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By ZENJIRO KURAMOCHI

THEOREM 1°. Let R&O, be a Riemann surface and let p be a singular
pownt relatwe to Martin topology (i.e. p is mumimal and sup K(z, p)<oo). Then
Ge0,p for a domain G such that CG 1s thin at p.

Analogous theorems® are obtained relative to N-Martin topology.

THEOREM 2%. Let G be an end (domain G of R with compact relative bound-
ary 0G) of Re0,. Let p be an 1deal boundary component of G. Let f(t): teG
be an analytic function. If |f{)|<M<co n G, then f(t)—a limit as t—p, f(G)
1S a covening surface over the w-plane of a finite number N sheets and the har-
monic dimension of p is =<N.

THEOREM 2/®. Let p be a one wn Theorem 2. Let F be a completely thin set
at p. If G—F 1is represented as a covering surface of N number of sheets, the
harmonic dimention of p<N.

These theorems mean a singular point p (or boundary component of harmonic
dimension co) is so much complicated as G—F<0,3 (or O4r) and the complicacy
of p (or p) is not disturbed by extracting a small set F from G, where F is thin
at p (or F is completely thin at ») and O4r means a class of Riemann surface
R on which there exists no non constant analytic function f(f) such that f(R)
is at most a finite number of sheets. From these points of view we propose the
following

PROBLEM 1. About Theorem 1, 1s there a non singular point p such that
v(p)—F=0,5°? In other words, 1s the existence of a singular point necessary
for v(p)—F<045? where v(p) is a neighbourhood of p and F is thin at p.

PROBLEM 2. About Theorem 2 and 2/, 1s it true that there exists a boundary
point p, instead of v such that G—Fe045? where F 1s thin at p.

But these problems are difficult and in this paper we can only show examples
as follows: Example 1. There exists a point p of a Riemann surface RO,
such that v(p)€045. Example 2 and 3. There exists a boundary point p of ReO,
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ANALYTIC FUNCTIONS 63

such that v(p)—F<0 pp 0r O pp, where F is a small set in a sense and O 4pp(0457)
means a class of Riemann surface on which there exists no non constant Drichlet
bounded (bounded) analytic function such that f(R) is a covering surface of a
finite number of sheets. Clearly O45pCO4pp. Example 4. There exists a non
singular point p of a Riemann surface €0, such that v(p)—F<O0 pp, where F
is a small set. At first we shall construct an example using P.J. Myrberg’s
idea®.

ExaMPLE 1. Let &, be a unit disc: |z] <1 with slits J,:n=1, 2, --- and
It :n=1,2,--, i=1,2,--- as follow
Jo={0:0+:=Re z2=0a,,44, Im 2=0},

where 1>a,>a,--- | 0 and Z‘, —I—l log -Zent1 lansr o

Aon+e

I,f:{arg Z:%(I‘F‘%—‘F -+ 2n 1 ) bn,21,+1_ |z] <bn,21 1}

where @y4,>0,,>0,5 -+ |0, f{(bnﬂ)”:oo for any n and XX LNZR.(Azn41,
Usn12)=0, where R,(@5p4, azn+2) {azn+2s|21§azn+1}- Let ¥,:n=1 be a leaf of
the whole z-plane with slits me—l—E Ii. Connect §, with &,:n=1,2,--+ cross-

m=n

wise on 211,2 so that endpoints of I! are branch points of order 1. Connect
=

Toy B1y +* » Fn o0 J,:n=1,2,--- so that endpoints of J, are branch points of order
n. Then we have a Riemann surface R over the z-plane with compact relative
boundary ofi={]z|=1 of F}. It is evident R has only one boundary component
p. Let R(Gsps1, Gonss) be the part of Fo+Fi+ -+ +F, over R,(Aznir, Gonsz). Then
R(ayn11, 3nye) 18 a ring domain with two boundary components over |z|=ay,,

and |z|=a,,,, with module =—— n+l log az"*; and R(@yn41, Qonee) Separates P

from 0R. By X mod R(ayn41, Ggnez)=00 R is an end of another Riemann surface

€0, and p is of harmonic dimension®=1. Therefore there exists only one
Martin point p on p. Clearly p is minimal. Let C, be the boundary component
lying over |z|=a,,4, Of R(Gy41, G5p4,) and let G, be the domain of R divided
by C, such that G, is a neighbourhood of . Put R,=%R—G,. Then R, is an
(n+1) sheeted covering surface and =>%,. Let v(p) be a neighbourhood of
n=1

p relative to Martin topology. Then there exists a number 7, such that v(p)D
R—R,,. Assume there exists a bounded analytic function f(¥):tcv(p). Let

1,1 1 1
A,={0< 2| <1, O, n<arg 2<0;,} : ¥=0spgs2, 01,n=%<1—|—7+7+--- +—27_T—2—n),

62,,,=%(1+—1——I— +—27Llrr+%>. Let 4, be the part of &,+F, over A,. Map

A by ¢=(%

-i01,n X
ze ) onto A5 ={0<|¢|<1, 0<arg {<m}. Then =%}, b, ,—b,
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on
=(%) . Let ®4, be the surface consisting of two leaves (which are the same
as A,,) connected crosswise on 2¢/}. Then 4, and 4, are conformally equi-

J
valent. Hence f(t) in 4, is transformed to f(s) in *4,. Let s, and s, be two
points in °4, such that s,#s, (except branch points) with proj.s;=proj. s,=¢.
Then (f(s)—f(s,))? is a bounded analytic function g({) and g({)=0 at ;bﬁd.

Let G(E, b%,;) be a Green’s function of A5. Then by brief computation G(g, b5,;)
=A™ : A(©)>0. Hence g({)=0 by ;G(C, b§,j)=o0, whence f(s;)=/(s,) and

f()=f(z): z=proj.t in 4,. By identity theorem f(¢,)=f(f,) so far as f(¢;) and
f(¢,) can be continued analytically, where proj.f,=proj.t,. We denote by f,(2):
n=0,1,2,--- the branch of f(¢) in ¥,. Then f,(2)=fn(2) in A, for any n and

fo(2) is analytic in {0<Iz[<r}—f} J.. On the other hand, %, has no branch

points for |z|>a,,;; and f,(2) is analytic in a neighbourhood of J,:m<n. Hence

fo(2)(=fn(2)) is analytic on i]n and f,4(2) is analytic in 0<|z| <@, =7 and in
no

[2] > @4ng+1 (by putting fo(2)=/f2me(2)). Thus f4(2) is analytic in 0<[z[=oo. This
implies f(z)=const. and v(p)=0 45.

