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QUANTIC MANIFOLDS WITH PARA-COKAHLERIAN
STRUCTURES

By RADU Rosca

Following J. M. Souriau [1] a quantic manifold (Q, @) is a Hausdorff manifold
having a Pfaffian structure defined by dN&=9 where 2 is a pre-symplectic form
with dim (ker £)=1. The present paper is concerned with a class of quantic
manifolds such that Q=K xh where K is a para-Kdhlerian manifold and 4 is a
time-like vector. Such manifolds are called by the author quantic manifolds with
para-coKahlerian structure and are denoted by @,. Some properties of the self-
orthogonal Grassman manifolds over @, are studied and a simple result regarding
minimal immersions in @, is stated. Next is investigated the behaviour of a
tangential concurrent vector field (in the sense of K. Yano and B.Y. Chen [2])
of immersed para-Kéihlerian manifolds in Q,. In the last section the notion of
“minimal harmonic inclusion” for an isotropic (or total null) submanifold is
defined, and is applied to Planck submanifolds of Q,.

1. Preliminaries.

Let (M, ) be a potential symplectic manifold M (of dimension 2n), i.e. such
that

1) Q=dhw, wcd'(M).

If M is a Hausdorff manifold, then M is quantificable [1] and the quantic mani-
fold derived from M is defined as the direct product Q=M XT. By a definition
of J.M. Souriau [1] a Hausdorff manifold M, is a general quantic manifold if
the following conditions are fulfilled :

(i) The existence on M of a differentiable field of 1-forms p—a (F=M),
which gives to M a Pfaffian structure defined by dA@=2; dim (Ker 2)=1;

(i) dim (ker (@)Nker(£2))=0.

In consequence of the above definitions, one may state that

(i) M is pre-symplectic;

(ii)) M is a foliated manifold ;

(iiiy M is a fiber space whose basis is a symplectic manifold (M, 2) and

dim M=dim M—dim ker (2).

Now suppose that M is a para-Kdahlerian manifold [3] (denoted by K) and let
T,(K) be the tangent space to K at pe K. As is known [4] with a real basis
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of T,(K) is injectively associated a Witt basis (W basis). One has the following
decomposition of Witt

@ THo(K)=5,DS)

where S, and S}, are two self-orthogonal vectorial subspaces [5] of the same
dimension 7. The pair (S,, Sp) defines an involutive automorphism U satisfying
UP=+1[3]. If h,eS, and hp<S, (=1, ,n; a’=a+n) are isotropic (real)
vectors of the W basis, one has Uh,=hy, Uhgy="h,.

Remark. T,(K) may be also considered as the orthogonal sum of the n
hyperbolic 2-planes P,=(h,, h,) [6], that is

Tp(K)=P,1Py1 = LP,.

2. Quantic manifolds Q,.

Assume that the pSeudo-Riemannian metric of the manifold Q=KXT is of
index n+41. Denote by h=h,,,, the time-like vector tangent to 7. Then a
unitary frame (or normed) {p, h ; A=1,2,-,2n, 2n+1} at p=Q is defined by

Chay hg) =048,  <h,R)=1,
Chy he>=0=Ch, Ay .
The line element dp of Q is
4 dp=0*®h4

where {64} is the dual basis of {h}.
From (3) and (4) the metric of @ in terms of 4 is expressed by the quad-
ratic para-coHermitian [7] form

5 ds*=23,0%"4(6)* .

©)

The para-Hermitian component of ds® that is 23,6%0% is exchangeable with the
2-form of rank 2n

(6) D=3.0°NG" .
The manifold @ is structured by the connection
) V ha=05Qhs

where §5=[8,0° are the connection forms on the principal frame bundle 8(Q)=
U{p, h4} and from (3) one finds easily

®) f5 -+68 =0.
@®) OPH+05.,=0,  OH=0.
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K and & being a para-Kdhlerian manifold and a time-like vector respectively,
we shall call the quantic manifold defined by

9 RQ=KXxh

a quantic manifold with para-coKdhlerian structure (denoted by Q).
By reasoning similar to that for coKdhlarian manifolds [8] and from (8), we
deduce

(10) dng=0,
(1D Vh=0= 63"=0=0%,

and if M is the connection matrix on $(Q,) one has

0 0 0
(12) aM=|0 4 0
0o 0 4y

In the following we shall call » and 6 the canonical field and the canonical
covector of Q,, respectively (h may be also called the anisotropic vector [6] cor-
responding to the splitting T5(Q,)=SPS5Ph of the tangent space T5(Q ) at pQ ).
Let @ be the 1-form which defines the quantic structure of @, and o its induced
value on K.

