DOMAIN WITH MANY VANISHING COHOMOLOGY SETS

Dedicated to Professor Yûsaku Komatu on his sixtieth birthday

By Joji Kajiwara

Introduction.

The aim of this paper is to generalize a previous result [10] of the author. Oka [12] proved that a domain of holomorphy in \mathbb{C}^n is a Cousin-I domain. Oka [13] also proved that a Cousin-II distribution in a domain of holomorphy in \mathbb{C}^n has an analytic solution if and only if it has a topological solution. Grauert [5] proved that the canonical mapping of $H^1(X, \mathcal{A}_L)$ in $H^1(X, \mathcal{C}_L)$ is bijective for a Stein space X and a complex Lie group L where \mathcal{A}_L and \mathcal{C}_L are, respectively, the sheaves over X of all germs of holomorphic and continuous mappings in L. Roughly talking, many cohomology sets have the possibility of vanishing in a Stein space.

Conversely, by Cartain [2] and Behnke-Stein [1], a Cousin-I domain in C^2 is always a domain of holomorphy. By Cartan [3] $C^3 - \{(0, 0, 0)\}$ is a Cousin-I domain which is not a domain of holomorphy. By Thullen [15] $D = \{(z_1, z_2) \in C^2; |z_1| < 1, |z_2| < 1\} - \{(0, 0)\}$ is a Cousin-II domain which is not a domain of holomorphy. By a previous remark [6] of the author, the Thullen's domain D is an example of a Cousin-II domain which satisfies $H^1(D, \mathcal{O}^*) \neq 0$ for the sheaf \mathcal{O}^* of multiplicative groups of all germs of never vanishing holomorphic functions. By the previous result [11] of the author and Kazama, however, a subdomain X of a two-dimensional Stein manifold is a Stein manifold if X satisfies $H^1(X, \mathcal{A}_L) = 0$ for a complex Lie group L. In the case of higher dimension, the author [10] proved that a subdomain X of a Stein manifold S with real one-codimensional smooth boundary is a Stein manifold, if, for an abelian complex Lie group L, Xsatisfies $H^1(X \cap P, \mathcal{A}_L) = 0$ for all analytic polydisc P in S.

The aim of this paper is to prove that a subdomain X of a Stein manifold S with real one-codimensional smooth boundary is a Stein manifold if, for a complex Lie group L, X satisfies $H^1(X \cap P, \mathcal{A}_L)=0$ for all analytic polydisc P in S. The above boundary condition for X can not be omitted as the above Cartan's example $C^3 - \{(0, 0, 0)\}$ shows. Roughly talking, a subdomain of a Stein manifold with many vanishing cohomology sets is also a Stein manifold. This is the principle which the author wants to maintain. In the proof, we use Lemmata and methods used in [11] and [9]. In this occasion the author ex-

Received Oct. 1, 1973.

presses his hearty gratitude to Professor Y. Komatu who gives his continuous and kind encouragements since 1957.

§1. Monotonically increasing sequence of domains.

