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§ 0. Introduction.

Yano and Okumura [8] have studied hypersurfaces of a manifold with
(ft g, u, v> Λ)-structure. These submanifolds admit an (/, g, MC W, α(w)-structure,
that is, a set of a tensor field / of type (1, 1), a Riemannian metric g, three 1-
forms u, v and w and functions α, β and λ satisfying certain algebraic conditions
[4]. In particular, a hypersurface of an even-dimensional sphere carries an
(/, g, uw, α(A))-structure (see also [4]).

The submanifolds of codimension 2 in an almost contact metric manifold also
admit the same kind of structure (see [5]).

Let M be an m-dimensional differentiate manifold with (/, g, w ( Λ ), α(*))-
structure. We define on MxR3, R3 being a 3-dimensional Euclidean space, a
tensor field F of type (1, 1) with local components FB

A given by

(0.1)

• // uh vh

-u3 0 —λ

-VΊ λ 0

-w, -β -a

W"

a

0

in {NxR* XA}, {N; xh} being a coordinate neighborhood of M and xl, x*, x* being
cartesian coordinates in R\ where //, ujt v3 and w, are respectively local com-
ponents of /, u, v and w, uh—ulg'lh1 vh=vtg

lfl and wh=Wιgih in {N\xh}, and,
where gίh are entries of the inverse matrix of the matrix (gih) whose entries are
components of a Riemannian metric on M. (The indices A, B,C, ••• run over the
range {1,2, •••, ra+3} and h, i, j, ••• run over the range {1, 2, •••, ra}.) We denote
m+1, m+2 and w+3 respectively by 1, 2 and 3.

Denoting 3/3xκ by 9^, the Nijenhuis tensor [F, F] of F has local components
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in MxRs. Thus, denoting P ' , by the operator of covariant differentiation with

respect to the Christoff el symbols { , } formed with gjt of M and using (0.1), we

can write down local components of the tensor SCB

A as follows

(0.2) V=//rtΛft-Λ'Pt//-(IV.'-r,//)/t

ft

etc.
Specially, if Sji

h=Q, then we say that the (/, g, W C H , αα)) -structure is normal
M.

In the previous paper [4], Pak and the present authors proved the following
theorem :

THEOREM A. Let M be a complete and connected hypersurface of an even-
dimensional sphere S2n. If the induced (/, g, wα), a ( k j - structure is normal, S;/=0,
the vectors uh, vh and wh (or associated 1-forms uτ, vτ and wτ) are linearly in-
dependent and the function λ is almost everywhere non-zero on M, then M is
congruent to S2n~l or S^xS271'1^ (ί=l, 2, ••• , 2n— 2) naturally embedded in S2n.

The main purpose of the present paper is to neglect the condition 8^=0 as
an extension of Theorem A.

In § 1, we recall the definition of (/, g, wα), α( fe))-structure and give structure
equations on M.

In §2, we study hypersurfaces with normal (/, #, w ( Λ ), αC Λ ))-structure in an
even-dimensional sphere S2n by using the following theorem proved by Ishihara
and Ki one of the present authors [3] :

THEOREM B. Let (M, g) be a complete and connected hypersurface immersed
in a sphere Sm+1(l) with induced metric gjit ana assume that there is in (M, g) an
almost product structure Pτ

h of rank p such that V jP^i— 0. // the second funda-
mental tensor hjt of the hypersurface (M,g) has the form hjί=aPji

JrbQJi,a and
b being mutually different non-zero constants, where PJi=PJ

tgtι and Qji—gji—Pji,
and if m—l^p^l, then the hypersurface (M,g) is congruent to Sp(r1)xSm'p(r2)
naturally embedded in Sm+1(l), where l/r1

2=l+a2 and l/r2

2=l+b2.

§ 1. Hypersurfaces of an even-dimensional sphere.