Since w is semi-basic with respect to the Pfaffian structure of @, we may
write

(13) o=w+0.

The connection 7 being torsionless (since a para-coKdhlerian structure is inte-
grable) by virtue of (12) the structure equations of @, are

(14 dNG¥=6F NOF,
and _
dNG§ =02% +05N 6
(147 _ -
AN =08 +o5 NGE

where 2%, 2% are the curvature 2-forms.

3. Self-orthonormal Grassman manifolds G*(T3(Q,)) over Q,.

Consider the simple unitary form o (resp. o’) of the self-orthogonal n-plane
spanned by %, (resp. hq). Accordingly one has
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(15) G=G'N - NG".
15 F=G"N\ - NGV
and by (14) we get

(16) ANG=—T NG,
(16" dNG' =7 NG’

where 7=3,0%; 2,02+, 6%=0.

It follows from (16) and (16’) that the two self-orthogonal subspaces S; and
Sp define on Q, a G-structure of type G=GL(n; R)XGL(n; R) [9], and con-
sequently an (n,n) foliation on Q, Hence we may say that & (resp.é’) defines
a Grassman manifold G*(T%(Q4) (resp. G’ (T%(Q4)) of dimension 7 over the dual
space T%(Q:). We shall call ¢ and ' the self-orthogonal Grassmann manifolds
over @, and ¢ the trace 1-form associated with the W-basis {Ag, fs}.

Remark. If =0, the connection 7 is proper spin-euclidean [10] (z=0, defines
the one modular linear group on Sj).

Since
(17) NG NGI=4(1)
is the volume element of Q,, we readily find
(18) e VN
and by means of (16) and (16") we get
(19) dA(40)=0=06=0=> 40=(dd+0d)§=0.
But by virtue of the property «x( )=—( ) of the star operator, we have also
(20) A(x6)=0.

Thus we may say that the simple unit 2n-form 46 satisfies the general Maxwell
equations in vacuum.
Moreover one finds

21) AN G=T N\ 4G,
219 AN 46’ =—T Ny’

and this shows that both #n-forms é and ¢’ wchich are visibly orthogonal (3, 5)=0)
are co-completely integrable.
Putting

(217) =10+ 10"
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one finds from (21) and (21°)
(22) 05 =(—1)" ' Do (= D)* UGl A <o AGEA - ™,
(22") 05" =(—1)* D (— )T U A oo AGTA e G

(the roof indicates the missing term).
Making now use of G. de Rham formula [11] for ¢ and ¢/, that is

ANGENA(ANG)—6' N (dNG)+ 06N 56’ — 06’ N\ x5)
=46 N6’ — 46’ N\ 46=0= 46 N6— 45’ N6=0
one finds with the help of (16), (16”), (22) and (22/)
45=0& 45'=0.
We may state the preceding results as follows:

THEOREM. Let Q, be a quantic monifold with para-coKdhlerian structure
and let h be the canonical field of Q, and &, 6’ the simple unitary forms of the
self-orthogonal sub-spaces Sz, S5, respectwely. Then

(i) & (resp. &') defines a Grassman manifold of dimension n;

(ii) h is an infinitesimal automorphism of the G-structure defined by the
volume element of Q, (in other words h 1s divergence-free) and the adjoint, 0
of the canonical covector § satisfies Maxwell general equations wn vacuum;

(iii) & and @ are co-completely integrable and 46=0 & 45’ =0.

4. Minimal immersion in Q,.

Consider first the immersion x: K—@Q, where K is a para-Kihlerian manifold
of dimension 2¢. If 1=1,---,¢q; i’=1+n are the tangential indices associated with

x and dp, 6%, 6" 0f and 0% the restrictions on K of dp, 6% 6%, 6§ and 6§ re-
spectively, we may write

(23) dp=0'Qh,+0"Dh;. .