Let M be a complex manifold. If φ is a locally biholomorphic mapping of a complex manifold D in M, (D, φ) is called an open set over M. Let (D_1, φ_1) and (D_2, φ_2) be open sets over M. If there is a holomorphic mapping τ of (D_1, φ_1) in (D_2, φ_2) such that $\varphi_1 = \varphi_2 \circ \tau$, we write $(D_1, \varphi_1) < (D_2, \varphi_2)$. By this relation the set of all open sets over M forms a partially ordered set \mathfrak{D} . A sequence $\{(D_p, \varphi_p)\}$; $p=1, 2, 3, \dots$ of open sets over M is called a monotonically increasing sequence of open sets over M if $(D_p, \varphi_p) < (D_{p+1}, \varphi_{p+1})$ for any p. Let $\{(D_p, \varphi_p); p=1, 2, 3, \dots\}$ be a monotonically increasing sequence of domains over M. Then it is a monotonically increasing sequence in the partially ordered set \mathfrak{D} . In the previous paper [8] the author proved the unique existence of its supremum in \mathfrak{D} and called it the *limit of the sequence* $\{(D_p, \varphi_p); p=1, 2, 3, \dots\}$. Let D be a complex manifold and L be a complex Lie group. The sheaf over D of all germs of holomorphic mappings in L is denoted by \mathcal{A}_L . Let $\mathfrak{U} = \{U_i ; i \in I\}$ be an open covering of D. We define an element $\{g_{ij}\}$ of $Z^1(\mathfrak{U}, \mathcal{A}_L)$ by putting $g_{ij}=1$ in $U_i \cap U_j$ for any $i, j \in I$. Then $\{g_{ij}\}$ defines an element of $H^1(D, \mathcal{A}_L)$, which is called a trivial element of $H^1(D, \mathcal{A}_L)$. If $H^1(D, \mathcal{A}_L)$ consists of only a trivial element, we write $H^1(D, \mathcal{A}_L)=0$ for the sake of brevity.

A complex manifold D is said to be *analytically contractible* if there is a continuous mapping f(x, t) of $D \times [0, 1]$ in D such that f(x, t) is a holomorphic mapping of D in D for any fixed $t \in [0, 1]$, that f(x, 0) is the identity mapping of D and that f(x, 1) is a constant mapping of D in D.

LEMMA 1. Let $\{(D_p, \varphi_p); p=1, 2, 3, \cdots\}$ be a monotonically increasing sequence of open sets over a Stein manifold S such that each D_p is analytically contractible and connected, (D, φ) be its limit and τ_p be the canonical mapping of D_p in D for each p. Let L be a complex Lie group and α be an element of $H^1(D, \mathcal{A}_L)$. If the image $\tau_p^*(\alpha)$ of α by the canonical mapping τ_p^* of $H^1(D, \mathcal{A}_L)$ induced by τ_p is a trivial element for any p, then α is a trivial element of $H^1(D, \mathcal{A}_L)$.

Proof. We denote by τ_q^p the canonical mapping of D_p in D_q for any p and q with $p \leq q$. Let $\{Q_p; p=1, 2, 3, \cdots\}$ be a sequence such that each Q_p is a relatively compact subdomain of D_p , that $\tau_{p+1}^p(Q_p) \subset Q_{p+1}$ for any p and that $D = \bigcup_{p=1}^{\infty} \tau_p(Q_p)$. Then $(Q_p, \varphi_p | Q_p)$ is a monotonically increasing sequence of domains over S and (D, φ) is its limit. Let $(\tilde{Q}_p, \tilde{\varphi}_p)$ be the envelope of holomorphy of $(Q_p, \varphi_p | Q_p)$ over S and λ_p be the canonical mapping of Q_p in \tilde{Q}_p . For any p and q with $p \leq q$, there is a holomorphic mapping $\tilde{\tau}_q^p$ of \tilde{Q}_p in \tilde{Q}_q such that $\tilde{\varphi}_p = \tilde{\varphi}_q \circ \tilde{\tau}_q^p$ and $\lambda_q \circ (\tau_q^p | Q_p) = \tilde{\tau}_q^p \circ \lambda_p$. Hence $\{(\tilde{Q}, \tilde{\varphi})\}$ is a monotonically increasing sequence of domains over S. Let $(\tilde{D}, \tilde{\varphi})$ be its limit. Then $(\tilde{D}, \tilde{\varphi})$ is the

