ON HYPERSURFACES WITH NORMAL
 $\left(f, g, u_{(k)}, \alpha_{(k)}\right)$-STRUCTURE IN AN EVEN-DIMENSIONAL SPHERE

By U-Hang Ki and Hyun Bae Suh

§ 0. Introduction.

Yano and Okumura [8] have studied hypersurfaces of a manifold with (f, g, u, v, λ)-structure. These submanifolds admit an ($\left.f, g, u_{(k)}, \alpha_{(k)}\right)$-structure, that is, a set of a tensor field f of type (1,1), a Riemannian metric g, three 1 forms u, v and w and functions α, β and λ satisfying certain algebraic conditions [4]. In particular, a hypersurface of an even-dimensional sphere carries an ($f, g, u_{(k)}, \alpha_{(k)}$)-structure (see also [4]).

The submanifolds of codimension 2 in an almost contact metric manifold also admit the same kind of structure (see [5]).

Let M be an m-dimensional differentiable manifold with ($\left.f, g, u_{(k)}, \alpha_{(k)}\right)$ structure. We define on $M \times R^{3}, R^{3}$ being a 3 -dimensional Euclidean space, a tensor field F of type $(1,1)$ with local components $F_{B}{ }^{A}$ given by

$$
\left(F_{B}^{A}\right)=\left[\begin{array}{cccc}
f_{0}^{h} & u^{h} & v^{h} & w^{h} \tag{0.1}\\
-u_{j} & 0 & -\lambda & \beta \\
-v_{j} & \lambda & 0 & \alpha \\
-w_{j} & -\beta & -\alpha & 0
\end{array}\right]
$$

in $\left\{N \times R^{3} ; x^{4}\right\},\left\{N ; x^{h}\right\}$ being a coordinate neighborhood of M and $x^{\overline{1}}, x^{\overline{2}}, x^{\overline{3}}$ being cartesian coordinates in R^{3}, where $f_{\rho}{ }^{h}, u_{0}, v_{\rho}$ and w_{ρ} are respectively local components of f, u, v and $w, u^{h}=u_{\imath} g^{2 h}, v^{h}=v_{\imath} g^{\imath h}$ and $w^{h}=w_{\imath} g^{i h}$ in $\left\{N ; x^{h}\right\}$, and, where $g^{i h}$ are entries of the inverse matrix of the matrix ($g_{i n}$) whose entries are components of a Riemannian metric on M. (The indices A, B, C, \cdots run over the range $\{1,2, \cdots, m+3\}$ and h, \imath, j, \cdots run over the range $\{1,2, \cdots, m\}$.) We denote $m+1, m+2$ and $m+3$ respectively by $\overline{1}, \overline{2}$ and $\overline{3}$.

Denoting $\partial / \partial x^{A}$ by ∂_{A}, the Nijenhuis tensor [$\left.F, F\right]$ of F has local components

$$
S_{C B}^{A}=F_{C}{ }^{E} \partial_{E} F_{B}^{A}-F_{B}{ }^{E} \partial_{E} F_{C}^{A}-\left(\partial_{C} F_{B}{ }^{E}-\partial_{B} F_{C}{ }^{E}\right) F_{E}^{A}
$$

in $M \times R^{3}$. Thus, denoting ∇, by the operator of covariant differentiation with respect to the Christoffel symbols $\left\{\begin{array}{l}h \\ j i\end{array}\right\}$ formed with $g_{j i}$ of M and using (0.1), we can write down local components of the tensor $S_{C B}{ }^{A}$ as follows;

$$
\begin{align*}
S_{j i}{ }^{h}= & f_{j}^{t} \nabla_{t} f_{2}{ }^{h}-f_{\imath}{ }^{t} \nabla_{t} f_{j}^{h}-\left(\nabla_{\jmath} f_{\imath}{ }^{t}-\nabla_{\imath} f_{j}\right) f_{t}^{h} \tag{0.2}\\
& +\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right) u^{h}+\left(\nabla_{j} v_{2}-\nabla_{i} v_{\jmath}\right) v^{h} \\
& +\left(\nabla_{j} w_{\imath}-\nabla_{i} w_{j}\right) w^{h}, \\
S_{j i}{ }^{\overline{ }}= & -f_{j}^{t} \nabla_{t} w_{2}+f_{\imath}{ }^{2} \nabla_{t} w_{\jmath}+w_{t}\left(\nabla_{\jmath} f_{2}{ }^{t}-\nabla_{\imath} f_{j}^{t}\right) \\
& -\beta\left(\nabla_{j} u_{\imath}-\nabla_{i} u_{j}\right)-\alpha\left(\nabla_{j} v_{\imath}-\nabla_{i} v_{j}\right),
\end{align*}
$$

etc.
Specially, if $S_{j i}{ }^{h}=0$, then we say that the $\left(f, g, u_{(k)}, \alpha_{(k)}\right)$-structure is normal [4].

In the previous paper [4], Pak and the present authors proved the following theorem :

Theorem A. Let M be a complete and connected hypersurface of an evendimensional sphere $S^{2 n}$. If the induced ($\left.f, g, u_{(k)}, \alpha_{(k)}\right)$-structure is normal, $S_{j i}{ }^{\overline{3}}=0$, the vectors u^{h}, v^{h} and w^{h} (or associated 1 -forms u_{\imath}, v_{\imath} and w_{\imath}) are linearly independent and the functoon λ is almost everywhere non-zero on M, then M is congruent to $S^{2 n-1}$ or $S^{p} \times S^{2 n-1-p}(p=1,2, \cdots, 2 n-2)$ naturally embedded in $S^{2 n}$.

The main purpose of the present paper is to neglect the condition $S_{j i}{ }^{\frac{}{3}}=0$ as an extension of Theorem A.

In $\S 1$, we recall the definition of ($\left.f, g, u_{(k)}, \alpha_{(k)}\right)$-structure and give structure equations on M.

In $\S 2$, we study hypersurfaces with normal $\left(f, g, u_{(k)}, \alpha_{(k)}\right)$-structure in an even-dimensional sphere $S^{2 n}$ by using the following theorem proved by Ishihara and Ki one of the present authors [3]:

THEOREM B. Let (M, g) be a complete and connected hypersurface immersed in a sphere $S^{m+1}(1)$ with induced metric $g_{j i}$ and assume that there is in (M, g) an almost product structure $P_{2}{ }^{h}$ of rank p such that $\nabla_{j} P_{2}{ }^{h}=0$. If the second fundamental tensor $h_{j i}$ of the hypersurface (M, g) has the form $h_{j i}=a P_{j i}+b Q_{j i}$, a and b being mutually different non-zero constants, where $P_{j i}=P_{j}{ }^{t} g_{t i}$ and $Q_{j i}=g_{j i}-P_{j i}$, and if $m-1 \geqq p \geqq 1$, then the hypersurface (M, g) is congruent to $S^{p}\left(r_{1}\right) \times S^{m-p}\left(r_{2}\right)$ naturally embedded in $S^{m+1}(1)$, where $1 / r_{1}{ }^{2}=1+a^{2}$ and $1 / r_{2}{ }^{2}=1+b^{2}$.

