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DOMAIN WITH MANY VANISHING COHOMOLOGY SETS
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By Joj1 KAJIWARA

Introduction.

The aim of this paper is to generalize a previous result [10] of the author.
Oka [12] proved that a domain of holomorphy in C" is a Cousin-I domain. Oka
[13] also proved that a Cousin-II distribution in a domain of holomorphy in C”"
has an analytic solution if and only if it has a topological solution. Grauert [5]
proved that the canonical mapping of H'(X, A;) in H(X, C.) is bijective for a
Stein space X and a complex Lie group L where A; and C, are, respectively,
the sheaves over X of all germs of holomorphic and continuous mappings in L.
Roughly talking, many cohomology sets have the possibility of vanishing in a
Stein space.

Conversely, by Cartain [2] and Behnke-Stein [1], a Cousin-I domain in C*
is always a domain of holomorphy. By Cartan [3] C*—{(0, 0, 0)} is a Cousin-I
domain which is not a domain of holomorphy. By Thullen [15] D={(z,, z,)C?;
|21 <1, |2z,] <1} —{(0, 0)} is a Cousin-II domain which is not a domain of holo-
morphy. By a previous remark [6] of the author, the Thullen’s domain D is an
example of a Cousin-II domain which satisfies H'(D, ©*)#0 for the sheaf ©O* of
multiplicative groups of all germs of never vanishing holomorphic functions. By
the previous result [11] of the author and Kazama, however, a subdomain X of
a two-dimensional Stein manifold is a Stein manifold if X satisfies H'(X, A;)=0
for a complex Lie group L. In the case of higher dimension, the author [10]
proved that a subdomain X of a Stein manifold S with real one-codimensional
smooth boundary is a Stein manifold, if, for an abelian complex Lie group L, X
satisfies H'(XNP, A;)=0 for all analytic polydisc P in S.

The aim of this paper is to prove that a subdomain X of a Stein manifold
S with real one-codimensional smooth boundary is a Stein manifold if, for a
complex Lie group L, X satisfies H'(XNP, A;)=0 for all analytic polydisc P in
S. The above boundary condition for X can not be omitted as the above Car-
tan’s example C®*—{(0, 0, 0)} shows. Roughly talking, a subdomain of a Stein
manifold with many vanishing cohomology sets is also a Stein manifold. This
is the principle which the author wants to maintain. In the proof, we use
Lemmata and methods used in [11] and [9]. In this occasion the author ex-
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presses his hearty gratitude to Professor Y. Komatu who gives his continuous
and kind encouragements since 1957.

§1. Monotonically increasing sequence of domains.

Let M be a complex manifold. If ¢ is a locally biholomorphic mapping of
a complex manifold D in M, (D, ¢) is called an open set over M. Let (D, ¢1)
and (D,, ¢,) be open sets over M. If there is a holomorphic mapping = of (D,, ¢;)
in (Dy, ¢,) such that p,=¢,07, we write (D, ¢;)<(D,, ¢;). By this relation the
set of all open sets over M forms a partially ordered set ®. A sequence {(Dp, ¢,);
p=1,2,3, .-} of open sets over M is called a monotonically increasing sequence
of open sets over M if (D, ©p)<(Dp+1, @p+1) for any p. Let {(Dy, ¢p); p=1,2,3, -}
be a monotonically increasing sequence of domains over M. Then it is a mono-
tonically increasing sequence in the partially ordered set ®. In the previous
paper [8] the author proved the unique existence of its supremum in ® and
called it the limit of the sequence {(D,, ¢,); p=1,2,3,--}. Let D be a complex
manifold and L be a complex Lie group. The sheaf over D of all germs of
holomorphic mappings in L is denoted by A;. Let U={U,;:=I} be an open
covering of D. We define an element {g,;} of Z'Wl, A;) by putting g,;=1 in
U;NU, for any i, jel. Then {g,,} defines an element of H'(D, A;), which is
called a trivial element of HY(D, Ag). If HY(D, A;) consists of only a trivial
element, we write H'(D, A;)=0 for the sake of brevity.