JOJI KAJIWARA

envelope of holomorphy of (D, φ) . Let λ be the canonical mapping of D in \tilde{D} . For any p there is a holomorphic mapping $\tilde{\tau}_p$ of \tilde{Q}_p in \tilde{D} such that $\tilde{\varphi}_p = \tilde{\varphi} \circ \tilde{\tau}_p$ and $\tilde{\varphi}_p = \tilde{\tau}_q \circ \tau_q^p$ for any p and q with $p \leq q$. Since \tilde{D} is a Stein manifold by Docquier-Grauert [4], there is a sequence $\{P_p; p=1, 2, 3, \cdots\}$ of relatively compact analytic polycylinders P_p defined by holomorphic functions in \tilde{D} such that P_p is a relatively compact subdomain of P_{p+1} for any p and that $\tilde{D} = \bigcup_{p=1}^{\infty} P_p$. Since $(\tilde{D}, \tilde{\varphi})$ is the limit of $(\tilde{Q}_p, \tilde{\varphi}_p)$, there is a sequence $\{\nu_p; p=1, 2, 3, \cdots\}$ of positive integers such that $\tilde{\tau}_{\nu_p}$ maps a relatively compact subdomain P'_p of Q_{ν_p} biholomorphically onto P_p for any p. Without loss of generality, we may assume that $\nu_p = p$.

Now we go to prove Lemma 1. Let $\{f_{ij}\}$ be an element of $Z^1(\mathfrak{U}, \mathcal{A}_L)$ for an open covering $\mathfrak{U} = \{U_i ; i \in I\}$ of D such that $\{f_{ij}\}$ is an element corresponding to α . We put $\tau_p^{-1}(\mathfrak{U}) = \{\tau_p^{-1}(U_i); i \in I\}$ for each p. Then $\tau_p^{-1}(\mathfrak{U})$ is an open covering of D_p and $\{f_{ij} \circ \tau_p\}$ is an element of $Z^1(\tau_p^{-1}(\mathfrak{U}), \mathcal{A}_L)$. Since $\tau_p^*(\alpha)$ is trivial, there is an element $\{f_i^p\}$ of $C^0(\tau_p^{-1}(\mathfrak{U}), \mathcal{A}_L)$ for any p such that

$$f_{ij} \circ \tau_p = f_j^p (f_i^p)^{-1}$$

in $\tau_p^{-1}(U_i \cap U_j)$ for any $i, j \in I$. If we put

$$f^{p} = (f_{i}^{p})^{-1} (f_{i}^{p+1} \circ \tau_{p+1}^{p})$$

in $\tau_p^{-1}(U_i)$, then f^p is a well-defined element of $H^0(D_p, \mathcal{A}_L)$. Since D_p is analytically contractible, $H^0(D_p, \mathcal{A}_L)$ forms a connected topological group. Therefore, any neighborhood of the neutral element of $H^0(D_p, \mathcal{A}_L)$ generates $H^0(D_p, \mathcal{A}_L)$. Let exp be the exponential mapping of the Lie algebra C^m of L in L. There is a polydisc neighborhood W of the origin of C^m such that exp maps an open neighborhood of the closure of W biholomorphically onto a neighborhood of 1 in L. We put $W' = \exp(W)$. There is a finite set $\{f^{p,\nu}\}$ of holomorphic mappings $f^{p,\nu}$ of D_p in L for any p such that

$$f^p = \prod f^{p, v}$$

and the $f^{p,\nu}(Q_p) \subset W'$ for any p and ν . Then each $(\exp W')^{-1} \circ (f^{p,\nu}|Q_p)$ is a holomorphic mapping of Q_p in \mathbb{C}^m . Since $(\tilde{Q}_p, \tilde{\varphi}_p)$ is the envelope of holomorphy of $(Q_p, \varphi_p | Q_p)$, there is a holomorphic mapping $F^{p,\nu}$ of \tilde{Q}_p in \mathbb{C}^m for any p and ν such that

$$(\exp W')^{-1} \circ (f^{p,\nu} | Q_p) = F^{p,\nu} \circ \lambda_p.$$

Then $F^{p,\nu} \circ (\tilde{\tau}_p | P'_p)^{-1}$ is holomorphic mapping of P_p in C^m for any p and ν . Let $\{\varepsilon_p; p=1, 2, 3, \cdots\}$ be a sequence of positive numbers. Since P_p is holomorphically convex with respect to \tilde{D} , there is a holomorphic mapping $G^{p,\nu}$ of D in C^m for any p and ν such that

$$|F^{p} \circ (\tilde{\tau}_{p} | P'_{p})^{-1} - G^{p, \nu}| < \varepsilon_{p}$$