REMARK 1. By the method of the proof we see at once following. Let F be
a closed set in ® such that FN\34,=0 and proj. (R—F) covers the z-plane except
a set €Nyp, then v(p)—F<0,p, where Nyp means a class of set F such that
{0<|z| =0} —F&0 5.

REMARK 2. Suppose F contains branch pownts on z=b,,:n=1,2,--, i=
1,2,3,--, Then we cannot prove v(p)—FcO0 5, however thinly F may be distri-
buted. On the other hand, we shall show examples of a point p such that there
exists no analytic functions of some class in v(p)—F, if F is small in a sense.
We proved

LEMMA 19. Let G be a ring domain with radial slits s; such that 0G=
i
F1+F2+§i‘1si: Fi={lz|=1}, [,={|z| =exp W} and s, is a radial slit in 1<|z| <

exp WM and s; may touch I',+I",. Let U(z) be a harmonic function in G with
continuous value. Then

DUz [, 1UE)—U(e)]|dp.

By the same method we have at once

LEMMA 1. Let G be a circular trapezoid 1<|z| <™, 0,<argz<0, with a
finite number of radial slits. Then

D(U(z))g%f: | U(e)—U(e™+19)|2d@ .

LEMMA 2. Let G be a rectangle with vertices —a, a, a+ih, —a-+ih and U(2)
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be H. M. (harmonic measure) of vertical sides. Then for any 0<d<a and for
any ¢>0, there exists an h such that

Ulz)<e for |Rez|<a—ad.

Proof. Let G, be a rectangle with vertices, s+0, s-+d-+ih, s—d+ih, s—0.
Then G,CG: |s|<a—d. Let Ulz) be H.M. of vertical sides of G;. Then U(z2)
<U,(z). Now max Uyz)=a(h, 0)—0 as h—0”. Hence

U(z) <a(h, o),
|Re z1<a—§
and we have Lemma 2.

LeEMMA 3. Let G, be a domain with 0G,=I",+1,+31;: I''={|z|=1}, [,=
{lzl=exp M+a)}. L={arg z=%, U< |z Sem L a>0, M>0. Let Jibean
arc on I}:]n':{%garg Z§Li+&, IZI:e”’““}. Map G, by {=f,(z) onto a
domain G§ so that I'\—I'{={|¢|=1}, Ii—an arc on |{|=e™ and Ji—a radial

211

slit:{arg C:T, e“"'g_[Clge‘mn’}, where My, and WMy are suitable constants.

Let n—oo. Then My —M and f,(z)—z. Let U,(z) be a harmonic function in G,,
continuous on G+ +T,+3IF such that Uy(2)=0 on I} and D(U,(2))<1.

Then there exists a number n, such that
fr Uy (22d0<2  for n=n,.
1

Proof. Let w,(z) be a harmonic function in G, such that w,(2)=0 on

I, w,(z2)=1 on X I} and %wn(z)zo on X Ji. Then
Ja(2)=exp (yn(wn(2)+13,(2))) ,

where r,,=27r/fr aa—nwn(z)ds, @,(2z) is the conjugate of w,(2) and M =7,.
1

Consider w,(2) in a circular trapezoidz{%<arg z<2—”(lni1—)—, < z| <e9’“"‘}.

Since ®,(2)>0 and w,(z)=1 on arg 222—;;1- and 22?(}1—4_1)—, there exists a
number n’ by Lemma 2 such that w,(2)=1—e¢ on |z|=¢e®" for n=n’ for any

given ¢>0. Hence by the maximum principle w,(z)=(1—c¢) ISJ% —Il—il on 1<]z|

<e®™¢ On the other hand, clearly wn(z)§1°%)t¢ in 1<|z|<e™ whence

s M+e
M< My, <—1——e

o 0 0 )
k’—%ﬁ—li implies o ®,(2) an<10%]‘lzl ) on Iy, M/ -, f.(z)—z and fi(z)—1

and wn(z)ﬂk)—%ﬁi—zi— as n—oo, Since w,(2)=0 on Iy, w,(2)—
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on I'; uniformly as n—oo. Consider U,(2) in the {-plane. Then by for Lemma 1
_ - 1 _
D(U2)=DWUAfH0) Z g | Ul f7 ()6
By fi(2)—1 and M —-M as n—oo, there exists a number n, such that
1 2
D(UL(2)Z j Unerdo  for nzm.

LEMMA 4. Let G, be a domain with aGn:_F++F+§(-I,:'++I,§'): _

Zm
n

{lzl=e%}, T={lzl=e), Li={arg z=22%, e= 2| <e ié“}, JJi={arg z=22

e 5 ¥ <|z|Ze } Let U,(2) be a harmonic function in G, continuous on G, such

that Uy(2)=0 on D (. Ii4_I}) and D(U,(2))<1. Then for any ¢>0 there exists
a number n, such that

lgrad U,(2)| <e in {e—%<lz|<e%}.

We call such G, a ring with deviation e.

Proof. Let G.={e°<|z|<e}: < ST Let G.(z,2z,) be a Green’s

function of G,. Since grad %Gc(z, zo) is finite and continuous relative to z, z,
20

- a
and ¢ for ¢ 2=<|z|=<e?, z€0G, and 2a <c<—56— there exists a const. M such

—8—m> and consider U,(2) in
sa 4z M?e
es <z <et <—<——5<a> Then by Lemma 3, there exists a number 7,

such that

that ‘grad aLG(z, Z)|<M. Let 6=min (—

. .
j Ues << — S for n=n,.
2rM?2e &

By Schwarz’s inequality j | U (eT+5+w) |d0 <——+ m , similarly f |U(e —+5+w) | d6
Mes

_sa 50
65@ . Consider U,(2) in {e ¢© o <|z|<e® “}. Then

Me s
_ba_
lgrad Un(@)| S5 [ Un(0)|grad 2601, 2|5 o

o

IA

for zeGq4, where
2

—PCZ{IZ':e‘c} ’ +Fc:{|ZI=ec} . c:———5,
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LEMMA 5. Let G, be the domain in Lemma 4 with n=n, Let G, be the
same leaf as G, (with _Li+,I}) of G,. We identify each side of _Li(,I}) on G,
with the same side of _Ii(,I}) of G,. Then we have a Riemann surface G, of
planar character with connectivity 2n,—1. Let f(1): teG, be an analytic function in

5n with D(f(z‘))g%. Then ‘—‘%(ti)— <24/2¢ in the part of CN;,, over e-%< ]z]<e2i.