A complex manifold D is said to be analytically contractible if there is a
continuous mapping f(x, ¢) of DX[0,1] in D such that f(x, t) is a holomorphic
mapping of D in D for any fixed ¢<[0, 1], that f(x, 0) is the identity mapping
of D and that f(x, 1) is a constant mapping of D in D.

LEMMA 1. Let {(D,, ¢,); p=1,2,3, -} be a monotonically increasing sequ-
ence of open sets over a Stewn manifold S such that each D, 15 analytically con-
tractible and connected, (D, ¢) be its limit and ¢, be the canonical mapping of
D, in D for each p. Let L be a complex Lie group and a be an element of
H'\(D, Ayp). If the vmage t%(a) of a by the canonical mapping 5 of H'(D, AL)
in H'(Dp, A) induced by t, 15 a trivial element for any p, then a 1s a trivial
element of HY(D, A;).

Proof. We denote by 7% the canonical mapping of D, in D, for any p and
q with p=q. Let {Q,; p=1,2,3, -} be a sequence such that each @, is a rela-
tively compact subdomain of D, that 73,,(Q,)CQp+; for any p and that

D= Olrp(Q,,). Then (Qp, ¢,1@p) is a monotonically increasing sequence of do-
fied

mains over S and (D, ¢) is its limit. Let (@p, ¢,) be the envelope of holomorphy
of (Qp, ¢,1@,) over S and 4, be the canonical mapping of Q, in @, For any
p and ¢ with p=gq, there is a holomorphic mapping 72 of @1, in Gq such that
G,=0,0%2 and A,0(c?| Q,)=%204, Hence {(@,,, $,)} is a monotonically increas-
ing sequence of domains over S. Let (D, ¢) be its limit. Then (D, $) is the
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envelope of holomorphy of (D, ¢). Let 4 be the canonical mapping of D in D.
For any p there is a holomorphic mapping 7, of @,, in D such that G,=¢o7,
and ¢,=T7,o7? for any p and ¢ with p=q. Since D is a Stein manifold by
Docquier-Grauert [4], there is a sequence {P,; p=1,2,3, -} of relatively com-
pact analytic polycylinders P, defined by holomorphic functions in D such that

P, is a relatively compact subdomain of P,.; for any p and that D= Ule.
p=

Since (D, $) is the limit of (Q~p, &,), there is a sequence {v,; p=1,2, 3, --:} of
positive integers such that #,, maps a relatively compact subdomain P} of Q,,
biholomorphically onto P, for any p. Without loss of generality, we may assume
that v,=p.

Now we go to prove Lemma 1. Let {f,,} be an element of Z'(1, A.) for an
open covering U={U, ;ieI}of D such that {f,,} is an element corresponding to
a. We put z,'()={z;)(U,); 1} for each p. Then z;'(l) is an open covering
of D, and {f,;07,} is an element of Z'(z,'(W), A;). Since 7} (a) is trivial, there
is an element {f?} of C°(z;'(N), A.) for any p such that

fuet,=r(/0
in z3;'(U;N\U,) for any i, jel. If we put

fp'——(fzp)—l(fzpﬂo T£+1)

in 7zp(U,), then f? is a well-defined element of H°(D,, A;). Since D, is analyti-
cally contractible, H°(D,, A;) forms a connected topological group. Therefore,
any neighborhood of the neutral element of H°(D,, A.;) generates H°(D,, A).
Let exp be the exponential mapping of the Lie algebra C™ of L in L. There is
a polydisc neighborhood W of the origin of C™ such that exp maps an open
neighborhood of the closure of W biholomorphically onto a neighborhood of 1 in
L. We put W/=exp(W). There is a finite set {/?*} of holomorphic mappings
f?” of D, in L for any p such that

fr=11s7"

and the f?*(Q,)CW’ for any p and v». Then each (exp W') 'o(f?”|Q,) is a
holomorphic mapping of @, in C™ Since (J,, ¢,) is the envelope of holomorphy
of (Q,, ¢»|Qp), there is a holomorphic mapping F?* of Qp in C™ for any p and
v such that

