‘ilsnl,
n

sn=§n)uk. From Theorem 3 we deduce (cf. Corollary to Theorem 3) that
when 1,=logn, for the summability of the Fourier series of f(x) at the
point f=x, given by @(t):O(t(log tL) 7]), as t—0, >0, this condition is

also necessary.

3. The case f=0 of Theorem 4 (I), on summability |C, 1|, has been studied by
Prasad and Bhatt [9]. The summability factors studied in the present paper
are sharper than those known before. The case —1=<B=0 of the same part
has been discussed by Liu [6] whose results are again generalised here.
Hsiang [5] rediscovered the case S=—1 and his result seems to be included
in that of Liu [6].

4. Lemmas.

We shall need the following results towards the proof of our theorems.

LEmMMmA 1.
in(ng L
(i) Dn<t>:sm—<n+T2-)t-
2 sin '—z—t
O(n),
:[ (). te[5=];

(il)  Es()=2uDu() =31, D,er(1)
O(ni,)

02, e[+ =];

(i) Folt) =entaDa()—es Dpt,Dus(+'S ES(0(de)
=0 en)+0(Ewa | 4e,1).

These results are rather obvious.

LEMMA 2. Methods of summation |R,logn,1l| and |R, (logn)",1|, r>0, are
equivalent,

This result can be deduced as a very special case of well-known results on
“Second Theorems of consistency for absolute Riesz summability ” (cf. [1]).
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B
Lemma 3. If 0(t)=0(t(log Z%)"), as 10, then

S18.(x)—=£(x) | =0(nhs).

The case =0 is essentially due to Hardy and Littlewood [4] and is also
known for =0 (Cheng [2]). For the general case we proceed as follows.

Proof of Lemma 3. As
Suw—f="—2f"p(0 =2t Lo,
1S.0—f@1=2{"g01at+2{ [ 9S82 atl+oq)

=0togny+-2|[" o) P at| o), nzv,

and therefore
SIS0 —/()*
=KB{[] 40Pt} +0mtogny)+0)
=k " 2. P (3 in vt sinvu)dt du-+O(n(log n))+0(n)

=KT,+0(n(log n)*)+0(n), say,

where
2T,= (" [* 0 ) sin (n+-3 2 )=t sin ("+—><”+” dt du
1/n¥ 1/n 2 sin T(u—t) 2 sin 7(u+t)
:j'" 5'” o) ¢(w) sinnu—1) ;. .
1mY 1/n U (u—t)
0] ¢(u) sin n(u+t)
jll/n-flln (u+1) dt du
T r t é
+0(f1/nfl/n I¢(t)| ' <uu)| dtdu)
=T,—T;+0(T7), say.
As

" ORI
J; 0L 20 ;2

1/n
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O(log n)#**+0(log log n),  p=-—1,
:l o), Bp<—1,
.| OlCtog n)***)+0((log log n)*), ~ p=—1,
:{ o), p<—1.
Also

Ry =

Lm @) j $u) sinn(t—w) ,, du’

i/m U (t u)

+ L/n $(t) f ¢(u) sin n(u—t) . dtl

(u—1)

Lm ¢(l‘)f () Sln n(t u) dt dul

im U

f o (w) f ¢(t) sinn(u=t) ., dtl

im U 1/n (u t)

j‘lmj‘l/n ¢(t) ¢(u) sin n(t—u) du dtl

u (t—u)

L/ ¢(t) jl/ (?(uz) sin n(t—w)du dt

+2f” ﬂ(t—j W) G n(t—u)du dtl

1/n

<tn " SBOL[ |gw)du at
=" AEDLoyar.

Therefore,

731=0(n " 1201 (10g 2= Y ar)
2
o {[(os 25 20T - L,,,wl( iy

lo g
=0(n)+O(n(1og ny#)+0(n | (o) dt)
=0(nhi).

Similarly, we have

ITI/ |__

é() J(w) sinn(t+u)
j‘l/nflln u (t+u) du dtl



90 G. D. DIKSHIT

o(t) é(u) sin n(t+u)
fl/n fl/n (t+u) du dt

<tn ;n-lié%)—l(l)(t)dt

=0(nh2).
Thus

331,08 —AD*=0(ni) = $15,(0—=F(2)| =O(nh,).