We call such G, a ring surface with deviation 2+/%.

Proof. Let t and f be points in G, and G, respectively such that projA. t=
proj. f=z. Let {=%+i$ and t=x-+iy. Put for simplicity UH)=0(2), V({))=V(2):
teG, U)=U(z), V()=V(z): teG. Then by C.R. equality

PN A A

Uv,=v,, U=-V,, U=-V, U=V, Q)

Now D(U(z)):D(V(z))g—}l—, D(U(z)—U(2))<1 and U(z)—U(z)=0 on .Ji+_Ii.
We have by Lemma

\U,~0O,1<e, |V,—V,l<e. )
By (1) and (2)

a
2

‘—C(ii—tf(t)'<2\/2_e for ¢ 3 <|projt|<e

Let D be a domain and let F be a compact set in D. Let o(F,z D)
be H-M. of F, i.e. w(F,z,D)=0 on 0D, =1 on F we defind Cap(F) by

jap%wur, 2, D)ds/2n and denote it by y(F). Then it is clear 7(F)=0 if and
only if F is a set of logarithmic capacity zero.

LEMMA 6. 1) (An upper bound for Dirichlet bounded harmonic functions).
Let D be a domain of finite connectivity and let F be a compact set in the interior
of a compact set ACD. Let H(z) be a harmonic function in D—F such that
H(2)=0 on 0D and D(H(2))<1. Then |H(2)|=C(z)v7(F) in D—A, where C(2)
is a constant depending only on A, D and z.

2) Let D, be a compact set in D—A. Let F, be a sequence of compact sets
such that F,CA and y(F,) | 0. Let U(z) and U,(z) be a harmonic functions in
D and D—F, respectively such that U(z)=U,(z) on 0D, D(U(2)<1 and D(U,(2))
<1. Then

grad U,(2)—grad U(z) in D, uniformly as n—co

3) Let F* be a compact set in D with y(F*)=0. Then for any ¢>0 and
for any compact set Dy in D—F* we can find a compact set FOF* such that

|grad U(z)—grad UF(z)| <e on D,

where U(z) is a harmonic function in (2) and UF(z) is a harmonic function in
D—F such that U(z)=U¥(z) on 0D and D(UF(z))<1.
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Proof of 1) Let F,, be a decreasing sequence of compact sets such that
F, | F, F,CA® the conncetivity of D—F,, is finite, every point of dF,, is regular
with respect to Dirichlet problem in D—F,, and H(z) is continuous on 0F,. Let
w(z):%& and @(z) be the conjugate of w(z). Put {(2)=exp (w(2)+id(2))
T . _ 1 .
=re*’. Then {(z) maps D—F, onto a ring Rc—{1<IC|<exp (———T(Fm) )} with

a finite number of radial slits. Consider H({)=H({(z)) in R.. Then by Lemma
1 and Schwarz’s inequality

18 1=exp (1/7(Fmd
Let V,.(2) be a harmonic function in D—F, such that V,(z)=|H(z)| on 0F,,
Va(2)=0 on dD. Then since |H(z)| is subharmonic V,(2)<V,..(2) and |H(2)|

=Va(2). jwm—aa—nVm(z)w(z)ds=faFmVm(z)aa—nw(z)ds, let ds=rdf and dn=0r on

_1 ¢ 0 __1 ¢ 3 _ -
8D+8F,. Then ) jaD 5 Va(Dds=— 7 fﬁpm o Vm(2)ds= jaFme(z)daz

27
\/ T Hence

fapaa—nvm(z)dsg N

We can find a compact set A’DA with dist (04, A)>0. By Harnack’s theorem

there exists a constant K depending on A’, z, D such that V,(H)= V[({z)’

t
whence Vo= 5D o(4',6,D) on 34", Hence by [ Lv,(dszVs@

=( 29041, D)ds we have Vm(Z)é%%. Let m—oco. Then |H(z)|
j% ;((g,)) Vo (A is a required constant.
Proof of 2) Let Hy(:)=U(~U,(z). Then D(Z2)<1. By (1) |H,(2)]

=<2C(2)~y(F,) in D—A. Let Df be a closed domain in D—A such that DFDD,,
dist (@DF, Dy)>0. Let G(z,q) be a Green’s function of D¥. Then since there

<lim V,(2) = and

exists a constant M<oo such that grad —E%L—G(z, Q<M: geD,, z€dD¥§. Now

max |H,(z)|—0 uniformly as n—oco. We have |[gradU(z)—grad U,(z)|<
ZEDO

[os2MIH(©)]|grad -GG, 2)|ds—0 as n—co. 3) is obtained at once.
Let 5n be a surface in Lemma 5 with n=n,. Suppose a sufficiently small
closed set F in G,. Then we see by Lemma 6 the property of G, does not

change so much by extracting F from G,,.N
a, B-thin set. Let F be a closed set in G, in Lemma 5 with deviation 2+/2e.
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If we can find a closed Jordan curve I in G,—F (and in G,—F) such that proj I’
separates |z]=e¢ * from |z|=e% length of I'<ae® and |i§(tt_>|<‘3€ for any
aNnalytic function f(#) in CN?,,——F with D(F(t))§—711—, we call F an a, B-thin set in
G,.
ExXAMPLE 2. Let

1>a,>a, -+ 10 and zlog Lant1 — oo, 3)

2n+2

Let J, be a slit: J,={arg z=n, 0,4, <|2| <0ypsi} 1 n=1,2,3,---. Let

log b, __ /
log bn "‘1 ’ (3 )

1>0,>b{>b,>b;, -+ |0, lim
S{tsns = 2] Sanea) NSO 121 S50} =0

Let _IF and [ are slits: n=1,2,3,--+, 1=1,2, -+, j(n) as follow :

dﬂ
Ii={arg =2 (n), b=zl Sbhe |

dy=1log b;:

. dp
+I,f={arg z=j2(%, bpe ® <|z| §bn}

where the number j(n) of slits _I; (or .[) is so large that we can obtain a ring
surface G, (from two leaves by identifying slits of the leaves) with deviation
¢, over {b,=|z|<b,}, where

. logec, ”
hnm logb =" 3

Let ¥ be a unit circle |z| <1 with slits X J,+ 2 (_Li+.I) and & be the same
leaf as & We identify 7.+ (Li+.I) of ¥ and § Then we have a

Riemann surface § with compact relative boundary 0% consisting of two com-
ponents over |z|=1 and has one ideal boundary component . The part of F
over {G,,.:<|z|<ay,:,} is a ring with two boundary components of module

—%—log 241 geparating p from 0%. Hence by (3) & is an end of another
n+2

Riemann surface €0, and P is of harmonic dimension 1. There exists only one
Martin point p on . Let v(p) be a neighbourhood. Then 0v(p) is compact.