260

in P_{p-1} for any p and ν . We put

$$g^p = \prod \exp(G^{p,\nu} \circ \lambda)$$

in D for any p. Then g^p is a holomorphic mapping of D in L which approximates f^p in some sense. We put

$$g_i^p = f_i^p (g^{p-1} \circ \tau_p) (g^{p-2} \circ \tau_p) \cdots (g^1 \circ \tau_p)$$

in $\tau_p^{-1}(U_i)$. Then $\{g_i^p; p=1, 2, 3, \cdots\}$ converges to a holomorphic mapping g_i of U_i in L uniformly in any compact subset of U_i if $\{\varepsilon_p\}$ is sufficiently small and decreasing. Then $\{g_i\} \in C^0(\mathfrak{U}, \mathcal{A}_L)$ satisfies

$$f_{ij} = g_j g_i^{-1}$$

in $U_i \cap U_j$ for any $i, j \in I$.

§2. Domains exhausted by L-regular domains.

In the following Lemmata 2 and 3, we put

$$U_1 = \{(z_1, z_2) \in \mathbb{C}^2; 0 < |z_1| < 1, |z_2| < 1\}$$

and

$$U_2 = \{(z_1, z_2) \in \mathbb{C}^2; |z_1| < 1, 0 < |z_2| < 1\}.$$

The following Lemmata 2 and 3 are, respectively, Lemmata 6 and 10 in the previous paper [11], so the proofs are omitted.

LEMMA 2. Let B be an (m, m)-matrix with a non-zero eigen-value. There are not $g_i \in H^0(U_i, \mathcal{A}_{GL(m,C)})$ (i=1, 2) such that

$$\exp\left(\frac{B}{z_1 z_2}\right) = g_2 g_1^{-1}$$

in $U_1 \cap U_2$.

LEMMA 3. Let B be a non-zero (m, m)-matrix, whose eigen-values are all zero. There are not $g_i \in H^0(U_i, \mathcal{A}_{GL(m,C)})$ such that

$$\exp\left(\exp\left(\frac{1}{z_1}+\frac{1}{z_2}\right)B\right)=g_2g_1^{-1}$$

in $U_1 \cap U_2$.

A complex manifold P is called an *analytic polydisc* if there is a biholomorphic mapping of a polydisc $\{w=(w_1, w_2, \dots, w_n); |w_1| < r_1, |w_2| < r_2, \dots, |w_s| < r_s\}$ $(0 \le s \le n)$ onto P. An analytic polydisc P is analytically contractible and $H^1(P, \mathcal{A}_L) = 0$ for any complex Lie group L. Let D be an open subset of a complex manifold M and L be a complex Lie group. If $H^1(D \cap P, \mathcal{A}_L)=0$ for any analytic polydisc P in M, D is called an L-regular open set in M. A domain D in a complex manifold M is said to be exhausted by L-regular open sets if there is a

Q. E. D.

sequence $\{D_p\}$ of *L*-regular open sets D_p in *M* such that D_p is relatively compact open subset of D_{p+1} for any p and $D = \bigcup_{n=1}^{\infty} D_p$.

LEMMA 4. Let L be a complex Lie group whose dimension m is positive. Let Ω be a domain in \mathbb{C}^n exhausted by L-regular domains Ω_p in \mathbb{C}^n . Then Ω is a Stein manifold.