(exp W) 1o (fP”|Qp)=F?”02,.
Then F?*o(%,|P,)™! is holomorphic mapping of P, in C™ for any p and ». Let
{ep; p=1,2,3, -} be a sequence of positive numbers. Since P, is holomorphic-

ally convex with respect to D, there is a holomorphic mapping G?* of D in C™
for any p and v such that

|F7o(7,| P} —GP*| <e,
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in P,_; for any p and ». We put
gP=Tl exp (GP”0 1)

in D for any p. Then g? is a holomorphic mapping of D in L which approxi-
mates f? in some sense. We put

gP=fP(g?tor,)(gP %ot,) -+ (gloty)

in 7,'(U,). Then {g?; p=1, 2,3, -} converges to a holomorphic mapping g, of
U, in L uniformly in any compact subset of U, if {¢,} is sufficiently small and
decreasing. Then {g.}=C°(1l, A;) satisfies

fi=g;8"
in U;nU, for any 1, jel Q.E.D.

§2. Domains exhausted by L-regular domains.

In the following Lemmata 2 and 3, we put

U,={(z,, 2,)€C?; 0< |z <], |z]| <1}
and
Us={(2;, 2,)€C?; |2,1<1,0<]|z|<1}.

The following Lemmata 2 and 3 are, respectively, Lemmata 6 and 10 in the
previous paper [11], so the proofs are omitted.

LEMMA 2. Let B be an (m, m)-matrix with a non-zero eigen-value. There are
not g, H'(U,, Agrem,e») (1=1, 2) such that

B -
exp( 7.7, )=g2g1‘
m U,NU,.
LEMMA 3. Let B be a non-zero (m, m)-matrix, whose eigen-values are all
zero. There are not g;€ H(U,, Agrim,c)) Such that

exp (exp (—;11—-1— —212—)B>=gzgf‘
m U,N\U,.

A complex manifold P is called an analytic polydisc if there is a biholomor-
phic mapping of a polydisc {w=(wy, wy, -+, Wy); |wi| <7y, (W] <7y, -+, |w,| <75}
(0=s=n) onto P. An analytic polydisc P is analytically contractible and H'(P, AL)
=0 for any complex Lie group L. Let D be an open subset of a complex mani-
fold M and L be a complex Lie group. If H(DNP, A;)=0 for any analytic
polydisc P in M, D is called an L-regular open set in M. A domain D in a
complex manifold M is said to be exhausted by L-regular open sets if there is a
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sequence {D,} of L-regular open sets D, in M such that D, is relatively com-

pact open subset of D,,, for any p and D= Ol D,.
p=

LEMMA 4. Let L be a complex Lie group whose dimension m is positive.
Let 2 be a domain in C™ exhausted by L-regular domains 2, in C*. Then 2 is
a Stewn manifold.

Proof. In case that n=1, there is nothing to prove. In case that n=2, each
£, and, therefore, £ is a Stein manifold by the previous paper [11]. So we
may assume that n=3. It suffices to prove that £ is p,-convex in the sense of
Docquier-Grauert [4] by Oka [14]. Assume that £ were not p,-convex. For
any positive numbers ¢ and ¢ with 1>¢>¢’ we put

D(e)z{w:(wlr w2y Sty wn)ecny lwll <1+€r lwzl <1(l:21 3, ctty n)}
V{w=(wy, wy, -, w,)€C™; 1—e<|w,| <l+e¢, |w,|<1l+e (1=2,3, -, n)},
D(e, )={w=(w,, Wy, -+, w,)€C™; |w,| <1+e—e', |w,| <l—e’ 1=2, 3, -+, n)

Hw=(w,w,, -w,)€C”; 1—e+e' <|w,| <l+e—¢,|w,| <l4+e—e' 1=2,3,--,n)}
and
E(a):{w:(wly w2y Tty wn)ECn: ]wll <1+€ (lzzy 3: B n)} .