PROPOSITION. Let F, be set of radial slits in § such that F,A2G,=0.

1) Let F, be a closed set in § such that F, is a, B-thin set in every GN,, and
v(p)—F, is connected.
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2) Let Uyz) be a harmonic function in F—F,—F, or §—F,=F, over
{0, <arg z<8,, b,<|z| <1} such that U,(z)=0 on |z|=1 and U,(2)=1 on |z|=b,

and U,(z) has M. D. I. (minimal Dirichlet integral). Then D(Un(z))>l%)—:
7>0 for any 0, and 9, and b, (if Fy=0, D(U,,(z))=~_T)—g0b+).

If F, is so thinly distributed in & that F, may satisfy condition 1) and 2),
v(p)—F,—F,€04pp.

Proof. Assume w=f(t): tev(p)—F;—F, is non const and D(f(t))<co and
fw(p)—F,—F,) is an L number of sheets over the w-plane. We can suppose
without loss of generality D( f(t))g%. By condition 2) there exists a Jordan
df(t)
dt

curve I, in G, such that l l< Bc, on I', and length of I',<ab,. Hence

we can find a subsequence {n’} of {n} such that f([',)—w, as n’—oco, By
choosing suitable v, (p)Cv(p) we can suppose 0v,(P)N\(F—F,—F,) has an arc 4
such that dist (f(2), w,)=d,>0, proja is contained in 4,4s,={0;<arg z<#6,} and
proj A is connecting ¢+t with e**"2, Let ;4 , be the part of F—F,—F, over
0,46, bounded by 2, Fy, F,, I';,, and two segments arg z=60, and 6,, where I, is
the part of I', lying over 444, Let U,(2) be a harmonic function in 4,
such that U,(z)=0 on 4, U,(2)=1 on [}, and U,(z) has M.D.I (has minimal
Dirichlet integral among all functions with the same value as U,.(z) on 2+17%).
Then by the Dirichlet principle and by condition 2)

DU 2Dz TG, @

where Uj.(z) is a harmonic function in §—F,—F, over {b,.<|z|<1, 6;,<arg z<0,}
such that U,.(z2)=0 on |z|=1, U,(2)=1 on |z|=b,, and U,.(z) has M.D.IL

Consider f(I',). Then by Ii’gﬂléﬁcn,, diameter of f(I',)=<2rb,c,afB. Since
diameter (w,+f(I",))—0 as n’—co, we can find a number 7, and a point p, :
n'Zng in f(Tw) such that |py—wol <-%: dy<1, {lw—pu| <dmbycyap)DfTw)
and {Iw—p,,:]>%}:)f(l) for n'=n,. Let Va.(w) be a continuous function in
the w-plane such that V,(w)=1 in |w—p, | <4xb,c,af, V,(w) is harmonic in
{4nbn,cn,a‘8<|w—pn:|<%} and =0 in lw—pn,lg%. Then fY(V,(w))=1 on

I, and =0 on A and
D(FH(Va(w)s—2E— ©)
log——2
08 “Izxbclap

1 . logec, . log b,
Clearly D(U,(2))=D(V,(f~(w))). By lim Tog b, —° lim o =1 we have by
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(4) and (5) a contradiction. Hence v(p)—F,—F,€0 pp.

LEMMA 7. Let T be a circular trapezoid with radial slits I} :1=1,2, -+, n—1
such that T={1<|z| <™ 0<argz<O}—2I}: I,f——-{argz:l—f—, M | z| LM
Map T onto a circular trapezoid T, with slits by {=f,(z) so that {0<argz<#,
|z|=1}—{0<arg z<d, ||=1}. {argz=0, 1§]z|§e”"+“}+{< n;l )0§argz§«9,

| z| =em+“}=/11—>{arg =0, 0| gem"}. Li—an arc on || :em;‘: 1=1,3, -, n—1.
A circular arc ],;:{—lggargz§%pi}—>a radial slit in T, connecting |{|=
e i=1,2,3,, n—2. {argz=0, 0<|z| <™} +{0<arg 2§%y |z| =e™*} =4,

—{arg £=0, 0=<|C|<e" ™}, where W, 15 a suitable const. Let n—oco. Then M,—M
and f,(z)—z. Let U,(z) be a harmonic function wmn T such that U,(z)=0 on
I, and D(U,(2)<1. Then

fu U2)d0<2M  for n=n,.
zl=1

Proof. Let w,(z) be a harmonic function in T—2X) I} such that ®,(2)=0 on
|z] =1, %—wn(z)zo on A,+4,+>J; w,(z)=1 on 3 I} Then

fn(z):eXp (Tn(wn(zn)'i_l@n(z))) ,

where y,=0 / fl l_laa—nw,,(z)ds and &,(z) is the conjugate of w,(2). Consider

w,(2) in {O<arg z<%, em | z| <e‘m+“}. Then w,(z)=1 on {arg z:—Z—, |zl <

e“’”“}, aa—na)n(z):o on {arg z=0, &< |z| <™}, By putting w,(8)=w,(2), w,(2)

can be continued harmonically into {—%<arg Z<—Z_’ e z| <e“"+°‘}, where 2

is the symmetric point of z with respect to 0=arg z. Hence by Lemma 2, for
any ¢>0, there exists a number 7, such that w,(z)>1—e¢ on |z|=¢e" in T for
n>n, Clearly for the same number w,(z)>1—e¢ on |[z|=¢®" in T. Hence we
have Lemma 7 similarly as Lemma 3.

In the following we investigate the behaviour of a ring (or a rectangle) as
its module M—0. Let 0<k<1. The upper half plane: Im z>0 is mapped onto
a rectangle {—K<Re (<K, 0<Im {<K'} by

(e dt
W(Z)—fo V(l_tz)(l_thZ)
so that —“Ile_’ —1,1, —}e——ﬁ—K-l—iK’, — K, K, K+1K' respectively, where K and K’

. s dt s dt
are given by K——fo VAP =) ,K—fo VI—B1—F)

D Rr=1- kR
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We denote the above rectangle in the »-plane by R(K, K, 7). Since we investigate

the case k is near to 1, we put 2=1—¢? and suppose k>—g—. Then the properties
of R(K, K’, ) depends mostly on e. We shall prove

LEMMA 8. 1) Put k=1—¢* (>—2—> Then K and K’ are given as follows

2 50 ~2 Vi—k
4 ‘°gVT‘+ V01— 98 Tty =K

—2 V1i=F
N ET R

=:/7—(—1—~_F2——k)7(10g o), 0<<p. ©)

- =K @)

A

T
24/1—¢*
2) Let w(y) be the H. M. of vertical sides of R(K, K', 7). Then

()= (5 +0).