Proof. In case that n=1, there is nothing to prove. In case that n=2, each Ω_p and, therefore, Ω is a Stein manifold by the previous paper [11]. So we may assume that $n \ge 3$. It suffices to prove that Ω is p_{τ} -convex in the sense of Docquier-Grauert [4] by Oka [14]. Assume that Ω were not p_{τ} -convex. For any positive numbers ε and ε' with $1 > \varepsilon > \varepsilon'$ we put

$$D(\varepsilon) = \{w = (w_1, w_2, \dots, w_n) \in \mathbb{C}^n ; |w_1| < 1 + \varepsilon, |w_1| < 1(\iota = 2, 3, \dots, n)\}$$

$$\cup \{w = (w_1, w_2, \dots, w_n) \in \mathbb{C}^n ; 1 - \varepsilon < |w_1| < 1 + \varepsilon, |w_1| < 1 + \varepsilon \ (\iota = 2, 3, \dots, n)\},$$

$$D(\varepsilon, \varepsilon') = \{w = (w_1, w_2, \dots, w_n) \in \mathbb{C}^n ; |w_1| < 1 + \varepsilon - \varepsilon', |w_1| < 1 - \varepsilon' \ (\iota = 2, 3, \dots, n)$$

$$\cup \{w = (w_1, w_2, \dots, w_n) \in \mathbb{C}^n ; 1 - \varepsilon + \varepsilon' < |w_1| < 1 + \varepsilon - \varepsilon', |w_1| < 1 + \varepsilon - \varepsilon' \ (\iota = 2, 3, \dots, n)\}$$

and

$$E(\varepsilon) = \{ w = (w_1, w_2, \cdots, w_n) \in \mathbb{C}^n ; |w_1| < 1 + \varepsilon \ (i = 2, 3, \cdots, n) \} .$$

Then there are a positive number ε and a biholomorphic mapping τ of $E(\varepsilon)$ in \mathbb{C}^n such that $\tau(D(\varepsilon))$ is a subdomain of Ω , that there is a point $a=(a_1, a_2, \dots, a_n)$ of \mathbb{C}^n such that its mage $\tau(a)$ is a boundary point of $\tau(D(\varepsilon))$ and Ω at the same time and that it satisfies $|a_1| \leq 1-\varepsilon$, $|a_2|=1$, $|a_1| < 1+\varepsilon$ $(i=3, 4, \dots, n)$. Since the *L*-regularity and the p_{τ} -convexity which is a local property are invariant under the analytic isomorphism τ , we may assume that τ is the identity mapping of $E(\varepsilon)$. We put

$$H = \{ (w_1, w_2, 0, \dots, 0) \in \mathbb{C}^n ; (w_1, w_2) \neq (a_1, a_2) \}.$$

There are strictly monotonically decreasing sequences $\{\varepsilon_p\}$ and $\{\delta_p\}$ of positive numbers such that $D'(\varepsilon_p) = D(\varepsilon, \varepsilon_p) \subset \Omega_p$ and the set

$$G_p = \{w = (w_1, w_2, \dots, w_n) \in \Omega_p; |w_i| < \delta_p \ (i=3, 4, \dots, n)\}$$

satisfies $(w_1, w_2) \neq (a_1, a_2)$ for any point (w_1, w_2, \dots, w_n) of G_p and that $\varepsilon_p \rightarrow 0$ and $\delta_p \rightarrow 0$ as $p \rightarrow \infty$.

Let $\mathfrak{U} = \{U_i; i \in I\}$ be any open covering of H and $\{f_{ij}(w_1, w_2)\}$ be any element of $Z^1(\mathfrak{U}, \mathcal{A}_L)$. We define an open covering $\mathfrak{B}_p = \{V_i^p\}$ of G_p for any p by putting

$$V_i^p = \{ w = (w_1, w_2, \dots, w_n) \in G_p ; (w_1, w_2, 0, \dots, 0) \in U_i \}$$

for any $i \in I$. Then $\{f_{ij}(w_1, w_2)\}$ defines an element of $Z^1(\mathfrak{B}_p, \mathcal{A}_L)$. Since Ω_p is *L*-regular in \mathbb{C}^n , we have $H^1(\mathbb{G}_p, \mathcal{A}_L)=0$. There is an element $\{g_i^p\}$ of $\mathbb{C}^0(\mathfrak{B}^p, \mathcal{A}_L)$