Then there are a positive number ¢ and a biholomorphic mapping = of E(¢) in C"
such that z(D(¢)) is a subdomain of £, that there is a point a=(ay, a,, -+, a,)
of C* such that its mage z(a) is a boundary point of z7(D(¢)) and £ at the same
time and that it satisfies |a,|<1—¢, |a,|=1, |a,| <1+e (1=3, 4, ---, n). Since the
L-regularity and the p,-convexity which is a local property are invariant under
the analytic isomorphism 7z, we may assume that 7z is the identity mapping of
E(s). We put
H={(wy, wy, 0, -+, 0)C"; (wy, wy)#(ay, ay)}.

There are strictly monotonically decreasing sequences {¢,} and {0,} of positive
numbers such that D’(e,)=DC(e, ¢,)C 82, and the set

Gp_—‘{w:(wlr Wa, 2+, wn)E‘Qp; lwl‘ <5p (1'=3y 47 "ty n)}

satisfies (w,, w,)#(a,, a,) for any point (w,, w,, -+, w,) of G, and that ¢,—0 and
0,—0 as p—oo.

Let U={U,; i€} be any open covering of H and {f,;(w,, w,)} be any ele-
ment of Z'(, A;). We define an open covering B,={V?} of G, for any p by
putting

Ve={w=(w,, Wy, -+, W) EGp; (W1, Wy, 0, -+, 0)U,}.

for any 1=/. Then {f,;(w,, w,)} defines an element of Z'(B,, A;). Since 2, is
L-regular in C", we have H'(G,, A;)=0. There is an element {g?} of C°(B?, A;)
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for any p such that
flj(wli w2):g€ (wh er Tty wn)(gg’(wls w2y tty wn>)~1
in V?PN\V? for any 1, yel. We put

W={V?n\D'(e,)NH; 11}
and
UNDENH={UND(e)NH; 1€}

for any ». Then U? is an open covering of D'(e,)NH and {g?(w,, w,, 0, ---, 0)}
is an element of C°(1?, A;) such that

fl](wly wz):g;’(wu wa Oy Tty O) (gf(wly w2’ 07 ) 0))_1

in V?2Nn\V?2n\D’'(e,)NH. Since {D'(¢,)NH; p=1,2,3, -} is a monotonically in-
creasing sequence of analytically contractible open sets in C* and since D(e)N\H
is its limit, by Lemma 1 there is an element {f,} of C°UND(e)NH, A;) such that

flj:fj z_l

in U,NU;ND(e)NH for any 1, jl.

Now we continue to prove Lemma 4. If L is abelian, by the previous paper
[11] of the author and Kazama, the limit £ of L-regular domains £, is a Stein
manifold. So we may assume that L is a non-abelian connected m-dimensional
complex Lie group. Let €L(m, C) and L be, respectively, the Lie algebras of
GL(m,C) and L. Let exp:&L(m,C)—GL(m,C) and exp:-L—L be the ex-
ponential mappings. Let ad: L—G L(m, C) and Ad: L—GL(m, C) be the adjoint
representations. We have

Adexp (tX)=exp (t ad X)

for any teC and Xe.£. Since L is not abelian, there is an element X of £

such that
B=ad X

is a non-zero (m, m)-matrix. We consider an open covering U={H,, H,} of the
H={w=(w,, w,, 0, ---, 0)&C"; (w,, wy)eC*—{(a,, a,)}} defined by

H={w=(w,, w,, 0, ---,0)€C"; w;+a,} (i=1, 2).