3) On the behaviour of the mapping n(z). Let V(1)={lm z>0, |z—1]| <e}.
Then the wmage of V(1) falls in {|p—K| <L}, where

—log e+n+log 2+ +O(ss))

1
L= VEQ2—k)(2—2¢) \

and %——w<2—_17 as e—0 for any 6’—0. Hence there exists a const. &* such

that the inverse image of the subrectangle R(—Isg, K, 77) does not touch [V(1)+
JV(—1) for e<e*.

4) Map R(K, K, 77) by c:% onto a rectangle R(1,-%-¢). Then
R(%, K, 7;)—>R( é , ,C) Let U(L) be a harmonic function n R(l ,C)
such that |UQ)|=M on the vertical sides and U({)=0 on the hornizontal szdes.
Then

/ 470
lgrad U(Q)| <= MKCe 1n R(—L, %, 77) for e<e*: C:G—J/;i.
By noting Ke—0 as e—0, we see for any gwen y>0 there exists a const. &, such

that |grad UQ)| <y in R(%, %, C) for e<e,.
Proof of 1)



ANALYTIC FUNCTIONS 73

1 dt 1-5 dt
fo VA=) (1—F212) éfo VA=A —kt)

N 1 Jl dt
" NV@=0)(1+k—Fk0) Ji-s A—0D(1—Fk1) °

Now by (V%0 ++/1—k0+E)<1, we have

2 log (VO + VITRI—E)= |% log &/%5_ '

Hence

2 56 —2 Vi—k
<z =+ —
K= |1°g 6 | T Ve =ik 11 v

On the other hand,

1 dt 1 ! dt
K= =

fo VA-)A—F*) = V2(0+Fk) fo VA=1)(1—k?)

_ —2 V1=F
=V E 81

Put k=1—¢® Then

VITF
log T Uk

L &

=log ¢ —log (1+ V& )=log 5 g +0(Y) .

Hence we have (6). Clearly %éKlé_ZZ/_ffez_' Thus we have 1).

i
Z—
Proof of 2) Map the upper half z-plane by &=1 —le— to |£]<1. Then
Zt+—=
) VE
by the mapping n—2z—¢, 7]=—]—{2i—+z=72k?->§=0 and the vertical sides of

R(K, K’, ) are mapped onto arcs on |&|=1 with length =4tan 1—_1__—5—=
4
-7—1r-<52+~82—+ O(s“)). Hence we have 2).

. . z dt
— 6
Proof of 3) LetzeV.(1). Then z=1+re*’, r<e. Since fo V=P A—FD
does not depend on the integration path, we can suppose it is a straight eon-

necting 1 with 14+7¢®®. We estimate the integration. Let t=1-47¢*®. Then

VI+t=V2—r=+2—e and |V1+kt | ZV1+E—kr Z42—2¢ .

Now |(1—H(1—kt)|=r|(1—kre'®—k)|=r|1—k—Fkr| and |1—k—kr|=1—Fk—Fkr or

— — _ 2
=kr+k—1 according as r= lk k or rglk—k. Hence by izz—ki=—15_? we have
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j‘“w dr
x/rew(l—k——kre”)

= U A dr
j‘ '\/7’(1 k?’—'k) 5152 ‘/——7'('%7’_1""13)

2
— —2 _1[ 1—¢° —r}
BEE—at e B s
=%+ —%(log 71?—+ —%— log (1_6_82))

_.m | —loge

2
=+ ey (log 2+ 35— 3 1 0(6).
Thus

f 14reid dt - 1
0 VA=A —F%2) |~ V/(2—e)(2—2¢)k

5¢? N\ 7.
(—log e+7-+log 24 T5-+0(e)*)=L: r<e.
The same fact occurs for V.(—1). By (6) we have

limTIé—=C<—2—;15—, for any 0’>0 as ¢—0.
Hence we have 3).
Proof of 4). The mapping z—7—{ is denoted by C—f(z) where (::—7]—
Then by 3) there exists a const. &* such that R( 3K C) is mapped onto a

domain G in {Im z>0} such that G does not touch V. (1)-{—V5( 1) for s<e* In
the following we suppose s<e*<-i—. A harmonic function U({) in R(l =, C)
is transformed to U(z) such that U(z2)=0 on {Im z=0, —co<Re z<———}
{Im z=0, Ile __Rez<00} and |U()|£M on _I+.I, where _I—{Imz 0, —— 1
=<Re zél} and +I:{Im z=0, 1<Re ng}. Then
1
U(z)_——f U K(z, t)dt
T J_ 1441
where
1
K(z, l‘)z-zx—:%@— and ggad K(z, t)=m.

We estimate grad K(z,t) for te,l and z&G. Put t=1+¢’ and z=1+r¢*. Then
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by te.l, 1+e’§~i—= 1—152 and r>¢ for z&(G. Hence by e<s*<~%— and e<r we

have

e’§52<-2—<%—. 8)

2
By (8) (x—1)*+y*=r*—2r¢’ cos 0+6/2§_1’2—27’€/§—%—: te,l, zeG and

|grad K(z, )| <5 ©)
We have also
VITZ < (r4+2)f and VIFEE<(+2F;  te,l, zeG. (10)
se & T T
By 6<4 <4,e<16
ViThz=rAYS, te,l, z=G. (11)

For t=_I we have the same estimation for z€G. Hence by (9), (10), (11) we
have

Igrcad ul= %f_ grad K(z, t)l ‘ ldt

<M 2z ~V1—2% V/1—k%2° Kdt

= 2z I++Ir

o
2M(2+r) ¥19 2K

r

A

6 Y19 Me*K 6 Y19 MecK
T T

: r=1. Thus

Whence gr{ad v : r=1 and gr?d ups

lgrad U(Q)| <6 Y19 MeK.
Now by (6) Ke—0 as ¢—0. Hence for any y>0 there exists g,<¢* such that
7
lgrad U(Q)| <y in R(—%,—, %, §) for e<e,.