Let T;-;(-[%):{hr: h.} be the normal space to K at p (r=q+ - n; r'=r+n
are the normal indices corresponding to the isotropic normal vectors associated
with x). From (23) we find that the adjoint of the line element dp is

(24) dp=(=1 0 A o AGINOVNA - NOUN - NOY
F+(=DT TGN - AGEA o AGIAGUA - NOY
(25) AN xdp=Hy(1); «(1) volume element of K

where HeT, (K) represents as is known the mean curvature vector associated
with x. From (7) and (14) one finds by straight forward calculation
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dNxdp=0=> H=0,

Remark. This result is analogous to the well known property of Kédhlerian
subspaces of a Kéhlerian space.

Next consider the immersion x: Cj—»on where @ is a para-coKdhlerian
manifold of dimension 2¢+1. In this case the line element dp of Q is

(26) dp=0"Qh,+6" Qhy+0Rh
and one finds
#dp=(Z(=1)"2h0' A - NOINOVNA -« NOUN -« NOY
F(=DY RO - AGEA o NGIANOY N o NOTING
FhO'A o ANGINGUN - NOY .
Taking account of (10) and (11) one readly gets

dAxdp=0=H=0,
and so we have the

THEOREM. Any immersion of a para-Kdhlerian or a para-coKdhlerian mani-
fold in Q, ts minimal.

5. Concurrent tangential vector fields over a para-Kahlerian submanifold

of Q.
Let x: I?—>Qk be the immersion considered at section 4, and let
(27 X=t'h,+t"h,

be a tangential vector field over K. Following K. Xano and B.Y. Chen [2], X
is concurrent if we have

(28) dp+V X=0.
By (7), (23) and (27) we get from (28)

29) AP+ +100=0, 1, )=1,,q, P'=itn; ji=j+n.
(30) AtV 0% +17'0%, =0,

(31) POr=0; r=q+1,-,n, r=rin,

(32) 1o =

and by exterior differentiation one finds that the necessary and sufficient con-
ditions for the above system to be closed are
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(33) det (£¢)=0,  det(£2%)=0,

(34) 27 =0, 121 =0,

Further, since the second fundamental forms associated with x are
(35) ©r =—<{dp, Vh,>=07 6%,

(36) Pr=—Ldp, V hyy=07 6"

the Lispchitz-Killing curvatures K(p, h,), K(p, h,) associated with x are defined
by

@37 K(p, hy)=det (¢r),
38 K(p, hr)=det (1) .
Thus one gets from (31) and (32)

K(p, h)=0=K(p, h) .

THEOREM. Let x: }?—%Qk be the vmmersion of a para-Kdhlerian manifold n

a quantic manifold with para-coKdhlerian structure. If K admits a concurrent
tangential field then all Lipschitz-Killing curvatures associated with x vanish

Now consider the invariant (2¢—1)-form
(39) O= (=" KX, hyDO* N woo NGA o AOINGYN - NOT
+ 30 (DX, BYON oo AGINOYNA -+ ANGEA - NOY

which is"an integral relation of invariance for X, that is

(40) X10=0.

By (14) and (27) we have

(41) dAO=—2q4(1)

and since

(42) X 1,(1)=06

we obtain

(43) Ly «(1)=—2qx(1)

Ly Lie differentiation with respect to the vector field X
(49 LyO®=—2¢6.

Thus (43) and (44) show that X is a homothetic infinitesimal transformation over
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Q. and a conformal infinitesimal transformation of the G-structure defined on

K by O, respectively.
Further, the dual form a« of X being

(45) a=X "+, 10" ;  i'=i+n
one finds by means of (29), (30)
(46) a=d 3, t'= 4 d(X, X> .

Calling « the concurent tangential covector associated with x, (46) shows that «
is a coboundary

Now let .Q be the restriction of 2 on K and let & be the dual form of X
with respect to 9. That is the isomorphism

%) it ANK) —> ANEK), 2 —> X10=a
Since

48) 0=3,6'AO"

one finds

(49) a=3, 10" — 3, 1" 6"

and by (29) and (30)

(50) dna=—qQ.