Let E be a (2n+l) -dimensional Euclidean space and X the position vector
starting from the origin of E and ending at a point of E. The E being odd-
dimensional, it can be regared as a manifold with cosymplectic structure, that is,
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an aggregation (F, ξ, η, G) of a tensor field F of type (1,1), a vector field ξ, a
1-form η and a Riemannian metric G satisfying

G(FY, FZ)=G(Y, Z}-η(Y}η(Z) ,

G(ξ, Y)=η(Y)

for arbitrary vector fields Y and Z and

(1.2) fF=0, F£=0,

where / denotes the unit tensor and V the Riemannian connection of E.
Let S2n be a 2n-dimensional sphere which is covered by a system of co-

ordinate neighborhoods {£/;/*}, where here and in this section the indices α,b,
c, "-run over the range {1, 2, ••• ,2n}, then S2n is naturally immersed in E as a
hypersurface by X: S2n-^E.

We put Xb=dbX (db=d/dyb), then Z6 are 2n linearly independent local vector
fields tangent to X(S2n) and gcb=Xc Xb is the Riemannian metric induced on S2n

from that of E, the dot denoting the inner product of vectors of X(S2n\ In the
sequel, X(S2n) is identified with S2n itself.

We choose — X as a unit normal C to S2n in such a way that Xlt X2,~ , Xzn,
C give the positive orientation of E.

The transforms FXb and FC of Zδ and C respectively by F, and the vector
field ξ can be expressed as

FXb=fb*Xe+vbC,

(1.3) FC=-veXe,

where Λe is a tensor field of type (1,1), vb is of 1-form, ve=vαg
αe, ue is a vector

field and λ is a function, all globally defined on S2n.
Transvecting each of (1.3) with F respectively and using (1.1) and (1.3) itself,

we find

f*fc<=-δ*+ueu*+vev\

geαfcefbα^gcb-UcUb-VcVb ,

(1.4)
fe*Ue=-λv*, fe

bVe=λub,

ueu
e= vev

e— 1—λ2, uev
e= 0 , ue= uαgαe ,

that is, S2n admits an (f,g, u, v, ̂ -structure (cf. [9]).
We denote V c by the operator of covariant differentiation with respect to the
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Christoffel symbols { αΛ formed with gcb. Then equation of Gauss and Wein-

garten are

(1.5) PA=£C6C, VCC=-XC

because the second fundamental tensor with respect to unit normal C is equal
to gcb.

Differentiating each equation of (1.3) covariantly and using (1.2), (1.3) and
(1.5), we have

We now compute

(1.7) Scδ

α=[/, nc

where [/, /]cδ

α is the Nijenhuis tensor formed with fb

a.
Substituting (1.6) into (1.7), we get Scδ

α— 0, which means that the ( f , g , u, v, X)-
structure is normal.

Hence, S2n admits a normal ( f , g , u,v, Λ) -structure.
Consider a (2n— l)-dimensional manifold M covered by a system of coordinate

neighborhoods {V;xh}, where here and in the sequel the indices h, ι,j, k, ••• run
over the range {1, 2, ••• , 2n— 1}, and assume that M is differentiably immersed in
S2n by the immersion i: M^S2n which is expressed locally by yb=yb(xh\

We put Bh

b=dhy
b (dh—djdxh). We assume that we can choose a unit vector

Nb of S2n normal to M in such a way that 2n vectors Bh

b, Nb give the positive
orientation of S2n. The transforms //£/ and fe

bNe of Bf and Ne respectively
by fe can be written in the forms

(1.8) f^B^fSBS+WjN* , f*N<=-w*Bΐ ,

where // is a tensor field of type (1, 1), w3 is of 1-form and wl=wtg
t\ gjt being

the Riemannian metric on M induced from that of S2n, and the vectors ub, vύ can
be expressed as

(1.9) ub=ulB1

b+βN\ vb=vτB1

b+aNb ,

where u\ vl are vectors and a, β are functions on M.
Applying fb

a to (1.8) and (1.9) respectively and taking account of (1.4), (1.8)
and (1.9), we can find
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(1.10) ftw'̂ -βtf-av*,

utu
t=l-β2-λ2, vtv

l=l-a2-λ2,

UtV^ — aβ, utw
t= — aλt vtw

t=βλ,

where ui=utgtl and vi=vtgtl, that is, M admits an ( f , g , u^, α(Λ))-structure ([1],
M, [8]).