LEMMA 9. Let R be a rectangle {—0<Re (<6, 0<Im {<2MF}. Let YINLIY)
be a slit: 0<5<—%— as follow

gri={Re (=22 g, (3T Vmo<Im c<2m0},
i=1,2, -, n—1.
51 ={Re =22 0, 0<Im g=(-—3) M0}

We denote this rectangle with the slits by R(6,M0,0,n). Let R’ be a rectangle
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in R(6,96,0,n) such that —Y <Re=T, I <tm (= Then for any

given >0, there exist numbers M, n, d such that

Iglgad Ul <e wm R,

for any harmomic function U(L) in R(6,M6,0,n) such that (U1, UL)=0
on X (3Li+ 5L and D(UQ)=1.

Proof. At first we determine M. By 4) of lemma 8, for any ¢>0 there
exists a number M (this is equivalent to the existence of k=1—¢%) such that

|grad U(Q)| <e in R(—3- g ) mw) {— <Rec<i @ziq cs%‘ﬁ—} for any
harmonic function U({) in R(ﬁ Sm&) { 0 <Re(=40, 51]149 C<3§mo}

vanishing on the horizontal sides and |[U({)| <1 on vertical s1des. Fix 9 and
denote it by 9%, Secondly we determine 6. Let G({,p) be a Greens function

of R(ﬁ smg> Then there exists a const. M such that |grad 8 " —~—GUDIEM
for £=oR(6, 220 and pe R(-Z, BY_{— ¥ <rer< ¥, B <1 <Y

A rectangle with vertical slits is mapped by z=¢* onto a c1rcular trapezoid
with circular slits. Hence Lemma 1’ is applicable to a rectangle. Let R;=

{—0§Re (<6, 0<Im Cg—s‘%a—} with vertical slits {%/[i}. Let 0, be the number

and fix it, where

&’n?
do §W . 12)

Let U,({) be a harmonic function in R; such that D(U,({))<1 vanishing on

{57}}. Then by Lemma 7 lim D(Un(C))iaiLm;_gU(C)zdﬂ- Hence there exists
n 0 =
a number 71, such that

jI C_mUz(C)d0<250_8M26, for n=n,. (13)

Fix such n,. Then such numbers M,, d,, 7, are required numbers. Similar fact
occurs in -{—0<Re <o, 39320 ~S—=Im C<2§IJ119} Let U({) be a harmonic function
in R4, M0, 0, ny) satxsfymg the condition of Lemma 9. Put U,({)=

1 a . ’
o U556, Ods and UD)=| BU(t)%G(t, ¢)ds, where G(t,£) is a Green’s

function of R(ﬁ w) A and B are vertical and horizontal sides. Then |U({)|

<1lon A and =0 on B. HencelgradU(C)l<— in R 0 o

) By Schwarz’s
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inequality U,({) satisfies by (13) j le(C)|d0< 2M and |grad U,(0)| <—5- 2 in

R(-G, BN {—-f <Ret<3 B <m <Y Thus |grad UQ)I<e in

R( ‘9 Sﬁﬁ) for any harmonic function U({) in R(G, M0, d,, n,) satisfying the

condition of Lemma 9.
Strong surface with exception 0 and deviation e. Let R be the same leaf of
R(6, M0, 6y, ny) of Lemma 9. Identify {L:+%Ii} of R and R(8, I,0, 6o, no).

Then we have a surface B. As case of Lemma 5 I%f(t)’éZ«/Z—s: proj. te

g_ 9320‘9 in Lemma 9 for any analytic function f(f): tef with | f(t)|§—%—

and D(f(t))§%. Let [ be an integer and put 0:% and let M, J, 71, be num-
bers in Lemma 9 corresponding to 6. Let _I® and ,I* (i=1,2,3, - ,[n,) in

(e |w|Zae™ ; SJ"C‘):—ﬂ—?R—" such that

- . Do (L —5,)
I —{argw—n—o. al|w| ZLae ' },

3
I={argw="20 o™ <y <gem0)
Ny

Let R"={a<|w|<ae®™®’} =2 (_I'+,I") and let R be the same leaf as RY.

Identify {_/i4,I}. Then we have a surface B%. Let A8, ,)N\R" be the part

of R" over 0, <argw<@, Then A( 27]1“0, 2]00+2n00 )mRW is mapped con-
0

23060
formally onto R(8, M,, d,, 1,) in Lemma 9 by w=ae ¥ R0 where Jo is an integer.

Hence we have at once
a) Let j; and j, be integers such that 7,—7,=n,. Then since A

>A(4 30, 2]30+2"°0 ) for <12 <50,

_T)mﬁw over ae4 <lu)|<ea4‘m for and f(#) which is analytic in A(. 7111049 )

< 27,0 , 2]20>

20 27,0
Ny

tf(t)|<2«/—e in A( 25,0 4+

DN R with |1(0)] =5 and D(AD) S
b) Let =2 +20 Then |-/ (0]2vZe in AWG+3,0,~ONRY over
0
aet™ < |w| <ae'™ for any f() in A0y, 0)NR¥ for 0,—0,240 with |f()] <5

D(f) =

In fact, 0,—0,=45=20-+ 8”.

We can find 6,<6;<6;<0, such that 0<6,—6,
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20 o<g—p,<20
7y

e 2]16’ o= 2]20

IIA

and 6;= , where j, and j, are integers.

Now j,—J1=n,, hence by a) |Wf(t)|<2«/25 in A( 2,0 | 20 23‘9, 20 —%}mkw

No
over ae4 <le<ae4 e Now A(ZJ’ - 230, 27,6
T,

2110 +_230__31<__+_ and 6, (212 20)< 5 +——<5 and we have

—ﬁ):A(aﬂLa, 6,—3) by

b).
In general, let R be a ring surface consisting of two leaves obtained by

identifying radial slits over a<|w|ae™ If le(t)|<s over {ae4 <]w| <ae4 }
MNA(,+0, 8,— )R for any analytic function f(¢) in A(6,, ,)N\F with | A1) <-——

and D( f(t))____—zl——: 0,—0,>45, we call R a strong surface with exception ¢ and
deviation ¢. In fact the surface R" discussed above is a strong surface with
exception 23 —|— and deviation 24/2¢.

a, B-thin set. Let G be a strong surface with exception 0 and with deviation
e over a<|z|<ae®. Let F be a closed set in G. We say F is «a, B-thin set in
G, if F is so thinly distributed that there exists a Jordan curve I’ in G—F and
G—F such that 1) projI” separates |z|=a from |z|=ae®, 2) length of I'Zaa.