§ 1. Hypersurfaces of an even-dimensional sphere.

Let E be a $(2 n+1)$-dimensional Euclidean space and X the position vector starting from the origin of E and ending at a point of E. The E being odddimensional, it can be regared as a manifold with cosymplectic structure, that is,
an aggregation (F, ξ, η, G) of a tensor field F of type (1,1), a vector field ξ, a 1 -form η and a Riemannian metric G satisfying

$$
\begin{gather*}
F^{2}=-I+\eta \otimes \xi \\
F \xi=0, \quad \eta \circ F=0, \quad \eta(\xi)=1 \tag{1.1}\\
G(F Y, F Z)=G(Y, Z)-\eta(Y) \eta(Z) \\
G(\xi, Y)=\eta(Y)
\end{gather*}
$$

for arbitrary vector fields Y and Z and

$$
\begin{equation*}
\tilde{\nabla} F=0, \quad \tilde{\nabla} \xi=0, \tag{1.2}
\end{equation*}
$$

where I denotes the unit tensor and $\tilde{\nabla}$ the Riemannian connection of E.
Let $S^{2 n}$ be a $2 n$-dimensional sphere which is covered by a system of coordinate neighborhoods $\left\{U ; y^{b}\right\}$, where here and in this section the indices a, b, c, \cdots run over the range $\{1,2, \cdots, 2 n\}$, then $S^{2 n}$ is naturally immersed in E as a hypersurface by $X: S^{2 n} \rightarrow E$.

We put $X_{b}=\partial_{b} X \quad\left(\partial_{b}=\partial / \partial y^{b}\right)$, then X_{b} are $2 n$ linearly independent local vector fields tangent to $X\left(S^{2 n}\right)$ and $g_{c b}=X_{c} \cdot X_{b}$ is the Riemannian metric induced on $S^{2 n}$ from that of E, the dot denoting the inner product of vectors of $X\left(S^{2 n}\right)$. In the sequel, $X\left(S^{2 n}\right)$ is identified with $S^{2 n}$ itself.

We choose $-X$ as a unit normal C to $S^{2 n}$ in such a way that $X_{1}, X_{2}, \cdots, X_{2 n}$, C give the positive orientation of E.

The transforms $F X_{b}$ and $F C$ of X_{b} and C respectively by F, and the vector field ξ can be expressed as

$$
\begin{gather*}
F X_{b}=f_{b}^{e} X_{e}+v_{b} C \\
F C=-v^{e} X_{e} \tag{1.3}\\
\xi=u^{e} X_{e}-\lambda C
\end{gather*}
$$

where $f_{b}{ }^{e}$ is a tensor field of type (1,1), v_{b} is of 1 -form, $v^{e}=v_{a} g^{a e}, u^{e}$ is a vector field and λ is a function, all globally defined on $S^{2 n}$.

Transvecting each of (1.3) with F respectively and using (1.1) and (1.3) itself, we find

$$
\begin{gather*}
f_{e}^{b} f_{c}^{e}=-\delta_{c}^{b}+u_{c} u^{b}+v_{c} v^{b}, \\
g_{e a} f_{c}^{e} f_{b}^{a}=g_{c b}-u_{c} u_{b}-v_{c} v_{b}, \tag{1.4}\\
f_{e}^{b} u^{e}=-\lambda v^{b}, \quad f_{e}^{b} v^{e}=\lambda u^{b}, \\
u_{e} u^{e}=v_{e} v^{e}=1-\lambda^{2}, \quad u_{e} v^{e}=0, \quad u_{e}=u^{a} g_{a e},
\end{gather*}
$$

that is, $S^{2 n}$ admits an (f, g, u, v, λ)-structure (cf. [9]).
We denote ∇_{c} by the operator of covariant differentiation with respect to the

Christoffel symbols $\left\{\begin{array}{c}a \\ c\end{array}\right\}$ formed with $g_{c b}$. Then equation of Gauss and Weingarten are

$$
\begin{equation*}
\nabla_{c} X_{b}=g_{c b} C, \quad \nabla_{c} C=-X_{c} \tag{1.5}
\end{equation*}
$$

because the second fundamental tensor with respect to unit normal C is equal to $g_{c b}$.

Differentiating each equation of (1.3) covariantly and using (1.2), (1.3) and (1.5), we have

$$
\begin{gather*}
\nabla_{c} f_{b}^{e}=-g_{c b} v^{e}+\delta_{c}^{e} v_{b} \\
\nabla_{c} u_{b}=-\lambda g_{c b}, \quad \nabla_{c} v_{b}=f_{c b} \tag{1.6}\\
\nabla_{c} \lambda=u_{c}
\end{gather*}
$$

We now compute

$$
\begin{equation*}
S_{c b}{ }^{a}=[f, f]_{c b}^{a}+\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right) u^{a}+\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right) v^{a}, \tag{1.7}
\end{equation*}
$$

where $[f, f]_{c o}{ }^{a}$ is the Nijenhuis tensor formed with $f_{b}{ }^{a}$.
Substituting (1.6) into (1.7), we get $S_{c b}{ }^{a}=0$, which means that the (f, g, u, v, λ)structure is normal.

Hence, $S^{2 n}$ admits a normal (f, g, u, v, λ)-structure.
Consider a $(2 n-1)$-dimensional manifold M covered by a system of coordinate neighborhoods $\left\{V ; x^{h}\right\}$, where here and in the sequel the indices h, \imath, j, k, \cdots run over the range $\{1,2, \cdots, 2 n-1\}$, and assume that M is differentiably immersed in $S^{2 n}$ by the immersion $i: M \rightarrow S^{2 n}$ which is expressed locally by $y^{b}=y^{b}\left(x^{h}\right)$.

We put $B_{h}{ }^{b}=\partial_{h} y^{b}\left(\partial_{h}=\partial / \partial x^{h}\right)$. We assume that we can choose a unit vector N^{b} of $S^{2 n}$ normal to M in such a way that $2 n$ vectors $B_{h}{ }^{b}, N^{b}$ give the positive orientation of $S^{2 n}$. The transforms $f_{e}{ }^{b} B_{j}{ }^{e}$ and $f_{e}{ }^{b} N^{e}$ of $B_{j}{ }^{e}$ and N^{e} respectively by f_{e}^{b} can be written in the forms

$$
\begin{equation*}
f_{e}^{b} B_{j}^{e}=f_{j}{ }^{2} B_{\imath}{ }^{b}+w_{\jmath} N^{b}, \quad f_{e}^{b} N^{e}=-w^{2} B_{i}{ }^{b} \tag{1.8}
\end{equation*}
$$

where $f_{j}{ }^{2}$ is a tensor field of type (1, 1), w_{j} is of 1 -form and $w^{2}=w_{t} g^{t \imath}, g_{j i}$ being the Riemannian metric on M induced from that of $S^{2 n}$, and the vectors u^{b}, v^{b} can be expressed as

$$
\begin{equation*}
u^{b}=u^{2} B_{\imath}{ }^{b}+\beta N^{b}, \quad v^{b}=v^{2} B_{\imath}{ }^{b}+\alpha N^{b}, \tag{1.9}
\end{equation*}
$$