If we put fji—fjg^ we can easily verify that fjt is skew-symmetric because
of (1.10).

Denoting F' 3 by the operator of covariant differentiation with respect to the

Christoffel symbols { •} formed with gjit equations of Gauss and Weingarten

of M are

( Ί 1 Ή ϊ7 Ba—h Na F Na= — h 1B a
\±.1±,/ V jLJl lljll\ , V j J . M fij LJt ,

where hjt is the second fundamental tensor and /ι/ is defined by hjl=hjtg
tl.

Differentiating (1.8) and (1.9) covariantly along M respectively and making
use of (1.6), (1.8), (1.9) and (1.11), we have

(1.12)

(1.13)

(1.14)

Transvecting the last equation of (1.6) with Bk

c and using (1.9), we obtain

(1.15) Fk*=Uk -

Since an even-dimensional sphere S2n is a space of constant curvature, the
Codazzi equation of M is given by

(1.16) F f cA^-ΓΛi=0.

Substituting (1.12) and (1.13) into (0.2), we get

(1.17) Sjί

tl=(fJ

tht

ίl—hJ

tft

ll)wi—(fl

tht

fl--hl

tft

h)wJ.

We prove the following two propositions.

PROPOSITION 1.1. In a manifold with (/, g, u^, a^}-structure, the vectors uh,
vh and wh (or associated l-forms uτ, vτ and wt) are linearly independednt if and
only if l-a2-β2-λ2Φθ.

Moreover, if vectors uh, vh and wh (or associated l-forms ut, ?̂  and wτ) are
linearly dependent, then hji=(λ/β)gji in M.
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. See [4].

PROPOSITION 1.2. L#f M be a hypersurface of a 2n-dimensional sphere S2n.
Then the necessary and sufficient condition that the induced (/, g, w ( j f e ), a^-structure
on M is normal is

/,V-λ// *=o ,
which is equivalent to

(1.18) **/.'+ A«//=0

Proof. From (1.17) the sufficiency is trivial.

Assume that ( f , g , u^, αcw) -structure is normal, that is, S^Λ=0. Putting
T/=/,V-V/Λ (1.17) becomes

(1.19) 7YX-7\X=0,

from which, contracting with respect to /ι and i,

(1.20) Γ>t=0

by virtue of the symmetry of Tτ

h.
Transvecting (1.19) with wl and using (1.20), we find

(l-α2-/32)T/=:0.

On ΛΓ0={PeM:T/CP)=£θ} we have l-α2-/32=0, from which, u;,=0, it
follows that βUj+aVj=Q on AΓ0 by the definition of wtf}. Since the last equation
means that u3 and v3 are linearly dependent, we get 1— a2— β2— λ2=Q and con-
sequently hji=(λ/β)gji on this set by virtue of Proposition 1.1. Thus we find hji=0)

which implies T/— 0 on Λf0, that is, T/— 0 on the whole space M. Therefore
the necessity is also proved.

§ 2. Hypersurf aces with normal (/, g, wα), #( ̂ -structure.

In this section, we assume that the ( f , g , u^, α(W) -structure induced in a
hypersurface M of an even-dimensional sphere S2n is normal, the vectors uh, vh

and wh (or associated 1-forms ut, vτ and ι^t) are linearly independent and functions
β, λ are almost everywhere non-zero on M.

Now, transvecting (1.18) with vjv l, wjwl, uj'υl and ujwl respectively, and using
the definition of (/, g, u^, αα)) -structure, we have

(2.1) λh(u, v)——ah(v1 w} ,

(2.2) βh(u,w)=-ah(v,w),

(2.3) λh(u, u}+ah(u, w)—λh(υy v)+βh(v,

(2.4) —βh(u, u)-ah(u, v}-λh(v,



430 U-HANG KI AND HYUN BAE SUH

h(u, v\ h(v, w), ••• and h(w, w) being denoted by respectively h(u, ?;)— /i i5wV, h(v, w)
= htsv

tw*, and h(w, w) = htsw
lws.