Two cases may occur. In case that B has a non-zero eigen-value, we put

1
wy—a)(w,—a,)

k(w,, wy)= (

in H;NH, And, in case that all eigen-values of B are zero, we put

k(wnwz)=exp( L T— )

w;—a, Wy—a,
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in HyN\H,. Then, in each case, k2 is a holomorphic function in H;\H, There-
fore exp (k(w,, w,)X)e H'(H,N\H,, A;) defines an element of Z*(1l, A;). By the
above argument, there are f;€ H'(H,N\D(e), A.) and f,e H(H,N\D(e), A;) such
that
exp (k(wy, w)X)=/o/1"
ih HinH,nD(e). We put
gt:Ad fz

in H,n\D(e) (:=1,2). Then g €H(H,ND(), Asrim,er) and g,eH(H,ND(e),
JGL(m,C)) SatiSfY
exp (k(wy, w,)B)=g, 81"

in H,nH,ND(¢). Hence each element of the matrix g,, detg, and 1/det g, are
holomorphic functions in {(w,, w,, 0, ---, 0)€C™; |w,| <l+e, |w,| <1} {(w,, w,, 0,
-, 0)2C"; 1< |w,| <1+e, wy,#a,}. g is continued to an element of H°(H,N\E(e),
Agrm,cy). Hence

gi=exp(— b )e
(w;—a)(w,—a,) 2
is holomorphic in {(wy, w,, 0, -+, 0)€C™; Jw,| <l+e, 1<|w,| <14} I {(w,, w,, 0,
o, 00€C™; |w,| <146, wy#a,, |w,| <l4e, w,#a,}. Hence g; is continued to an
element of H°(H;NE(¢), Asrm,c;)- Each g, is continued analytically to an ele-
ment of H'(H;NE(e), Agrim,er). Since C*x{(0, 0, -+, 0)}NE(e) is an open neigh-
borhood of (a,, a,, 0, -=-, 0) in C?*X{(0, 0, ---, 0)} and since (H,N\E(e))\J(H,NE(e))
=C*x{(0,0, -, 0O}NE(e)—{(ay, a,, 0, ---, 0)}, this contradicts to Lemma 2 or
Lemma 3. Q.E.D.

§3. L-regular domain with smooth boundary.

An open subset G of a complex manifold M is said to have smooth boundary
if for any point x° of the boundary 0G of G in M there are a neighborhood V
of x° in M and a real-valued differentiable function g in V such that

IGNV={xeV; g(x)=0}
and grad g#0 in V.
THEOREM. Let L be a complex Lie group with positive dimension. Let D

be an L-regular domain with smooth boundary in a Stein manifold S. Then D
is a Stewn manifold.

Proof. Let s° be any boundary point of D in S. There are n holomorphic
functions z,(s), z,(s), -+, 2,(s) in S such that they form a local coordinate system
in a neighborhood V of x° and that z,(s")=0 (i=1, 2, ---,n) where n is the
dimension of S. For a sufficiently small ¢, we put

U={seV; |z(s)| <e}
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and we may assume that there is a real-valued differentiable function g in
variables z;, 2,, -+, Z,-1, Yo such that

aDﬂU-——{SEV; -xn:g(zly 2ttty Bp-1y yn)}

where x, and y, are, respectively, the real and imaginary parts of z,. It suffices
to consider the case that

DNU={seV; x,<g(2y, 25, ***, Zn-1, Yn)} -
For 0={<1 we put

E={seV; x,<g(zy, 2o, -+, Zy-1, Yn)—1e/2,

|z,| <(1—t)e/2 (1=1,2, -, n)}.

Then E, is an L-regular open set for 0=t{<1 and E, is exhausted by them.
Hence E, is a Stein manifold by Lemma 4. Therefore D is pseudoconvex in the
sense of Cartan, that is, p,-convex in the sense of Docquier-Grauert [4]. There-
fore D is a Stein manifold by Docquier-Grauert [4].
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