where u^{2}, v^{2} are vectors and α, β are functions on M.
Applying $f_{b}{ }^{a}$ to (1.8) and (1.9) respectively and taking account of (1.4), (1.8) and (1.9), we can find

$$
\begin{gathered}
f_{j}^{t} f_{t}{ }^{2}=-\delta_{j}^{i}+u_{j} u^{2}+v_{j} v^{2}+w_{\jmath} w^{2}, \\
g_{t s} f_{j}^{t} f_{2}^{s}=g_{j i}-u_{j} u_{i}-v_{j} v_{i}-w_{j} w_{2}, \\
f_{t}{ }^{2} u^{t}=-\lambda v^{2}+\beta w^{2}, \quad f_{t}{ }^{2} v^{t}=\lambda u^{2}+\alpha w^{2},
\end{gathered}
$$

$$
\begin{gather*}
f_{t}^{2} w^{t}=-\beta u^{2}-\alpha v^{2}, \tag{1.10}\\
u_{t} u^{t}=1-\beta^{2}-\lambda^{2}, \quad v_{t} v^{t}=1-\alpha^{2}-\lambda^{2}, \\
w_{t} w^{t}=1-\alpha^{2}-\beta^{2}, \\
u_{t} v^{t}=-\alpha \beta, \quad u_{t} w^{t}=-\alpha \lambda, \quad v_{t} w^{t}=\beta \lambda,
\end{gather*}
$$

where $u_{i}=u^{t} g_{t \imath}$ and $v_{i}=v^{t} g_{t \imath}$, that is, M admits an ($\left.f, g, u_{(k)}, \alpha_{(k)}\right)$-structure ([1], [4], [8]).

If we put $f_{j i}=f_{j}{ }^{t} g_{t \imath}$, we can easily verify that $f_{j i}$ is skew-symmetric because of (1.10).

Denoting $V_{\text {, by the operator of covariant differentiation with respect to the }}$ Christoffel symbols $\left\{\begin{array}{l}h \\ j\end{array}\right\}$ formed with $g_{j i}$, equations of Gauss and Weingarten of M are

$$
\begin{equation*}
\nabla_{j} B_{\imath}{ }^{a}=h_{j i} N^{a}, \quad \nabla_{j} N^{a}=-h_{j}{ }^{\imath} B_{\imath}{ }^{a}, \tag{1.11}
\end{equation*}
$$

where $h_{j i}$ is the second fundamental tensor and $h_{\jmath}{ }^{2}$ is defined by $h_{\jmath}{ }^{2}=h_{j t} g^{t 2}$.
Differentiating (1.8) and (1.9) covariantly along M respectively and making use of (1.6), (1.8), (1.9) and (1.11), we have

$$
\begin{align*}
& \nabla_{k} f_{j}=-g_{k j} v^{2}+\delta_{k}^{i} v_{\jmath}-h_{k j} w^{2}+h_{k}{ }^{2} w_{\jmath}, \tag{1.12}\\
& \left\{\begin{array}{l}
\nabla_{k} u_{j}=-\lambda g_{k \jmath}+\beta h_{k \jmath}, \quad \nabla_{k} v_{j}=\alpha h_{k \jmath}+f_{k j}, \\
\nabla_{k} w_{j}=-\alpha g_{k j}-h_{k t} f_{j}^{t},
\end{array}\right. \tag{1.13}\\
& \nabla_{k} \alpha=-h_{k t} v^{t}+w_{k}, \quad \nabla_{k} \beta=-h_{k t} u^{t} . \tag{1.14}
\end{align*}
$$

Transvecting the last equation of (1.6) with $B_{k}{ }^{c}$ and using (1.9), we obtain

$$
\begin{equation*}
\nabla_{k} \lambda=u_{k} . \tag{1.15}
\end{equation*}
$$

Since an even-dimensional sphere $S^{2 n}$ is a space of constant curvature, the Codazzi equation of M is given by

$$
\begin{equation*}
\nabla_{k} h_{j i}-\nabla_{j} h_{k i}=0 . \tag{1.16}
\end{equation*}
$$

Substituting (1.12) and (1.13) into (0.2), we get

$$
\begin{equation*}
S_{j i}{ }^{h}=\left(f_{\jmath}{ }^{t} h_{t}{ }^{h}-h_{\jmath}{ }^{t} f_{t}{ }^{h}\right) w_{i}-\left(f_{\imath}{ }^{t} h_{t}{ }^{h}-h_{\imath}{ }^{t} f_{t}{ }^{h}\right) w_{\jmath} \tag{1.17}
\end{equation*}
$$

We prove the following two propositions.
Proposition 1.1. In a manıfold with $\left(f, g, u_{(k)}, \alpha_{(k)}\right)$-structure, the vectors u^{h}, v^{h} and w^{h} (or associated 1-forms u_{\imath}, v_{\imath} and w_{\imath}) are linearly independednt if and only if $1-\alpha^{2}-\beta^{2}-\lambda^{2} \neq 0$.

Moreover, if vectors u^{h}, v^{h} and w^{h} (or assocrated 1-forms u_{2}, v_{\imath} and w_{\imath}) are linearly dependent, then $h_{j i}=(\lambda / \beta) g_{j i}$ in M.

Proof. See [4].
Proposition 1.2. Let M be a hypersurface of a $2 n$-dimensional sphere $S^{2 n}$. Then the necessary and sufficient condition that the induced ($\left.f, g, u_{(k)}, \alpha_{(k)}\right)$-structure on M is normal is

$$
f_{\jmath}{ }^{t} h_{t}{ }^{n}-h_{\jmath}{ }^{t} f_{t}{ }^{h}=0,
$$

which is equivalent to

$$
\begin{equation*}
h_{j t} f_{2}^{t}+h_{i t} f_{j}^{t}=0 \tag{1.18}
\end{equation*}
$$

Proof. From (1.17) the sufficiency is trivial.
Assume that $\left(f, g, u_{(k)}, \alpha_{(k)}\right)$-structure is normal, that is, $S_{j i}{ }^{h}=0$. Putting $T_{\jmath}{ }^{h}=f_{\jmath}{ }^{t} h_{t}{ }^{h}-h_{\jmath}{ }^{t} f_{t}{ }^{h}$, (1.17) becomes

$$
\begin{equation*}
T_{j}{ }^{h} w_{i}-T_{\imath}{ }^{h} w_{j}=0, \tag{1.19}
\end{equation*}
$$

from which, contracting with respect to h and i,

$$
\begin{equation*}
T_{\jmath}{ }^{t} w_{t}=0 \tag{1.20}
\end{equation*}
$$

by virtue of the symmetry of $T_{2}{ }^{h}$.
Transvecting (1.19) with w^{2} and using (1.20), we find

$$
\left(1-\alpha^{2}-\beta^{2}\right) T_{\jmath}^{h}=0 .
$$

On $N_{0}=\left\{P \in M: T_{0}{ }^{h}(P) \neq 0\right\}$ we have $1-\alpha^{2}-\beta^{2}=0$, from which, $w_{j}=0$, it follows that $\beta u_{j}+\alpha v_{j}=0$ on N_{0} by the definition of $w_{t} f_{j}$. Since the last equation means that u, and v, are linearly dependent, we get $1-\alpha^{2}-\beta^{2}-\lambda^{2}=0$ and consequently $h_{j i}=(\lambda / \beta) g_{j i}$ on this set by virtue of Proposition 1.1. Thus we find $h_{j i}=0$, which implies $T_{\rho}{ }^{h}=0$ on N_{0}, that is, $T_{0}{ }^{h}=0$ on the whole space M. Therefore the necessity is also proved.