Multiplying (2.4) by λ and substituting (2.1) into the equation obtained, we
get

(2.5) βλh(u, u)^(a2-λ2}h(v,

from which, combining (2,2) and (2.3),

(2.6) βλh(v, v}=(β2-λ2)h(v,

LEMMA 2.1. Let M be a hypersurface of an even-dimensional sphere S2n. If
the induced (f.g.u^.a^-structure on Mis normal, the, vectors uh,vh and wh (or
associated 1- forms uτ, vτ and wτ) are linearly independent and functions β and λ
are almost everywhere non-zero on M, then

(2.7) hjtu
t—(

(2.8) hjtv
t=

(2.9) hjtw
t=

x and y being given by respectively

Dβλx=(l-a2-β2)h(v, w)-βλh(w,

Dβλy=-λ2h(v, w}+βλh(w, w)

and D=l-a2-β2-λ2.

Proof. Transvecting (1.18) with fk\ we obtain

from which, taking skew-symmetric parts,

(2.11) (hj^Uk+^jtV^v^^jtW^Wk^^^u^Uj+^ktV^Vj+^ktW^Wj.

Transvecting (2.11) with uk, vk and wk respectively, and using (1.10), we have

(2.12) (l-β2-λ2)hjtu
t-aβhjtv

t-aλhjtw
t=h(u, u)u3 + h(u, v)v, + h(u, w)w,,

(2.13) -aβhjtu
t+(l-a2-λ2)hjtv

t+βλhjtw
t=h(u, v)u,-

(2.14) — aλhμtf+βλhμV1-}-(].—a2—βz)hjtw
t=h(u,

from which, computing coefficient determinant with respect to h^u*, hjtv*, hjtw\

l-β2-λ2 -aβ -aλ

-aβ l-a2-λ2 βλ

-aλ βλ l-a2-β2
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Since uh, υh and wh are linearly independent, D is not zero by virtue of Prop-
osition 1.1.

Therefore, we find from (2.12), (2.13) and (2.14)

t -

+--{(l-α:2)/ι(w, w) + aβh(v, w}+aλh(w, w)}w3 ,

from which, multiplying by βλ and substituting (2.1), (2.2), (2.5) and (2.6),

2--β*)h(v9 w)-βλh(w, w)}-λ*h(v,

a*-β*)h(v, w)-βλh(w, w)}v,

— -jyaλ{(l-a2-β2}h(v, w)-βλh(w, w)}w3 ,

which implies (2.7) because of (2.10).
In the same way, we can verify (2.8) and (2.9).

LEMMA 2.2. Under the same assumptions as those stated in Lemma 2.1, we
have

(2.15) ,

Proof. Differentiating (1.18) covariantly and using (1.12), we find

(2.16) (^*Λ^//+(ΓΛt)//=-(AιkίA/)^-(A«AtX

+ hkj(hitw
t-vτ}+hki(hjtw

t-vj)

from which, taking the skew-symmetric part with respect to k and j

(2.17) ^khuVj'-^jh^fk^-^Mw^h^h^w,

+ hkl(hjtw
t-vj')-hjί(hktw

t--vk')

and again skew-symmetric parts with respect to k and z,

(2.18) ^kh^-^^f^-^Jτ^w^^uh^w^
+ hkj(hltw

t-vτ)-hlj(hktw
t-vk)
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because of (1.16).
Calculating (2.16)-(2.17)-(2.18) and using (1.16), we obtain

from which, substituting (2.8) and (2.9),

(2.19) (PΛOΛ'=--(A/AV*
+ hji{-aλxuk+(βλx-ΐ)vk+(λ*x+y)wk}

Transvecting (2.19) with uk, vk and wk respectively, and making use of (1.10),
we have

(2.20)

(2.21)

2 2 2

j i+ {β2x+(l-a2-λ2}y}gj

and

(2.22) (-βut-avt)Fjhu=-(l-a2-β2)hjthl

t

Multiplying (2.20) and (2.21) by a and — β respectively, and adding two
equations obtained, we get

(2.23) λ(-avt-βutWJhit=λ(a2+β2)hjthτ

t

-β{(a2+β2)x+(l-λ2)y}gjί.

Comparing with (2.22) and (2.23), we easily see that

which verifies the lemma.

