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ON CONFORMAL RIGIDITY OF A RIEMANN SURFACE
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BY TAKAO KATO

1. A Riemann surface is said to be conformally rigid if the preservation of
a certain condition attached to the Riemann surface implies that an analytic
self-mapping is an automorphism. The notion of the homotopical or the homo-
/ogical (conformal) rigidity was treated by Huber [2], Landau and Osserman [4],
Marden, Richards and Rodin [5] and Jenkins and Suita [3]. Jenkins and Suita
have made clear the relationship between these two types of rigidity.

In this paper we shall give a criterion for a Riemann surface to be homo-
topically rigid. Furthermore, we shall introduce the notion of the weakly homo-
logical rigidity in a similar manner and shall treat the relationship among these
three types of rigidity.

2. A Riemann surface W is said to be homotopically (resp. homologically or
weakly homologically) rigid if every analytic self-mapping of W, which preserves
the homotopical (resp. homological or weakly homological) non-triviality, reduces
to an automorphism of W. Let & denote the class of Riemann surfaces every
non-constant analytic self-mapping of which reduces to a univalent mapping.
Then we have

THEOREM 1. // W is of 0HDr\&, then it is homotopically rigid. OHDr\^>
cannot be replaced with <§>.

Heins [1] proved

THEOREM A. Every Riemann surface of class OG and having the non-abelian
fundamental group is of class €>.

Therefore, we have

THEOREM 2. // W is of class OG and has the non-abelian fundamental group,
then it is homotopically rigid.

Next we shall show a criterion to be weakly homologically rigid. That is

THEOREM 3. // W is of positive finite genus but not a torus, then it is weakly
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homologically rigid.

Finally, we shall treat the relationship among three types of conformal
rigidity. Jenkins and Suita [3] showed

THEOREM B. // a Riemann surface is homotopically rigid, it is homologically
rigid. There is a Riemann surface which is homologically rigid but not homo-
topically rigid.

We shall show

THEOREM 4. There is a Riemann surface which is homotopically rigid but
not weakly homologically rigid. Furthermore, there is a Riemann surface which is
weakly homologically rigid but not homologically rigid.

3. To prove Theorem 1 we shall prepare a result related to an analytic
mapping between two algebroid surfaces. Ozawa [7] introduced another sort of
rigidity with respect to an analytic mapping between two algebroid surfaces.
Let R and 5 be two ultrahyperelliptic surfaces defined by the equations y2= G(z)
and uz—g(w), respectively, where G and g are two entire functions having no
zero other than an infinite number of simple zeros. Let tyR and $s be the pro-
jection mappings (z, y)-*z and (w, u)-^w, respectively. Let / be an analytic map-
ping from R into 5. Then we say that / is rigid in the sense of projection
mapping Oβ-rigid) if / satisfies $so/(i)=$s°/0?) for every pair of p and q, so
that φRp

Let

Suppose that each zero of Gl lies in the unit disk and that

Let W be a subregion of R, so that φR(W) is the whole >ε-ρlane and $R(R— W)
lies in the left half plane Re^<0. Then we have

THEOREM 5. // there exists an analytic mapping from W into S, then it is
$ -rigid.

To prove this theorem we need the following

LEMMA (cf. Ozawa [7]). There is no solution of an equation of the follow-
ing form

^o(A1(jc)+ AaW VG^Γ))=(L1W+L2W VG^))2

for any two entire functions Lί and L2 in the unit disk, where h(x)=

h1(x)+h2(x)VG1(x) is an algebroid entire function in the unit disk satisfying
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K— T(r, K)hm - ̂ — f — —oo .

Proof. We note that Nevanlinna-Selberg's second fundamental theorem and

the ramification relation remain true in the unit disk if lim T(r, Λ)/log(l/(l—r))
= 00 holds (Nevanlinna [6], Selberg [8], Valiron [9]). Then we can prove this
lemma by the same method of Ozawa's.

4. Proof of Theorem 5. Let / be an analytic mapping from W into S.
Let W be a subregion of W which lies over Re^>0. If we restrict / to W,
again by Ozawa's method we obtain the same schema as in his paper. Let

f\W

Then we have a functional equation

in the unit disk, where h(x)=h!(x)+h2(x) VG^x).
Suppose hz^0. From Valiron [9] we have

N(r, 0, Gύ^lT(r, h) .

This contradicts Lemma. Therefore, h(x) is single valued.
Since, f\ W is Sβ-rigid on W ', we can conclude that / is ^-rigid on W by

the analytic continuation.

This yields immediately

COROLLARY. Let W
is univalent. i.e.

as in Theorem 5. Every analytic self-mapping of W

Proof. H(z) in the proof of Theorem 5 can be extended to an entire func-
tion in the whole z-plane. Hence, every analytic self-mapping of W can be ex-
tended to a self-mapping of R in the unique way. It is known that R is of JUG.
Then by Theorem A we have

5. Proof of Theorem 1. Let W^OHDf^o. Suppose that /is a non-constant
analytic self-mapping of W which preserves the homotopical non-triviality. Since
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f is univalent. Hence f(W), the image of W under /, is of class OHD.
Therefore, W—f(W) is a totally disconnected subset of W. Suppose that there
is a point p^W—f(W). We take a small topological disk Δ in W centred at p,
so that 3J, the boundary of J, lies in f(W) completely. Since the inverse image
of Δc\f(W} does not simply connected, the outer boundary γ of it is not null
homotop in W. But f(γ)=dd is null homotop. This contradicts the homotopical
condition of /. Therefore, / is an automorphism of W.υ

6. (continued) To show the latter half we shall construct an example.
Let E! be the whole ^-plane less the slits {x+mi; 2n—l^x^2n} (n=l, 2, 3, •••

and m=0, ±1, ±2, •-). Let E2 be the E, less the disks { |z+l—mi|<l/3} (m=
— 1, —2, —3, •••) and the points {z=mi} (m=0, 1, 2, •••). We construct the desired
Riemann surface W by joining El to E2 along their corresponding slits in the
standard manner.

Then there is a diffining entire function G which satisfies the hypothesis of
Theorem 5. Hence, by Corollary to Theorem 5, W is of class <δ.

On the other hand, let / be an analytic self-mapping of W, such that
z-*z+i. Then / preserves the weakly homological non-triviality but is not an
automorphism.

7. Proof of Theorem 3. Let / be an analytic self-mapping of W. Suppose
that / is not an automorphism. Then fn tends to a point on W or an ideal
boundary component of W uniformly on every compact subset of W (Heins [1]).
Since every boundary component of W is planar, / can not preserve weakly
homological non-triviality of non-dividing cycle. Hence, W is weakly homologically
rigid.

8. Proof of Theorem 4. To prove this theorem we shall show two examples.
One of those is a Riemann surface which is homotopically rigid but not

weakly homologically rigid.
Let W be the Riemann surface defined by the equation y2—cosπx less the

points over *=0, 1, 2, •••. Then it is of class 0G. Hence, it is homotopically rigid
by Theorem 2. If we consider a mapping x-*x+l, it is evident that W is not
weakly homologically rigid.

For an example which is weakly homologically rigid but not homologically
rigid, it is sufficient to show an open Rieman surface of finite positive genus
which is not homologically rigid. Such a surface was given by Jenkins and Suita
[3, p. 47]. The reader will consult with their paper.

1) The author expresses his thanks to Mr. M. Sakai who has informed him a proto-
type of this part of the proof.
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