262

for any p such that

 $f_{ij}(w_1, w_2) = g_j^p(w_1, w_2, \cdots, w_n)(g_i^p(w_1, w_2, \cdots, w_n))^{-1}$

in $V_i^p \cap V_j^p$ for any $i, j \in I$. We put

$$\mathfrak{U}^p = \{ V_i^p \cap D'(\varepsilon_p) \cap H; i \in I \}$$

and

$$\mathfrak{U} \cap D(\varepsilon) \cap H = \{ U_i \cap D(\varepsilon) \cap H; i \in I \}$$

for any p. Then \mathfrak{U}^p is an open covering of $D'(\varepsilon_p) \cap H$ and $\{g_i^p(w_1, w_2, 0, \dots, 0)\}$ is an element of $C^0(\mathfrak{U}^p, \mathcal{A}_L)$ such that

$$f_{i}(w_1, w_2) = g_i^p(w_1, w_2, 0, \dots, 0) (g_i^p(w_1, w_2, 0, \dots, 0))^{-1}$$

in $V_i^p \cap V_j^p \cap D'(\varepsilon_p) \cap H$. Since $\{D'(\varepsilon_p) \cap H; p=1, 2, 3, \cdots\}$ is a monotonically increasing sequence of analytically contractible open sets in C^2 and since $D(\varepsilon) \cap H$ is its limit, by Lemma 1 there is an element $\{f_i\}$ of $C^o(\mathfrak{U} \cap D(\varepsilon) \cap H, \mathcal{A}_L)$ such that

 $f_{ij} = f_j f_i^{-1}$

in $U_i \cap U_j \cap D(\varepsilon) \cap H$ for any $i, j \in I$.

Now we continue to prove Lemma 4. If L is abelian, by the previous paper [11] of the author and Kazama, the limit \mathcal{Q} of L-regular domains \mathcal{Q}_p is a Stein manifold. So we may assume that L is a non-abelian connected *m*-dimensional complex Lie group. Let $\mathcal{GL}(m, \mathbb{C})$ and \mathcal{L} be, respectively, the Lie algebras of $GL(m, \mathbb{C})$ and L. Let $\exp: \mathcal{GL}(m, \mathbb{C}) \rightarrow GL(m, \mathbb{C})$ and $\exp: \mathcal{L} \rightarrow \mathcal{L}$ be the exponential mappings. Let $ad: \mathcal{L} \rightarrow \mathcal{GL}(m, \mathbb{C})$ and $Ad: L \rightarrow GL(m, \mathbb{C})$ be the adjoint representations. We have

$$Ad \exp(tX) = \exp(t a d X)$$

for any $t \in C$ and $X \in \mathcal{L}$. Since L is not abelian, there is an element X of \mathcal{L} such that

$$B = ad X$$

is a non-zero (m, m)-matrix. We consider an open covering $\mathfrak{U} = \{H_1, H_2\}$ of the $H = \{w = (w_1, w_2, 0, \dots, 0) \in \mathbb{C}^n; (w_1, w_2) \in \mathbb{C}^2 - \{(a_1, a_2)\}\}$ defined by

$$H_i = \{ w = (w_1, w_2, 0, \dots, 0) \in \mathbb{C}^n ; w_i \neq a_i \}$$
 $(i=1, 2).$

Two cases may occur. In case that B has a non-zero eigen-value, we put

$$k(w_1, w_2) = \frac{1}{(w_1 - a_1)(w_2 - a_2)}$$

in $H_1 \cap H_2$. And, in case that all eigen-values of B are zero, we put

$$k(w_1, w_2) = \exp\left(\frac{1}{w_1 - a_1} + \frac{1}{w_2 - a_2}\right)$$

JOJI KAJIWARA

in $H_1 \cap H_2$. Then, in each case, k is a holomorphic function in $H_1 \cap H_2$. Therefore $\exp(k(w_1, w_2)X) \in H^0(H_1 \cap H_2, \mathcal{A}_L)$ defines an element of $Z^1(\mathfrak{U}, \mathcal{A}_L)$. By the above argument, there are $f_1 \in H^0(H_1 \cap D(\varepsilon), \mathcal{A}_L)$ and $f_2 \in H^0(H_2 \cap D(\varepsilon), \mathcal{A}_L)$ such that