3) det—f(t)|<ﬁe on FﬂAg(ﬁ +0, 8,—0) for any analytic function f(#) in (é—F)

A"(Ol, 0,):0,—0,=40 with | ()| = <—1— and D(f(t)<—— 4 , where A"(@l, #,) means

the part of G over 0,Zarg z=0,.
EXAMPLE 3. Let U=|z|<1 and 1>a,>a, - | 0 and

2 log Z”“ =00, (14)

2n+2

Let J,={arg z=m, G5,4,=12| £a3,4,} be a slit and R(Gyp4z, Cont1)={02n+2= |Z|<
Qoniit. Let 1>01>0,>b>0,--- 10 G, be a ring b,<|z|<b;, with slits Z‘iljm)

such that we can construct a strong surface G, with exception 5:% with

deviation ¢,, where lim {25 £2-=c0, SR(b,, )N E R(@nss, Gansr) =0 and

. logb,
i 5~ @

o o jm) N
Let I be a unit circle wtih slits X3 /,+ Z_)l ZZ‘{ Iy and & be the same leaf as .

Identify J,+If of & and § Then we have a Riemann surface §. Evidently F
has one boundary component p. The part of & over R(Gyni1, Gonse) IS a ring
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with module =—%— log—g-z—m and separates 0% from p, hence ¥ is an end of
2n+2

another Riemann surface €0, and p is of harmonic dimension =1 and there
exists only one Martin point p over .
a) Let F, be a set of radial slits in F— ZG

b) Fszn is an a, B-thin set for n=1,2, -

c) Let A0y, 0,)={0,<arg z<8,}. Let A%(ﬁl, 8,, b})(or %) be the part of F
over A(0,,0,) bounded by |z|=1, |z|=b,, arg z=0, and arg z=0,. Let U,(2) be
a harmonic function n A0, 0,,b,)—F,—F, such that U,(2)=0 on |z|=1, =1
on |z|=b], and has M.D.I. Then

DU, (z))>L(T@7—l: >0, (16)

d) v(p)nA3,, 80, b)—F,—F, 1s connected for 6,>0,. If F, and F, satisfy
the above conditions, then the part of (v(p)—F,—F,) over A(0,,0,) 0455 for any
02>01.

Proof. Assume there exists a non const. analytic fuuction f(f) in the part
v(p)—F,—F, over A(f,0,). Then f({) is a finite number of sheets covering.
sup| f(#)] <co implies D(f(#))<oo. Hence we can suppose |f(t)| <—%—, D(f(t))g—l—

01 80,40, o _ 0,430,
. 4 ) 2 4 .

Let n, be the number such that 45,,0< Let 6=

Then 0,<0{<6:<6,. Let (v(p)—F1~F2)mA(6,02) be the part of v(p)—F,—F,
over A(6,6,). The existence of f(¢) in (v(p)—F,—F,)NA(0,,0,) implies there

exists a Jordan curve I, such that l%f(t)' <Beyon I, in (v(p)—F,—F,)NA(6;, 63)
and length of I',<ab,. Let ¥, be the part of FN(w(p)—F,—F,) over A6, 6)
bounded by 0v(p), F,, F,arg z=60], arg z=0} and I',. Let U,(z) be a harmonic
function in &, such that U,(z)=0 on dv(p), =1 on I',. Then as case of example
2 we have

1
DN o 5—fos—Tog &) -

On the other hand by condition c) D(U,,(z))>0< 0:— ) This is a contradiction

log ¢, _
log b,

—log b
=00, Hence we have the conclusion.

by lim

EXAMPLE 4. Let %<al<az,--- 11 with zlog—}%ﬂ—oo Let G, be a

2n+2

10)
ring {bn=<|z| <b,} with slits 3 [ such that
1=1
1) <bp<by <bpe1<bpii-+ 11 and {0, =|2| SN\ 2H{0on41 = 12] = onss}
=0.
2) G, is a strong surface with exception 5"=‘}f and deviation ¢, : lim ¢,=0.

1
3
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3) wy(z) éni, where w,(z) is a harmonic function in G, such that
121=N Dby’

jn)
0<w,(2)=1 on G, and =0 on J}"_, I, (this condition is easily satisfied by Lemma
1

8. 2) for sufficiently many slits). Let & be a unit circle with slits [u (n=1,
2,3, -, i=1,2,-+,j(n)). Let § be the same leaf as §. Identify Iy of & and &.
Then we have a Riemann surface & over |z| <1 with one boundary component
on |z|=1. The part of over G,(b,, b,) is an strong surface. At first we in-
vestigate the structure of the boundary. Then

1) & has no singular pownt relatwe to N-Martin and Martin topology.

2) There exsits only one point on €% relative to N-Martin topology.

Proof of 1) Let & be the part of § over 1>|z| >—é—. Then &’ has relative
boundary 9%F on |z|=—é—. We suppose N-Martin topology is defined on .

Let Anﬂ:{l—%g |z] <1, %_ﬁ_arg zéZ”—(ln_FQ: 1=0,1, -, n—l}. LetGbea

domain in § and let (G, t): teF be capacitary potential, i.e. @(G,?) is the
harmonic function in §’—G such that «(G, t)=0 on 93%’, =1 on G and has M. D. 1.

Let U(z) be a harmonic function in {%<Izl<1}—dn,z such that U(z)=1 on
Apy =0 on |z|= 1 and U(z) has M.D.I. Then

DUGE)< — log (diameter of 4,,,) 10 as n—oo.

T log%

Let U’(z) be a harmonic function in {%<Izl<1}—7§ I, such that U'(z)=1
on 4,, =0 on |z|=—§— and has M.D.I. Then D(U’(2))<D(U(z)) and —a%U’(z)=0
on 31,,. Put U()=U'(2) (z=proj?) in F’ —A:Z",z, where A§,l is the part of &’
over 4,,. Then U’(?) is harmonic in §'—4%,. Hence D(w(48,, ))<2D(U"(2)) | 0

as n—oo. This implies w(A‘?:,t, t)—0 as n—co, Assume there exists a singular
point p relative to N-Martin topology. Then w(p, {)=lim w(v,(p), {)>0. Where
m=oco

vn(p) is a neighbourhood of p relative to N-Martin topology. Let #, be a point
and let n, be a number such than

o, )<Yo, 1) for =12, m. a7)

Now g%w(diio,imvm(p), Hzw(n(p), ) Zw(p, ), where we suppose projvn,(p)C

(lz|>1—71—>. Since w(A?o,imvm(p), t)| as m—oo, there exists at least one
0

43,,., such that w(ﬁo,zmvm@), to)zniw(zx t,) for any m. Let m—oo, Then
0
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im &(4py,.\Vn(D), D=aw(p, 1) by NVr(P)NdneueCp. On the other hand,
lim @(dyg,0N\Vn(D), )>0 implies sup (lim &@(dyq,.0\Vm(D), t))=1 and a=1, whence

5 0(b, ) Z1im 0(dyuo\0a(D), t)=w(p, ) by (17). This is a contradiction.