5. Proof of Theorems.
5.1. Proof of Theorem 1. We have
Ay=-2( 0"¢(t) cos vt dt
_2(
Su(x)—f(x)=—2{ ‘$(ODu(t)dt,

and the series X ¢,4,(x) is summable |R, ,, 1], iff

i;(_/%b— 7I.+1 e D(‘x) ' = 721.—? n+1
- 2 S+ —%)I { 0”¢(t)F,,(t)dt| <oo.
Therefore, if
*) s=5(—2)|[s0iF—etDaorat| <k

then
z%ﬁ—s e {Sa(x)—f(x)} | <0

is a necessary and sufficient condition for Xe,A,(x) to be summable |R, 4,, 1].
We now proceed to prove (¥).

s=R( =N 16@F® dt+[ et D0 |t

n+1
7 s —entaDat)dt|}
=I+L+1,, say.

After Lemma 1,

L= E(F =)l [ 160E 0 at
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+E (-2 )(E e [ " sm0at))

2n+1

IA

Kli—m—nlsﬂ@(l/m"'[{zéul”lds‘J i @(l/n)(%_ 1 )
. v=0 n=y+1 n

271»!‘1 2n+1

A

KK, 3 2,1 de,] 3 6,d(1/20)

N

K;
LK, 3Bt je, |9, <K
0 n+1

and

oo n—1 T
Lt S we b AE R MECECIE

o 1 l n T
+5Ck — engf 000

S S (L1 (7 1g0l
SK B et 2 (g )],k

<K, 314612, 3 pad(1/2) + K,
<K.
This completes the proof of the theorem.
5.2. Proof of Theorem 2. After Theorem 1, it is enough to note that when
¢(1/0=(10g 2=, and 2,=n,
po=f AEOLat—0(k.);

ng_'_lpnd(—?];—):()( i?),, ) 5
for te[_}i—, ,t],
|30, 10|=0(4)
and therefore
|$F‘f 1,,,¢(f)Dv-1(t)dt| <K | l/_lgﬁ_t(zm it

= S0 el

=Kn(log n)f .
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5.3. Proof of Theorem 3. In view of Lemma 2 we may employ summability
method |R, (logn)", 1|, »>0, instead of method |R,logn,1|. For the sake of
convenience in further analysis we choose r>14-|8|. Asin the case of Theorem
2, we again deduce this theorem from Theorem 1. Here

ta=(log (n+1))"—(log n)"
(1 r-1 1 )7—1
=r Lo o Lo

3

and therefore for te[—}l—, 77:]

Z?),u,, sin (u—-%)t‘

(log v)™!sin (»———1- |sin (v———%—)t‘
r g

t n
2 ) |+Klz(log p)-t

IA

in (v—L
MH  logn™ g, (”"5‘)4

2x/tly

§K+r’ > (logy)™!

vsan/t

<K, (log Z5) "4 i, LB (o

r-1
Hence

I?”f :,,SZ‘(OD,-l(t)dt‘
< Kj\fr ,¢(t)|<10gt<2n-/t))r—1 it

1/n

= K (s 200, i 00 L)

1/n
= K,(log n)?*",
which implies

d * le, |(log n)f*T
&3m | m¢<t>D,,-1<t>dtl zxzlafB

=K.

iA(-}—n)

1

Again, as p,=O0(k,), the proof of Theorem 3 is completed.

5.31. Corollary to Theorem 3.

The following corollary is an interesting special case of Theorem 3.

CoroLLarY. If O()=0(t(log %)), 9>0, then XA(x) is summable
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|R, logn, 1|, iff

o Tog | Sa(H)— ()] <eo.

Proof of Tneorem 4. Let {r,} be a given sequence. After Lemma 3 we
have

nlogn

SIS — D ="S AG) SIS D=3+ DS, —f9)]
=0(S vhal d1,] ) +0Char)

Case I Take {rn}z{in"—} so that ny,=e, and (n—!—l)Arn:—enl+Asn, and
the result follows from the sufﬁciency part of Theorem 2.

Case II: Take {r,}= { } Here we have

nlogn

de, n
(n+1) 47, =( log (;4-1) )+0( n Ilte)g n )-

Now we get the result in the light of Theorem 3.
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