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ON ABSOLUTE RIESZ SUMMABILITY FACTORS
OF FOURIFR SERIES

BY G. D. DIKSHIT

1. Definitions and Notations.

Let Σ ^ be an infinite series and let O=λo<λ1< ••• < Λ n ^ o o . For &Ξ>0, we

write

The series ^un is said to be absolutely summable by Riesz discrete method
(R*,λn,k), or summable |i?*, λn, k\, if {J?*(Λn)} is of bounded variation. When
the ' order* of summation k=l, the method of summation is equivalent to the
usually known Riesz method \R,λn,l\. In this specialcase the method is also

sometimes known as the method \R,μn\, or the method \N,μn\, where {μn} =
{λn—kn^}. In this paper we are concerned with this special case and we will
denote the method of summation by \R,λn,l\. Thus the series Σw n is summable

\R,λn,l\ if

ΣI ΔR\λm) I = Σ ( - T — - T ^ - ) IΣ λnun
<oo.

When {λn} — {n}, the method is the same as the Cesaro method |C, 1|, and when
{λn} = {logn} the method is called the logarithmic method.

Let f(t) be a Lebesgue integrable 27r-periodic function and let the Fourier
series of f(t) be given by

We set

/(O~-τr+Σ(fln cos nt+bn sin nt)=fiAn(t) .
Δ i o

φ(t)=-L{f(χ+t)+f(x-t)-2f(x)}

and throughout the paper we write to denote

Φ(t)=C\φ(u)\du,
Jo

Γ* \φ(u)\du
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Dn(t)=-±-+cost+cos2t+ - +cosnί,

85

when β>—o-

(log log ft)2 , when β=—ψ-

kn=

l 1,

(logft)^+ 1,

log log n,

1,

when

when

when

when

denote absolute constants, not necessarily the same, at different occur-

rences.

2. Theorems.

The object of this paper is to establish some general results concerning
absolute summability factors for Fourier series at a point. Actually we prove
the following theorems:

THEOREM 1. Let ψ(t) be a positive function and let

Φ(t)=O(tψ(l/t)), as f-0,
and

iεn} *'5 such that

(a)

(b)

and

(c) ΈM-±-)\εn±μv Γ
1 v Λn / I i J ι/n

<co

then ^εnAn{t), at t=x, is summable \R, λn, 1|, if, and only if Σ ^n+1 | ε j \Sn(x)—
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THEOREM 2. Let β be a real number, and

Φ(ί)=θ(t (logoff), as t-+Q.

If {εn} is such that

(i)
and

(ϋ)
t=x, is summable \ C, 11, z'/, and only if

THEOREM 3. Let β be a real number, and

Φ(t)=θ(t (logoff), as ί-0.
// {εn} is such that

(ϋ)
then ΣεnAn(t), at t=x, is summable \R, log n, 1|, ι/, βn<i 6>n/̂  if

THEOREM 4. L ί̂ β be any real number and

Φ(t)=θ(t(log^-)β), as ί-0,

The series ^enAn(t)f at t=x, is

(I) summable \C, 1| z/ {εn} zs si/c/z ί/iαί

(i) {sMeB, (ii) Σ- ί £ 4^ L < 0 ° α n r f (m> Σ
(II) summable \R, logn, 1|, z'/ {εn} fs swc/z that

(iii)

3. Remarks.

1. For some of the existing results in this direction one is referred to Cheng
[2], Prasad and Bhatt [9], Matsumoto [7], Pati [8], Liu [6], Hsiang [5] and
S. L. Wang [10]. The special case β=0 of Theorem 2 was discussed by
Pati [8]. Even for the special case, our theorem furnishes more general
results than one due to Pati [8].

A theorem on the lines of Theorem 4 for general sequences {λn} can be
deduced from Theorem 1 and it can easily be verified that for corresponding
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logarithmico-exponential sequences dealt with in a known theorem due to
Matsumoto [7, Theorem 2] here one gets more general results.

2. It has been proved elsehwere [3, Lemma 4] that a sufficient condition for

summability |R, λn, 11 of a series Σ u n is the convergence of ψ

From Theorem 3 we deduce (cf. Corollary to Theorem 3) that

when λn=\ogn, for the summability of the Fourier series of f(x) at the

point t=x, given by Φ(f)=θ(t(\og—^ ), as f->0, η>0, this condition is

also necessary.
3. The case β^O of Theorem 4 (I), on summability |C, 1|, has been studied by

Prasad and Bhatt [9]. The summability factors studied in the present paper
are sharper than those known before. The case — l5Ξ/35gO of the same part
has been discussed by Liu [6] whose results are again generalised here.
Hsiang [5] rediscovered the case β= — 1 and his result seems to be included
in that of Liu [6].

4. Lemmas.

We shall need the following results towards the proof of our theorems.