LEMMA 2.3. Under the same assumptions as those stated in Lemma 2.1, x— 0
and hji=ygji are equivalent on M.

Proof. Let *=0. Then (2.7), (2.8) and (2.9) become respectively

(2.24) h1tu
t=yuj , hjtv

t=yυj , hjtw
t=ywj .

Differentiating the second equation of (2.24) covariantly and using (1.13), we
have
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from which, taking skew-symmetric parts and using (1.16) and (1.18),

(2.25) 2hjtfk

t=(Fky)vj-(

Transvecting (2.25) with wj and using (2.24), we find βλP ky=(wΨty)υk. So
(2.25) can be written as the form

(2.26) h,tfk'=yfk, .

Transvecting (2.26) with fτ

k and using (1.10), we get

or, using (2.24), hji=ygjl.
Conversely, if hji=ygjlj then hjtv

t=yvj. From this and (2.8), we find

which suggests x=Q because ujt v3 and w3 are linearly independent, and β is
almost everywhere non-zero. Therefore Lemma 2.3 is proved.

LEMMA 2.4. Under the same assumptions as those stated in Lemma 2.1, we
find

(2.27) F*V=0.

Proof. Applying (2.15) to ul and taking account of (2.7)~(2.9), we have

and consequently

Since ujf v3 and w3 are linearly independent and β, λ are almost everywhere non-
zero, the last equation implies that

(2.28)

We have from (2.7) and (2.8)

(2.29) βhjt

Differentiating (2.29) covariantly, we find



434 U-HANG KI AND HYUN BAE SUH

from which, taking the skew-symmetric part and making use of (1.13), (1.14),
(1.16) and (1.18),

wk(hjtv
t)-wj(hktv

t)+2ahjtfk

t

+y{(-hktu
t)uJ-(-hjtu

t)uk

+(—hktv
t+wk)vJ-(-hjtv

tjrwJ}vk+2afkj} ,

or, using (2.7), (2.8) and (2.28),

Transvecting the above equation with uj and substituting (2.7) into the equation
obtained, we get

(2.30) Dβrky-(uΦty)(βuk+avh)=Q .

In N1={P^M:ax(P)ΦQ} y=— |- by virtue of (2.28). Differentiating this

equation covariantly and making use of (1.14), (1.15) and (2.7), we have

F3y=^-(au3-βv3-λw3} on N, ,

or, comparing the above equation with (2.30), ax=Q because uJ9 v3 and w3 are
linearly independent. This contradicts the construction of the set Nlt

Thereupon, on the whole space M,

(2.31) ax=Q .

From (2.7) and (2.31) we have

(2.32) hjtu^yu3 .

Differentiating (2.32) covariantly, we find

which contains

(2.33) x(Pkhjt)

On the other hand, computing covariant differentiation of -ζ- and taking

account of (1.14), (1.15), (2.7) and (2.31), we get

(2.34)

Differentiating (2.28) covariantly and using (2.28) itself and (2.34), we have

*^*:y+(;y+-^-)'7**=0, which implies xΦky+x(y+χ)PkX=Q This equation

shows that
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(2.35) xPky=Q

because of (2.28).
From (2.21) and (2.31) we get

(2.36) xλ(Γjhit)ut=-xβλhjthl

t+x{βλ(x+y)-(l-λ2)}hjί

+x{β2χ+(l-λ2)y}gji.

Substituting (2.35) and (2.36) into (2.33) and making use of (1.13), we have

+χ{β2χ+(l-*2)y}gkj+λχhjt(-λdt

k+βhk

t)

and consequently x{(βλx—ϊ)hkj + (βzx+y)gkj}=0, which implies x(βλx—l)(hkj—ygkj)
=0 by virtue of (2.28). On a set W2={PeM: x(βλx-ΐ)(P)ΦQ}, hkJ-ygkj=Q.
From the result of Lemma 2.3 the last equation shows that x= 0 on N2. Thus
the set N2 is void, that is,

(2.37) x(βλx-ΐ)=Q

on M.
We denote the set {QeM; β(Q)λ(Q)x(Q)Φl] by N. Then on N x=Q and by

virtue of Lemma 2.3 hji=ygji on N. Differentiating the last equation covariantly,
we find P khji—(P ky)gji, from which

Thus we have 2(n— 1)7 ky— 0, that is, y— const, on the connected components of
N. Hence we have FΛ/ι^=0 on N. Now we put N3^{P^M: (Fέ/ι;-ί)(P)^0}. Then
βλx=l and Λ:^0 on N3.