Consequently we deduce

(51) Ly@=—q@

and this shows that X is a conformal znﬁmteszmal transformation of the sym-
plectic structure S,(q, R) deﬁned by o} on K (K is not compact). On the other
hand if we denote by Xa:——.Q Ya) the Hamiltonian field corresponding to a (by
virtue of (46) on may say that —%—(X, X> is the energy wntegral of X,) it is
readly seen that

(52) Xa:tuhi/—'tlhl

and one finds

(53) Ly «(1)=0.

Hence X, is an infinitesimal automorphism of the G-structure defined by the

volume element of I%
Fro the above we have the
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THEOREM. Let K be an 2q-dimensional para-Kdhlerian submanifold of a

quantic manifold with para-coKdhlerian structure. If K admits a concurrent
tangential vector field X, and a 1s the dual form of X, (or the concurrent tan-
gential covector) then

(i) X is a homothetic infinitesumal transformation over K.

(u) X is a conformal infinitesimal transformatzon of the G-structure defined

on K by a. and of the induced symplectic structure Q on K
(ili) « is a coboundary and its associated Hamiltoman field with respect to

2 is an wnfinitesimal automorphism of the G-structure defined by the volume
element of K.

6. Planck manifolds.

Being given a quantic manifold @ any (horizontal) submanifold of @, defined
by @=0 (w=0) is called a Planck manifold (denoted by ). Since the reciprocal
image of dA® is also zero, it follows that any Planck manifold has an isotropic
metric structure [1] (or is total null). In consequence of the splitting THQ )=
S@EBS},@h, the index [6] of T5(Q,) is n (that is the maximal isotropic subspace
of THQ) is of dimension 7). Let then @ be a Planck manifold of dimension
g=<n and T,(®) and T;(2P) the tangent space and the normal space at pe<P
respectively. If g=n one has T,(P)=T5; (L) and in this case we shall call @ a
self orthogonal Planck manifold (or of maximal dimension). If ¢<»n one has
Ty(P)CT3 (L) and 2 is called an isotropic Planck manifold.

For later convenience, in stating some results, the following definition will
be made.

Definition. Let x&M—M be the inclusion of an isotropic manifold M in a
pseudo-Riemannian manifold M and let dp be the line element of M. We say
that x is a mummal harmonic inclusion if dA«dp=0= 4p=0, holds.

Suppose now that T,(®)SS,, and denote by A, (1,j=1,2,---q) and A, (r=
g+1---n) the normal tangential isotropic vector and the normal transveral iso-
tropic vector, respectively, associated with the inclusion x:P—Q,.

Since
(54 dp=0'Qh,
the adjoint xdp is expressed by
(55) #p=(—1)'hu @ A -+ NO'N - NOT.

Thus if g=n we deduce
(56) AN xdp=—7N\dD

where 7=>,6! is the trace l-form associated with x.
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In case g<n we shall introduce the following quadratic forms associated
with x

G or=—LUdp, V h,>

where U is the parahermitian operator defined at section 1. By straight forward
calculation one finds

(58) dAxdp=—1 Asdp—{Z, (trace p) iy} (1)

where »’=r+n and (1) is the volume element of 2.
Calling ¢, the para-Hermitian quadratic forms associated with the inclusion
x:P—Q,, we formulate the

THEOREM. Let x: P—Q, be the inclusion of a Plack manifold & in a quantic
manifold Q, with para-coKdhlerian structure and let T and ¢, be the trace 1-form
and the para-Hermitian quadratic forms associated with x, respectively. Then

(i) If @ is self-orthogonal, the necessary and sufficient condition that P be
minimal harmonic is that t vanishes;

(i) If @ isisotropic, the necessary and sufficient conditions that P be minimal
harmonic is that both v and trace (¢,) vanish.

Remark. From (16) and we deduce if 2 is self-orthogonal, then the above
results may be expressed as follows:

The necessary and sufficient condition that @ be minimal harmonic is that
the associated Grassman manifold o be harmonic.

That is 4p=0& 4o=0; ¢ is the restriction of ¢ on £. This property is in
some regards related to the theory of harmonic simple forms constructed by
Tachibana [12].
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