§ 2. Hypersurfaces with normal $\left(f, g, u_{(k)}, \alpha_{(k)}\right)$-structure.

In this section, we assume that the $\left(f, g, u_{(k)}, \alpha_{(k)}\right)$-structure induced in a hypersurface M of an even-dimensional sphere $S^{2 n}$ is normal, the vectors u^{h}, v^{h} and w^{h} (or associated 1 -forms u_{\imath}, v_{\imath} and w_{\imath}) are linearly independent and functions. β, λ are almost everywhere non-zero on M.

Now, transvecting (1.18) with $v^{j} v^{2}, w^{j} w^{2}, u^{j} v^{2}$ and $u^{j} w^{2}$ respectively, and using the definition of ($f, g, u_{(k)}, \alpha_{(k)}$)-structure, we have

$$
\begin{align*}
& \lambda h(u, v)=-\alpha h(v, w), \tag{2.1}\\
& \beta h(u, w)=-\alpha h(v, w), \tag{2.2}
\end{align*}
$$

$$
\begin{equation*}
\lambda h(u, u)+\alpha h(u, w)-\lambda h(v, v)+\beta h(v, w)=0 \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
-\beta h(u, u)-\alpha h(u, v)-\lambda h(v, w)+\beta h(w, w)=0 \tag{2.4}
\end{equation*}
$$

$h(u, v), h(v, w), \cdots$ and $h(w, w)$ being denoted by respectively $h(u, v)=h_{t s} u^{t} v^{s}, h(v, w)$ $=h_{t s} t^{t} w^{s}, \cdots$ and $h(w, w)=h_{t s} w^{t} w^{s}$.

Multiplying (2.4) by λ and substituting (2.1) into the equation obtained, we get

$$
\begin{equation*}
\beta \lambda h(u, u)=\left(\alpha^{2}-\lambda^{2}\right) h(v, w)+\beta \lambda h(w, w), \tag{2.5}
\end{equation*}
$$

from which, combining (2.2) and (2.3),

$$
\begin{equation*}
\beta \lambda h(v, v)=\left(\beta^{2}-\lambda^{2}\right) h(v, w)+\beta \lambda h(w, w) . \tag{2.6}
\end{equation*}
$$

Lemma 2.1. Let M be a hypersurface of an even-dimensional sphere $S^{2 n}$. If the induced ($\left.f, g, u_{(k)}, \alpha_{(k)}\right)$-structure on M is normal, the vectors u^{h}, v^{h} and w^{h} (or associated 1 -forms u_{\imath}, v_{\imath} and w_{\imath}) are linearly independent and functions β and λ are almost everywhere non-zero on M, then

$$
\begin{align*}
& h_{\jmath t} u^{t}=\left(\alpha^{2} x+y\right) u_{j}-\alpha \beta x v_{\jmath}-\alpha \lambda x w_{\jmath}, \tag{2.7}\\
& h_{j t} v^{t}=-\alpha \beta x u_{\jmath}+\left(\beta^{2} x+y\right) v_{\jmath}+\beta \lambda x w_{\jmath}, \tag{2.8}\\
& h_{j t} w^{t}=-\alpha \lambda x u_{\jmath}+\beta \lambda x v_{\jmath}+\left(\lambda^{2} x+y\right) w_{\jmath}, \tag{2.9}
\end{align*}
$$

x and y being given by respectively

$$
\begin{gather*}
D \beta \lambda x=\left(1-\alpha^{2}-\beta^{2}\right) h(v, w)-\beta \lambda h(w, w), \tag{2.10}\\
D \beta \lambda y=-\lambda^{2} h(v, w)+\beta \lambda h(w, w)
\end{gather*}
$$

and $D=1-\alpha^{2}-\beta^{2}-\lambda^{2}$.
Proof. Transvecting (1.18) with $f_{k}{ }^{2}$, we obtain

$$
h_{j t}\left(-\delta_{k}^{t}+u_{k} u^{t}+v_{k} v^{t}+w_{k} w^{t}\right)+h_{i t} f_{k}^{\imath} f_{j}^{t}=0,
$$

from which, taking skew-symmetric parts,

$$
\begin{equation*}
\left(h_{j t} u^{t}\right) u_{k}+\left(h_{j t} v^{t}\right) v_{k}+\left(h_{j t} w^{t}\right) w_{k}=\left(h_{k t} u^{t}\right) u_{\jmath}+\left(h_{k t} v^{t}\right) v_{\jmath}+\left(h_{k t} w^{t}\right) w_{\jmath} . \tag{2.11}
\end{equation*}
$$

Transvecting (2.11) with u^{k}, v^{k} and w^{k} respectively, and using (1.10), we have

$$
\begin{align*}
& \left(1-\beta^{2}-\lambda^{2}\right) h_{j t} u^{t}-\alpha \beta h_{j t} v^{t}-\alpha \lambda h_{j t} w^{t}=h(u, u) u_{\jmath}+h(u, v) v_{\jmath}+h(u, w) w_{\jmath} \tag{2.12}\\
& -\alpha \beta h_{j t} u^{t}+\left(1-\alpha^{2}-\lambda^{2}\right) h_{j t} v^{t}+\beta \lambda h_{j t} w^{t}=h(u, v) u_{\jmath}+h(v, v) v_{\jmath}+h(v, w) w_{\jmath} \tag{2.13}\\
& -\alpha \lambda h_{j t} u^{t}+\beta \lambda h_{j t} v^{t}+\left(1-\dot{\alpha}^{2}-\beta^{2}\right) h_{j t} w^{t}=h(u, w) u_{\jmath}+h(v, w) v_{j}+h(w, w) w_{\jmath} \tag{2.14}
\end{align*}
$$

from which, computing coefficient determinant with respect to $h_{j t} t^{t}, h_{j t} v^{t}, h_{j t} w^{t}$,

$$
\left|\begin{array}{ccc}
1-\beta^{2}-\lambda^{2} & -\alpha \beta & -\alpha \lambda \\
-\alpha \beta & 1-\alpha^{2}-\lambda^{2} & \beta \lambda \\
-\alpha \lambda & \beta \lambda & 1-\alpha^{2}-\beta^{2}
\end{array}\right|=D^{2}
$$

Since u^{h}, v^{h} and w^{h} are linearly independent, D is not zero by virtue of Proposition 1.1.