Hence there exsits no singular point relative to N-Martin topology. Assume
there exists a singular point p relative to Martin topology. Then lim w(v,(p),t)
m

=w(p, £)>0, where v,(p) is a neighbourhood of p relative to Martin topology
and w(G, ) is H.M. of G i.e. is the least positive superharmonic function in ¥’

larger than 1 on G. Now w(d?o,w, t)gw(dgo,w, t). Hence we can prove similarly
as case of w(p, z) that there exists no singular point relative to Martin topology.

Proof of 2) To prove 2) we use following three facts.

a) Let t and f be points in & and & such that projt,=projf,=z. Let U(t)
be a harmonic function in & such that |U(t)| <M. Then |U®)—U®@F)|—0 as
|z|—1.

In fact, consider U(t)—U(f) over b,<|z|<b,. Then |U@)—U@#)|=2Mw,(2).
Hence by the maximum principle |U(#)—U(f)| <2MXmax (e, €n41) Over ~b,b;,
<|z| £ Vb,:bl+: and we have a).

b) Let U(f) be a harmonic function in & such that U(¢{) has M.D.I. among
all harmonic functions with the same value as U(z) on 0% over &. Let G be
a domain in §. Then sup IU(Z‘)|§§§£}IU(0|-

_ Because let {&,} be an exhaustion of § such that 8%, 20%’ for any n and
Fn 13, Let U,(¥) be a harmonic function in &, such that U,()=U(t) on 0%’

and %U,,(l‘)=0 on 0%,—0%F . Then U,t)—U(t). Clearly for U,(t), by the
maximum principle sup |U(D] = supl U(t)|. Hence we have b).

c¢) Let U(t) be a harmonic functlon in & with D(U(t))<oo Then there
exists a curve l",, n=1,2, - consmtmg of two components : r,=r +F,, in such
that I",c%¥, I.c¥, proﬂ" =proj I',, projl',n3I:=0, projl', separates

z=e" from lzl=%, proj I',—e* as n—oo and f?" |grad U(t)|dt—0 as n—co.
Proof. We suppose ¢??=1. Map U (unit circle with slits I}) by &é=log z in
the &-plane. Then z2=1—§=0, [}, —a horizontal slits ¢[%,. Let A,={O§_Im E<,
5
F<argé=T), dy={—I=Re£=0, L <arg =T}, 4={02Retz—1, <
arg E=T}, where [=1. Let p=g(&) be a one to one mapping from 4,+4,+4,

to {0=Iyl=l, -%éarg né%n—} such that

(r=Im €, @=arg €) in 4,, (r=—Re &, 0=argé) in 4,
and (r=—Im¢, f=argé) in 4,, where re?=7=g(¢).
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We see by computation 7=g(£) is a quasiconformal mapping with maximal
dilation quotient :Kgﬁ"zﬁ. Let RA(ayne, Ganse)= Ay (—10g gneg <Im E<

—10g Gsns1)} + 4o N {10g Qspiy = Re £ 108 onis} + s N {108 Qonip =1m & Z 108 Aonig}-
Then g(&) maps R4(Gyn+1, Gonss) ONto a semiring R7(agpi1, Gonse)={—108 dpny =

[ 9] =—log Gzp4s, —g—éarg 77§—3£}. We remark ¢I%, contained in (4,+4,)N

R4(ayp41, Qynis)— a circular slit 5%, in R7(ayp41, Ganee) and there is no slit in
Ay \RH(dyps1, Gonss). Hence R™(Aspir, Gsnss) has only circular slits. Let R4(ayp4y
Gyni2) be the same leaf as R4(dynyy, Gonys). ldentify eIl of R4(Gyp4q, G2nye) and
R4(a,,.1, Gsys). Then we have a surface R4ayp4y, a3nss). We construct a surface
B7(y41, Gsnss) from R?(Gsniq, Gones) similarly. Then 7=g(&) continued to a
quasiconformal mapping from B4ay.e, Qonss) to R7(ay,41, G3nss) with the same
maximal dilatation quotient except on X If. Consider the function U@ :tef.
z=projt. Then U(yp)=U(exp (g (%)) is not harmonic in ,R(dsn+1, Ganss) but a
Dirichlet bounded function and

SDUG)  SSKDUE) = KDU®)<e.
" R(@sns1y Qonss) R(ayn41, Qons2) T’

24 (re)|d0, where C.={I71=r} is contained in

Put np=re** and L(r) fcr

30 R(a5n41, Gones) and composed of two components, C(¥) does not intersect I
except a set of » of measure zero. By Schwarz’s inequality

[, B ar==pwi <oo,

" 2R (Asn i1, Qanas)

log @sn44 ) ~
log @y

2log %1—:00, we see there exists a sequence {7,} such that C,, does not
n 2n+2

touch {[}} and L(r,)—0 as n—oo, LetI',=g *(C,,). Then clearly projI",—z=1.
Hence I', is a required curve.

Let U(t) be a harmonic function in ¥ such that U(¢) has M.D.L among all
harmonic functions with the same value as U() on 8F’. Then by a), b) and c)
U(f) has a limit as projf—z=1. Hence there exists only one N-Martin point
over ¢, Let p be the N-Martin point over ¢, Then since there exists only

one point p over €%, dist (¢*%, projdv,(p))>0 for any v,,(p):{t: Martin distance

where 4, is an interval ={—I10g Csn4s, —10g Aynyi}. By Z‘,log(

(t, )<L} Let F, be a set of radial slits in the part of F over X R(dy,

Qyn42). Now the part of %: over b,<|z|<b, is an strong surface with d,, ¢,.
Let F, be a closed set in & such that F, is an «, 8-thin set in the part of &
over R(b,, bn) (n=1,2,--) and 2) DU(2))>r(0,—0,): r>0 where U(z) is a

harmonic function in %’m(—%—< |z] <1, §,<arg z<t92)-F1——F2 such that U(z)=0
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on ]z|=—§—, U(z)=1 on |z|=1 and U(z) has M.D.I. Then we have as ex-

ample 3 following

PROPOSITION.

(1]

(Wa(P)—F,—F,)€0,5F .
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