LEMMA 1.

si
( i ) Aι(0=—

2 sin ~γt

(ii) £»(0=^n(0-

0{nλn)

(iii)
1

=O(jιλn\en\)+θ(^vλv\Δsv\\

These results are rather obvious.

L E M M A 2. Methods of summation \R,\ogn,l\ and \R, ( logn) r , 11, r > 0 , are

equivalent.

This result can be deduced as a very special case of well-known results on
" Second Theorems of consistency for absolute Riesz summability " (cf. [1]).
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LEMMA 3. // Φ(t)=θ(t(u>g-^-)β), as f->0, then

The case β=0 is essentially due to Hardy and Littlewood [4] and is also
known for β^O (Cheng [2]). For the general case we proceed as follows.

Proof of Lemma 3. As

+0(1)

+0(1),

and therefore

Jl/nJl/n ί ' U

=KTn+O(n(logn

t sin vu)dt du+O(n(\og n)2β)+0(n)

say,

where

2T =
M J I / W * U

ΦV) φ(u) sinw(M-

dtdu

d

_r r

+o(c r i

=T'n-n+0{T»), say.

As

Γ lψ-dt=V<ψLT+Γ Φί
<>l/n t L ΐ J 1 / n J 1/n t



Also

Therefore,
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ί O(logn)'+1+O(loglogn),

~ Ί θ ( l ) , β<-l,

I O((log n)wη +O((log log nf), β\

10(1), β<-l.

89

IM t JIM M (ί—M)

I r« <m_ Γ Φ(t)
\Jl/n U J1/n t

Wl/nJl/n
φ(t) φ(u) sinn(t-

t U (t—U)

+2r mr
1 f* \φ(u)\dudt

J 1/n

du dt

. (*•¥•¥•)'

=0{nhl).

Similarly, we have
I /» π /» π

Pl/J 1/n
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* φ(u) sinn
l/« U (t+ύ)

11/n

=O(nhl),

Thus

Σ\Sv(x)-f(x)\=O(nhn),
0

5. Proof of Theorems.

5.1. Prop/ of Theorem 1. We have

Av(x) = — f V(0 cos i4 rfί,

Sn(x)-/(X)= 4" ί

and the series Σ ε n ^ U W is summable |i?, Λn, 1|, iff

Σ ( 4 — r — )\±λvεvΛv(x)
1 V Λn / Λ + 1 / I o

Λn Λ n + 1

<CO.

-γ^-)\Vφ{t){Fn{t)-εnλnDn{t)}dt
λn + 1 / \J o

Therefore, if

(*)

then

is a necessary and sufficient condition for ^ΣsnAn(x) to be summable \R,λn, 1|.
We now proceed to prove (*).

»(01Λ+ f ''"IεJnDn(t)φ(t)IΛ

say.

After Lemma 1,

/i^#iΣ(τ--Ίr-)l e»l f 1M

1 V Λn Λ n + 1 / Jo
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n — 1

λn+1 / \ 0

l/n \\

φ(t)Eυ{t)dt\)

\^v\ Σ
+

v=0 v+1

and

^ A i Σ ( 4 ~ - Γ - O Σ W I f* \Eχt)φ(t)\dt
n=l\Λ r ι Λn + 1 / V = Q J ι/n

n=ι\ Λn λn+1 / \ v=ι' J ί/n

This completes the proof of the theorem.

5.2. Proof of Theorem 2. After Theorem 1, it is enough to note that when

g—p) , and λn=n,

Ml
Σ P»Δ

fbrίef-i-,4

and therefore

l/n l/n

Φ(t)
l/n
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5.3. Proof of Theorem 3. In view of Lemma 2 we may employ summability
method |R, (log n)r, 11, r>0, instead of method |R, log n, 11. For the sake of
convenience in further analysis we choose r>l+\β\. As in the case of Theorem
2, we again deduce this theorem from Theorem 1. Here

and therefore for

j"»=(log(n+l)) r-(logn) r

= r dog nY-1

 + Q ( (log n -1 )

< r
sin (γ-

Σ (logv)1-1-
sin (ι>

+r

Hence

±μj*
1 •/ l/n

which implies

i J ι/n n(log n)r

Again, as pn=O(kn), the proof of Theorem 3 is completed.

5.31. Corollary to Theorem 3.

The following corollary is an interesting special case of Theorem 3.

COROLLARY. // Φ{t)=θ{t(log^γ-^ *), η>0, then Σ,Λn(x) is summable
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\R,\ogn,ί\,iff

Proof of Tneorem 4. Let {γn} be a given sequence. After Lemma 3 we
have

±γΛSv(x)-f{x)I =WΣ Δ{γv)ΣISk(x)-f(x)\+γn±\Sv(x)-f(x)\
0 0 0

Case I- Take {γn}={^-\ so that nγn=εn and {n+ϊ)Δΐn=-^+Δεn, and

the result follows from the sufficiency part of Theorem 2.

//: Take {rn}={nlQ* }• Here we have

Now we get the result in the light of Theorem 3.
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