Therefore, we find from (2.12), (2.13) and (2.14)

$$
\begin{aligned}
h_{\jmath t} u^{t}= & \frac{1}{D}\left\{\left(1-\alpha^{2}\right) h(u, u)+\alpha \beta h(u, v)+\alpha \lambda h(u, w)\right\} u_{\jmath} \\
& +\frac{1}{D}\left\{\left(1-\alpha^{2}\right) h(u, v)+\alpha \beta h(v, v)+\alpha \lambda h(v, w)\right\} v_{\jmath} \\
& +\frac{1}{D}\left\{\left(1-\alpha^{2}\right) h(u, w)+\alpha \beta h(v, w)+\alpha \lambda h(w, w)\right\} w_{\jmath}
\end{aligned}
$$

from which, multiplying by $\beta \lambda$ and substituting (2.1), (2.2), (2.5) and (2.6),

$$
\begin{aligned}
\beta \lambda h_{j t} u^{t}= & \frac{1}{D}\left[\alpha^{2}\left\{\left(1-\alpha^{2}-\beta^{2}\right) h(v, w)-\beta \lambda h(w, w)\right\}-\lambda^{2} h(v, w)+\beta \lambda h(w, w)\right] u_{\jmath} \\
& -\frac{1}{D} \alpha \beta\left\{\left(1-\alpha^{2}-\beta^{2}\right) h(v, w)-\beta \lambda h(w, w)\right\} v_{\jmath} \\
& -\frac{1}{D} \alpha \lambda\left\{\left(1-\alpha^{2}-\beta^{2}\right) h(v, w)-\beta \lambda h(w, w)\right\} w_{\jmath}
\end{aligned}
$$

which implies (2.7) because of (2.10).
In the same way, we can verify (2.8) and (2.9).
LEMMA 2.2. Under the same assumptions as those stated in Lemma 2.1, we have

$$
\begin{equation*}
h_{j t} h_{\imath}^{t}=\left\{(1-D) x+y-\frac{\beta}{\lambda}\right\} h_{\jmath \imath}+\frac{\beta}{\lambda}\{(1-D) x+y\} g_{j i} \tag{2.15}
\end{equation*}
$$

Proof. Differentiating (1.18) covariantly and using (1.12), we find

$$
\begin{align*}
\left(\nabla_{k} h_{j t}\right) f_{\imath}^{t}+\left(\nabla_{k} h_{i t}\right) f_{\jmath}^{t}= & -\left(h_{k t} h_{\jmath}^{t}\right) w_{i}-\left(h_{k t} h_{\imath}^{t}\right) w_{\jmath} \tag{2.16}\\
& +h_{k j}\left(h_{i t} w^{t}-v_{\imath}\right)+h_{k i}\left(h_{j t} w^{t}-v_{\jmath}\right) \\
& +g_{k j}\left(h_{i t} v^{t}\right)+g_{k i}\left(h_{j t} v^{t}\right)
\end{align*}
$$

from which, taking the skew-symmetric part with respect to k and j

$$
\begin{align*}
\left(\nabla_{k} h_{i t}\right) f_{\jmath}^{t}-\left(\nabla_{j} h_{i t}\right) f_{k}^{t}= & -\left(h_{k t} h_{\imath}^{t}\right) w_{\jmath}+\left(h_{j t} h_{\imath}^{t}\right) w_{k} \tag{2.17}\\
& +h_{k \imath}\left(h_{j t} w^{t}-v_{\jmath}\right)-h_{j i}\left(h_{k t} w^{t}-v_{k}\right) \\
& +g_{k \imath}\left(h_{\jmath t} v^{t}\right)-g_{\jmath i}\left(h_{k t} v^{t}\right)
\end{align*}
$$

and again skew-symmetric parts with respect to k and i,

$$
\begin{align*}
\left(\nabla_{k} h_{j t}\right) f_{\imath}^{t}-\left(\nabla_{i} h_{j t}\right) f_{k}^{t}= & -\left(h_{k t} h_{\jmath}^{t}\right) w_{\imath}+\left(h_{i t} h_{\jmath}^{t}\right) w_{k} \tag{2.18}\\
& +h_{k j}\left(h_{\imath t} w^{t}-v_{\imath}\right)-h_{\imath j}\left(h_{k t} w^{t}-v_{k}\right) \\
& +g_{k j}\left(h_{\imath t} v^{t}\right)-g_{\imath j}\left(h_{k t} v^{t}\right)
\end{align*}
$$

because of (1.16).
Calculating (2.16)-(2.17)-(2.18) and using (1.16), we obtain

$$
\left(\nabla_{j} h_{i t}\right) f_{k}^{t}=-\left(h_{j t} h_{\imath}^{t}\right) w_{k}+h_{i i}\left(h_{k t} w^{t}-v_{k}\right)+g_{j i}\left(h_{k t} v^{t}\right),
$$

from which, substituting (2.8) and (2.9),

$$
\begin{align*}
\left(\nabla_{j} h_{i t}\right) f_{k}^{t}= & -\left(h_{j t} h_{\imath}^{t}\right) w_{k} \tag{2.19}\\
& +h_{j i}\left\{-\alpha \lambda x u_{k}+(\beta \lambda x-1) v_{k}+\left(\lambda^{2} x+y\right) w_{k}\right\} \\
& +g_{j i}\left\{-\alpha \beta x u_{k}+\left(\beta^{2} x+y\right) v_{k}+\beta \lambda x w_{k}\right\} .
\end{align*}
$$

Transvecting (2.19) with u^{k}, v^{k} and w^{k} respectively, and making use of (1.10), we have

$$
\begin{align*}
\left(-\lambda v^{t}+\beta w^{t}\right) \nabla_{j} h_{i t} & =\alpha \lambda h_{j t} h_{\imath}{ }^{t}-\alpha\{\lambda(x+y)-\beta\} h_{j i}-\alpha \beta(x+y) g_{j i}, \tag{2.20}\\
\left(\lambda u^{t}+\alpha w^{t}\right) \nabla_{j} h_{\imath t}= & -\beta \lambda h_{j t} h_{\imath}{ }^{t}+\left\{\beta \lambda(x+y)-\left(1-\alpha^{2}-\lambda^{2}\right)\right\} h_{j i} \tag{2.21}\\
& +\left\{\beta^{2} x+\left(1-\alpha^{2}-\lambda^{2}\right) y\right\} g_{j i}
\end{align*}
$$

and

$$
\begin{align*}
\left(-\beta u^{t}-\alpha v^{t}\right) \nabla_{j} h_{i t}= & -\left(1-\alpha^{2}-\beta^{2}\right) h_{j t} h_{2}{ }^{t} \tag{2.22}\\
& +\left\{\lambda^{2} x+\left(1-\alpha^{2}-\beta^{2}\right) y-\beta \lambda\right\} h_{j i}+\beta \lambda(x+y) g_{j i} .
\end{align*}
$$

Multiplying (2.20) and (2.21) by α and $-\beta$ respectively, and adding two equations obtained, we get

$$
\begin{align*}
\lambda\left(-\alpha v^{t}-\beta u^{t}\right) \nabla_{j} h_{i t}= & \lambda\left(\alpha^{2}+\beta^{2}\right) h_{j t} h_{\imath}{ }^{t} \tag{2.23}\\
& +\left\{-\lambda\left(\alpha^{2}+\beta^{2}\right)(x+y)+\beta\left(1-\lambda^{2}\right)\right\} h_{\jmath 2} \\
& -\beta\left\{\left(\alpha^{2}+\beta^{2}\right) x+\left(1-\lambda^{2}\right) y\right\} g_{j i} .
\end{align*}
$$

Comparing with (2.22) and (2.23), we easily see that

$$
\lambda h_{j t} h_{\imath}{ }^{t}-[\lambda\{(1-D) x+y\}-\beta] h_{j i}-\beta\{(1-D) x+y\} g_{j i}=0,
$$

which verifies the lemma.
Lemma 2.3. Under the same assumptions as those stated in Lemma 2.1, $x=0$ and $h_{j i}=y g_{j i}$ are equivalent on M.