On the other hand, if we denote by 7V4 the set Nsr\Nc (Nc is the complement
on N), then

(2.38) y=z

on N, by virtue of (2.28), (2.31) and (2.37).
Substituting (2.38) into (2.15), we get

on jV4. Moreover —o^~" is constant because of (2.34) on this set. Therefore,βλ
taking account of (1.16) we find vkhJt=-Q on 7V4. This contradicts the con-
struction of the set Λ/S. Hence Ns is empty, that is, l^khji—0 on the whole space
M. And so the proof of Lemma 2.4 is completed (cf. [6]).

From (2.15) and (2.31) we can easily verify that eigenvalues of (Λ/) are

(β2+λ*)x+y and --£-. Putting A=(β*+λ2)x+y--^ and B=£-{(β2+λ2)x+y},
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(2.15) can be represented in the form

(2.39) hjth^Ahjt+Bgji.

Differentiating (2.39) covariantly and making use of Lemma 2.4, we have

(2.40) (V kA)h3i+(V kB)gji=Q ,

from which, transvecting with gji,

(2.41) htΦkA+(2n-ΐ)PkB=Q .

Substituting (2.41) into (2.40), we obtain

which implies

(2.42) {hJίh^-(htγ/(2n

Since

(^-^CT/2^^

it follows that hjt- 2^_1 hfg^Q if and only if hjih
ji-(htγ/(2n-l)^0. More-

over hjih
ji-(ht

tγ/(2n~l) is constant by virtue of (2.27).
Therefore, from (2.42) we may consider only two cases;

Case (A) : ΛJ<A^-(A ί

t)V(2n-l)=0.

Case (B) : F*4=0.

In the Case (A) we see that M is totally umbilical. Moreover, if M is com-
plete, then M is congruent to S2n~\

The other Case (B) implies 7kB—0 because of (2.41). Hence eigenvalues

— ζ- and (β2+λ2)x+y of (/ι/) are both constants by virtue of constancy of A

and B. Therefore, using (2.34), we find (^y+-*jτ)uk==Q, from which, y— — v- be-

cause of linearly independency of uk, vk and wk.

So an eigenvalue (β2jrλ2)x+y of (/z/) becomes (βz+λ2)x — £- and non-zero

constant. In fact, we assume (β2+λ2)x — r— 0. Then *= i(Q*-\-i?} because β and

λ are almost everywhere non-zero, from which, substituting into (2.37), /3Λ2=0.
It contradicts our assumptions.

Denoting (β2+λ2)x — v- and — v- respectively by a and b, and r by multi-

plicity of α, a and b are both non-zero constants. When a=b, r— 0 or r=2n—l,
it is contained in the Case (A).

Thus we may only consider that aφb and l^r^2n— 2. Now we define a
(1, l)-type tensor P/ of the from
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Then we can easily see that

(2.43) l^rank of (

(2.44) jγΛi=Λo

that is, P3

l is an almost product structure such that

(2.45) F*/V=0

because of Lemma 2.4, where Psi= P^gtτ
Putting Qji=gji—Pji, we find

(2.46) hji^aPa+bQti.

Moreover, if M is complete and connected, the equations (2.43)^(2.46) mean
that assumptions of Theorem B are all satisfied.

Summing up the conclusions obtained in Case (A) and Case (B), we have

THEOREM 2.5. Let M be a complete and connected hypersurface of an even-
dimensional sphereS2n. If the induced (/, g, wα), a^) -structure is normal, the
vectors uh

t v
h and wh (or associated 1-forms ult vt and wz) are linearly independent

and functions β, λ are non-zero almost everywhere on M, then M is congruent to

S2n-ι or sPxS2"-1-? (ί=l,2, -,2n-2) naturally embedded in S2n.
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