Proof. Let $x=0$. Then (2.7), (2.8) and (2.9) become respectively

$$
\begin{equation*}
h_{i t} u^{t}=y u_{j}, \quad h_{j t} v^{t}=y v_{j}, \quad h_{j t} w^{t}=y w_{j} . \tag{2.24}
\end{equation*}
$$

Differentiating the second equation of (2.24) covariantly and using (1.13), we have

$$
\left(\nabla_{k} h_{j t}\right) v^{t}+h_{j t}\left(\alpha h_{k}^{t}+f_{k}^{t}\right)=\left(\nabla_{k} y\right) v_{\jmath}+y\left(\alpha h_{k j}+f_{k \jmath}\right),
$$

from which, taking skew-symmetric parts and using (1.16) and (1.18),

$$
\begin{equation*}
2 h_{j t} f_{k}^{t}=\left(\nabla_{k} y\right) v_{j}-\left(\nabla_{j} y\right) v_{k}+2 y f_{k j} . \tag{2.25}
\end{equation*}
$$

Transvecting (2.25) with w^{j} and using (2.24), we find $\beta \lambda \nabla_{k} y=\left(w^{t} \nabla_{t} y\right) v_{k}$. So (2.25) can be written as the form

$$
\begin{equation*}
h_{\jmath t} f_{k}^{t}=y f_{k j} . \tag{2.26}
\end{equation*}
$$

Transvecting (2.26) with $f_{\imath}{ }^{k}$ and using (1.10), we get

$$
h_{j t}\left(-\delta_{i}^{t}+u_{i} u^{t}+v_{i} v^{t}+w_{i} w^{t}\right)=y\left(-g_{j i}+u_{j} u_{\imath}+v_{j} v_{\imath}+w_{\jmath} w_{\imath}\right),
$$

or, using (2.24), $h_{j i}=y g_{j ı}$.
Conversely, if $h_{j i}=y g_{j v}$, then $h_{j t} v^{t}=y v_{j}$. From this and (2.8), we find

$$
x\left(-\alpha \beta u_{\jmath}+\beta^{2} v_{\jmath}+\beta \lambda w_{\jmath}\right)=0,
$$

which suggests $x=0$ because $u_{1}, v_{,}$and $w_{\text {, }}$ are linearly independent, and β is almost everywhere non-zero. Therefore Lemma 2.3 is proved.

Lemma 2.4. Under the same assumptions as those stated in Lemma 2.1, we find

$$
\begin{equation*}
\nabla_{k} h_{j i}=0 . \tag{2.27}
\end{equation*}
$$

Proof. Applying (2.15) to u^{2} and taking account of (2.7)~(2.9), we have

$$
\begin{aligned}
&\{(1-D) x+2 y\}\left(\alpha^{2} x u_{\jmath}-\alpha \beta x v_{\jmath}-\alpha \lambda x w_{\jmath}\right)+y^{2} u_{j} \\
&=\left\{(1-D) x+y-\frac{\beta}{\lambda}\right\}\left\{\left(\alpha^{2} x+y\right) u_{\jmath}-\alpha \beta x v_{j}-\alpha \lambda x w_{\jmath}\right\} \\
&+\frac{\beta}{\lambda}\{(1-D) x+y\} u_{\jmath},
\end{aligned}
$$

and consequently

$$
\left(y+\frac{\beta}{\lambda}\right) x\left\{\left(\beta^{2}+\lambda^{2}\right) u_{\jmath}+\alpha \beta v_{\jmath}+\alpha \lambda w_{j}\right\}=0 .
$$

Since u_{ρ}, v_{ρ} and $w_{\text {, }}$ are linearly independent and β, λ are almost everywhere nonzero, the last equation implies that

$$
\begin{equation*}
\left(y+\frac{\beta}{\lambda}\right) x=0 . \tag{2.28}
\end{equation*}
$$

We have from (2.7) and (2.8)

$$
\begin{equation*}
\beta h_{j t} t^{t}+\alpha h_{j t} t^{t}=y\left(\beta u_{\jmath}+\alpha v_{j}\right) . \tag{2.29}
\end{equation*}
$$

Differentiating (2.29) covariantly, we find

$$
\begin{aligned}
\left(\nabla_{k} \beta\right) h_{j t} u^{t} & +\beta\left(\nabla_{k} h_{j t}\right) u^{t}+\beta h_{j t} \nabla_{k} u^{t} \\
& +\left(\nabla_{k} \alpha\right) h_{j t} v^{t}+\alpha\left(\nabla_{k} h_{j t}\right) v^{t}+\alpha h_{j t} \nabla_{k} v^{t} \\
= & \left.\left(\nabla_{k} y\right)\left(\beta u_{\jmath}+\alpha v_{j}\right)+y\left\{\nabla_{k} \beta\right) u_{j}+\beta \nabla_{k} u_{j}+\left(\nabla_{k} \alpha\right) v_{j}+\alpha \nabla_{k} v_{j}\right\}
\end{aligned}
$$

from which, taking the skew-symmetric part and making use of (1.13), (1.14), (1.16) and (1.18),

$$
\begin{aligned}
& w_{k}\left(h_{j t} v^{t}\right)-w_{j}\left(h_{k t} v^{t}\right)+2 \alpha h_{j t} f_{k}^{t} \\
& =\left(\nabla_{k} y\right)\left(\beta u \jmath+\alpha v_{\jmath}\right)-\left(\nabla_{\jmath} y\right)\left(\beta u_{k}+\alpha v_{k}\right) \\
& \quad+y\left\{\left(-h_{k t} u^{t}\right) u_{\jmath}-\left(-h_{j t} u^{t} u_{k}\right.\right. \\
& \left.\quad+\left(-h_{k t} v^{t}+w_{k}\right) v_{\jmath}-\left(-h_{j t} v^{t}+w_{\jmath}\right) v_{k}+2 \alpha f_{k j}\right\},
\end{aligned}
$$

or, using (2.7), (2.8) and (2.28),

$$
2 \alpha h_{j t} f_{k}^{t}=\left(\nabla_{k} y\right)\left(\beta u_{\jmath}+\alpha v_{\jmath}\right)-\left(\nabla_{\jmath} y\right)\left(\beta u_{k}+\alpha v_{k}\right)+2 \alpha y f_{k j} .
$$

Transvecting the above equation with u^{j} and substituting (2.7) into the equation obtained, we get

$$
\begin{equation*}
D \beta \nabla_{k} y-\left(u^{t} \nabla_{t} y\right)\left(\beta u_{k}+\alpha v_{k}\right)=0 . \tag{2.30}
\end{equation*}
$$

In $N_{1}=\{P \in M: \alpha x(P) \neq 0\} y=-\frac{\beta}{\lambda}$ by virtue of (2.28). Differentiating this equation covariantly and making use of (1.14), (1.15) and (2.7), we have

$$
\nabla_{\jmath} y=\frac{\alpha x}{\lambda}\left(\alpha u_{\jmath}-\beta v_{j}-\lambda w_{\jmath}\right) \quad \text { on } \quad N_{1},
$$

or, comparing the above equation with (2.30), $\alpha x=0$ because u_{ν}, v_{ρ} and w_{ρ} are linearly independent. This contradicts the construction of the set N_{1}.

Thereupon, on the whole space M,

$$
\begin{equation*}
\alpha x=0 . \tag{2.31}
\end{equation*}
$$

From (2.7) and (2.31) we have

$$
\begin{equation*}
h_{j t} u^{t}=y u_{j} . \tag{2.32}
\end{equation*}
$$

Differentiating (2.32) covariantly, we find

$$
\left(\nabla_{k} h_{j t}\right) u^{t}+h_{j t} \nabla_{k} u^{t}=\left(\nabla_{k} y\right) u_{j}+y \nabla_{k} u_{j},
$$

which contains

$$
\begin{equation*}
x\left(\nabla_{k} h_{j t}\right) u^{t}+x h_{j t} \nabla_{k} u^{t}=x\left(\nabla_{k} y\right) u_{\jmath}+x y \nabla_{k} u_{\jmath} . \tag{2.33}
\end{equation*}
$$

On the other hand, computing covariant differentiation of $\frac{\beta}{\lambda}$ and taking account of (1.14), (1.15), (2.7) and (2.31), we get

$$
\begin{equation*}
\nabla_{k} \frac{\beta}{\lambda}=-\frac{1}{\lambda}\left(y+\frac{\beta}{\lambda}\right) u_{k} . \tag{2.34}
\end{equation*}
$$

Differentiating (2.28) covariantly and using (2.28) itself and (2.34), we have $x \nabla_{k} y+\left(y+\frac{\beta}{\lambda}\right) \nabla_{k} x=0$, which implies $x^{2} \nabla_{k} y+x\left(y+\frac{\beta}{\lambda}\right) \nabla_{k} x=0$. This equation shows that

$$
\begin{equation*}
x \nabla_{k} y=0 \tag{2.35}
\end{equation*}
$$

because of (2.28).
From (2.21) and (2.31) we get

$$
\begin{align*}
x \lambda\left(\nabla_{j} h_{i t}\right) u^{t}= & -x \beta \lambda h_{j t} h_{\imath}{ }^{t}+x\left\{\beta \lambda(x+y)-\left(1-\lambda^{2}\right)\right\} h_{j i} \tag{2.36}\\
& +x\left\{\beta^{2} x+\left(1-\lambda^{2}\right) y\right\} g_{j i} .
\end{align*}
$$

Substituting (2.35) and (2.36) into (2.33) and making use of (1.13), we have

$$
\begin{aligned}
-x \beta \lambda h_{k t} h_{\jmath}{ }^{t} & +x\left\{\beta \lambda(x+y)-\left(1-\lambda^{2}\right)\right\} h_{k j} \\
& +x\left\{\beta^{2} x+\left(1-\lambda^{2}\right) y\right\} g_{k \jmath}+\lambda x h_{j t}\left(-\lambda \delta_{k}^{t}+\beta h_{k}^{t}\right) \\
= & \lambda x y\left(-\lambda g_{k \jmath}+\beta h_{k \jmath}\right)
\end{aligned}
$$

and consequently $x\left\{(\beta \lambda x-1) h_{k,}+\left(\beta^{2} x+y\right) g_{k j}\right\}=0$, which implies $x(\beta \lambda x-1)\left(h_{k \jmath}-y g_{k j}\right)$ $=0$ by virtue of (2.28). On a set $N_{2}=\{P \in M: x(\beta \lambda x-1)(P) \neq 0\}, h_{k j}-y g_{k j}=0$. From the result of Lemma 2.3 the last equation shows that $x=0$ on N_{2}. Thus the set N_{2} is void, that is,

$$
\begin{equation*}
x(\beta \lambda x-1)=0 \tag{2.37}
\end{equation*}
$$

on M.
We denote the set $\{Q \in M ; \beta(Q) \lambda(Q) x(Q) \neq 1\}$ by \tilde{N}. Then on $\tilde{N} x=0$ and by virtue of Lemma $2.3 h_{j i}=y g_{j i}$ on \tilde{N}. Differentiating the last equation covariantly, we find $\nabla_{k} h_{j i}=\left(\nabla_{k} y\right) g_{j i}$, from which

$$
\left(\nabla_{k} y\right) g_{j i}-\left(\nabla_{j} y\right) g_{k i}=0
$$

Thus we have $2(n-1) \nabla_{k} y=0$, that is, $y=$ const. on the connected components of \tilde{N}. Hence we have $\nabla_{k} h_{j i}=0$ on \tilde{N}. Now we put $N_{3}=\left\{P \in M:\left(\nabla_{k} h_{j i}\right)(P) \neq 0\right\}$. Then $\beta \lambda x=1$ and $x \neq 0$ on N_{3}.

On the other hand, if we denote by N_{4} the set $N_{3} \cap \tilde{N}^{c}$ (\tilde{N}^{c} is the complement on \tilde{N}), then

$$
\begin{equation*}
y=-\frac{\beta}{\lambda}, \quad \alpha=0, \quad \beta \lambda x-1=0 \tag{2.38}
\end{equation*}
$$

on N_{4} by virtue of (2.28), (2.31) and (2.37).
Substituting (2.38) into (2.15), we get

$$
h_{j t} h_{\imath}{ }^{t}=\frac{\lambda^{2}-\beta^{2}}{\beta \lambda} h_{j \imath}+g_{\jmath \imath}
$$

on N_{4}. Moreover $\frac{\lambda^{2}-\beta^{2}}{\beta \lambda}$ is constant because of (2.34) on this set. Therefore, taking account of (1.16) we find $\nabla_{k} h_{\partial i}=0$ on N_{4}. This contradicts the construction of the set N_{3}. Hence N_{3} is empty, that is, $V_{k} h_{j i}=0$ on the whole space M. And so the proof of Lemma 2.4 is completed (cf. [6]).

From (2.15) and (2.31) we can easily verify that eigenvalues of $\left(h_{\rho}{ }^{i}\right)$ are $\left(\beta^{2}+\lambda^{2}\right) x+y$ and $-\frac{\beta}{\lambda}$. Putting $A=\left(\beta^{2}+\lambda^{2}\right) x+y-\frac{\beta}{\lambda}$ and $B=\frac{\beta}{\lambda}\left\{\left(\beta^{2}+\lambda^{2}\right) x+y\right\}$,
(2.15) can be represented in the form

$$
\begin{equation*}
h_{j t} h_{\imath}{ }^{t}=A h_{j i}+B g_{j i} . \tag{2.39}
\end{equation*}
$$

Differentiating (2.39) covariantly and making use of Lemma 2.4, we have

$$
\begin{equation*}
\left(\nabla_{k} A\right) h_{j i}+\left(\nabla_{k} B\right) g_{j i}=0, \tag{2.40}
\end{equation*}
$$

from which, transvecting with $g^{j i}$,

$$
\begin{equation*}
h_{t}{ }^{t} \nabla_{k} A+(2 n-1) \nabla_{k} B=0 . \tag{2.41}
\end{equation*}
$$

Substituting (2.41) into (2.40), we obtain

$$
\left(h_{j i}-\frac{1}{2 n-1} h_{t}{ }^{t} g_{j i}\right) \nabla_{k} A=0,
$$

which implies

$$
\begin{equation*}
\left\{h_{j i} h^{j i}-\left(h_{t}^{t}\right)^{2} /(2 n-1)\right\} \nabla_{k} A=0 \tag{2.42}
\end{equation*}
$$

Since

$$
\left(h_{\partial i}-\frac{1}{2 n-1} h_{t}{ }^{t} g_{j i}\right)\left(h^{j i}-\frac{1}{2 n-1} h_{t}{ }^{t} g^{j i}\right)=h_{k j} h^{j i}-\left(h_{t}{ }^{t}\right)^{2} /(2 n-1),
$$

it follows that $h_{j i}-\frac{1}{2 n-1} h_{t}{ }^{t} g_{j i}=0$ if and only if $h_{j i} h^{j i}-\left(h_{t}{ }^{t}\right)^{2} /(2 n-1)=0$. Moreover $h_{j i} h^{j i}-\left(h_{t}{ }^{t}\right)^{2} /(2 n-1)$ is constant by virtue of (2.27).

Therefore, from (2.42) we may consider only two cases;
Case (A): $\quad h_{j i} h^{j 2}-\left(h_{t}^{t}\right)^{2} /(2 n-1)=0$.
Case (B) :

$$
\nabla_{k} A=0 .
$$

In the Case (A) we see that M is totally umbilical. Moreover, if M is complete, then M is congruent to $S^{2 n-1}$.

The other Case (B) implies $\nabla_{k} B=0$ because of (2.41). Hence eigenvalues $-\frac{\beta}{\lambda}$ and $\left(\beta^{2}+\lambda^{2}\right) x+y$ of $\left(h,{ }^{i}\right)$ are both constants by virtue of constancy of A and B. Therefore, using (2.34), we find $\left(y+\frac{\beta}{\lambda}\right) u_{k}=0$, from which, $y=-\frac{\beta}{\lambda}$ because of linearly independency of u_{k}, v_{k} and w_{k}.

So an eigenvalue $\left(\beta^{2}+\lambda^{2}\right) x+y$ of $\left(h_{j}^{i}\right)$ becomes $\left(\beta^{2}+\lambda^{2}\right) x-\frac{\beta}{\lambda}$ and non-zero constant. In fact, we assume $\left(\beta^{2}+\lambda^{2}\right) x-\frac{\beta}{\lambda}=0$. Then $x=\frac{\beta}{\lambda\left(\beta^{2}+\lambda^{2}\right)}$ because β and λ are almost everywhere non-zero, from which, substituting into (2.37), $\beta \lambda^{2}=0$. It contradicts our assumptions.

Denoting $\left(\beta^{2}+\lambda^{2}\right) x-\frac{\beta}{\lambda}$ and $-\frac{\beta}{\lambda}$ respectively by a and b, and r by multiplicity of a, a and b are both non-zero constants. When $a=b, r=0$ or $r=2 n-1$, it is contained in the Case (A).

Thus we may only consider that $a \neq b$ and $1 \leqq r \leqq 2 n-2$. Now we define a (1, 1)-type tensor $P_{0}{ }^{2}$ of the from;

$$
P_{\jmath}{ }^{\imath}=\frac{1}{a-b}\left(h_{\jmath}^{\imath}-b \delta_{j}^{i}\right)
$$

Then we can easily see that

$$
\begin{align*}
& 1 \leqq \text { rank of }\left(P_{\jmath}{ }^{i}\right) \leqq 2 n-2, \tag{2.43}\\
& P_{\jmath}{ }^{t} P_{t i}=P_{\jmath t} \tag{2.44}
\end{align*}
$$

that is, $P_{j}{ }^{i}$ is an almost product structure such that

$$
\begin{equation*}
\nabla_{k} P_{\jmath}{ }^{2}=0 \tag{2.45}
\end{equation*}
$$

because of Lemma 2.4, where $P_{j i}=P_{\rho}{ }^{t} g_{t v}$.
Putting $Q_{j i}=g_{j i}-P_{j i}$, we find

$$
\begin{equation*}
h_{j i}=a P_{j i}+b Q_{j i} . \tag{2.46}
\end{equation*}
$$

Moreover, if M is complete and connected, the equations (2.43) $\sim(2.46)$ mean that assumptions of Theorem B are all satisfied.

Summing up the conclusions obtained in Case (A) and Case (B), we have
Theorem 2.5. Let M be a complete and connected hypersurface of an evendimensional sphere $S^{2 n}$. If the induced $\left(f, g, u_{(k)}, \alpha_{(k)}\right)$-structure is normal, the vectors u^{h}, v^{h} and w^{h} (or associated 1 -forms u_{i}, v_{i} and w_{2}) are linearly independent and functions β, λ are non-zero almost everywhere on M, then M is congruent to $S^{2 n-1}$ or $S^{p} \times S^{2 n-1-p}(p=1,2, \cdots, 2 n-2)$ naturally embedded in $S^{2 n}$.

Bibliography

[-1] Blair, D. E., G. D. Ludden and M. Okumura, Hypersurfaces of even-dimensional sphere satısfyıng a certain commutatıve condition. J. of Math. Soc. of Japan, 25 (1973), 202-210.
[2] Blair, D. E., G. D. Ludden and K. Yano, Induced structures on submanifolds. Kōdaı Math. Sem. Rep., 22 (1970), 188-198.
[3] Ishihara, S. and U-Hang Ki, Complete Riemannıan manıfolds with (f, g, u, v, λ)structure. J. of Diff. Geo., 8 (1973), 541-554.
[4] Ki, U-Hang, Jin Suk Pak and Hyun Bae Suh, On ($\left.f, g, u_{(k)}, \alpha_{(k)}\right)$-structure. Kōdai Math. Sem. Rep., 26 (1975), 160-175.
[5] Yano, K. and S. Ishihara, On a problem of Nomizu-Symth on a normal contact Riemannian manıfold. J. Diff. Geo., 3 (1969), 45-58.
[6] Okumura, M, Contact hypersurfaces of a certain Kählerıan manıfold. Tôhoku M. J. (1966), 74-102.
[7] Yano, K. and U-Hang, Kı, On quası-normal (f, g, u, v, λ)-structures. Kōdai Math. Sem. Rep., 24 (1972), 106-120.
[8] Yano, K. and M. Okumura, Invariant hypersurfaces of a manifold with (f, g, u, v, λ)-structure. Kōda1 Math. Sem. Rep., 23 (1971), 290-304.
[9] Yano, K. and M. Okumura, On (f, g, u, v, λ)-structures. Kōdaı Math. Sem. Rep., 22 (1970), 401-423.