$$\exp(k(w_1, w_2)X) = f_2 f_1^{-1}$$

ih $H_1 \cap H_2 \cap D(\varepsilon)$. We put

$$g_i = \operatorname{Ad} f_i$$

in $H_i \cap D(\varepsilon)$ (i=1, 2). Then $g_1 \in H^0(H_1 \cap D(\varepsilon), \mathcal{A}_{GL(m,C)})$ and $g_2 \in H^0(H_2 \cap D(\varepsilon), \mathcal{A}_{GL(m,C)})$ satisfy

$$\exp(k(w_1, w_2)B) = g_2 g_1^{-1}$$

in $H_1 \cap H_2 \cap D(\varepsilon)$. Hence each element of the matrix g_2 , det g_2 and $1/\det g_2$ are holomorphic functions in $\{(w_1, w_2, 0, \dots, 0) \in \mathbb{C}^n; |w_1| < 1+\varepsilon, |w_2| < 1\} \cup \{(w_1, w_2, 0, \dots, 0) \ni \mathbb{C}^n; 1 < |w_1| < 1+\varepsilon, |w_2 \neq a_2\}$. g_2 is continued to an element of $H^{\circ}(H_2 \cap E(\varepsilon), \mathcal{A}_{GL(m,\mathbb{C})})$. Hence

$$g_1 = \exp\left(-\frac{B}{(w_1 - a_1)(w_2 - a_2)}\right)g_2$$

is holomorphic in $\{(w_1, w_2, 0, \dots, 0) \in \mathbb{C}^n; |w_2| < 1+\varepsilon, 1 < |w_1| < 1+\varepsilon\} \cup \{(w_1, w_2, 0, \dots, 0) \in \mathbb{C}^n; |w_2| < 1+\varepsilon, w_2 \neq a_2, |w_1| < 1+\varepsilon, w_1 \neq a_2\}$. Hence g_1 is continued to an element of $H^0(H_1 \cap E(\varepsilon), \mathcal{A}_{GL(m,\mathbb{C})})$. Each g_1 is continued analytically to an element of $H^0(H_1 \cap E(\varepsilon), \mathcal{A}_{GL(m,\mathbb{C})})$. Since $\mathbb{C}^2 \times \{(0, 0, \dots, 0)\} \cap E(\varepsilon)$ is an open neighborhood of $(a_1, a_2, 0, \dots, 0)$ in $\mathbb{C}^2 \times \{(0, 0, \dots, 0)\}$ and since $(H_1 \cap E(\varepsilon)) \cup (H_2 \cap E(\varepsilon)) = \mathbb{C}^2 \times \{(0, 0, \dots, 0)\} \cap E(\varepsilon) - \{(a_1, a_2, 0, \dots, 0)\}$, this contradicts to Lemma 2 or Lemma 3. Q. E. D.

\S 3. L-regular domain with smooth boundary.

An open subset G of a complex manifold M is said to have smooth boundary if for any point x^0 of the boundary ∂G of G in M there are a neighborhood V of x^0 in M and a real-valued differentiable function g in V such that

$$\partial G \cap V = \{x \in V; g(x) = 0\}$$

and grad $g \neq 0$ in V.

THEOREM. Let L be a complex Lie group with positive dimension. Let D be an L-regular domain with smooth boundary in a Stein manifold S. Then D is a Stein manifold.

Proof. Let s^0 be any boundary point of D in S. There are n holomorphic functions $z_1(s), z_2(s), \dots, z_n(s)$ in S such that they form a local coordinate system in a neighborhood V of x^0 and that $z_i(s^0)=0$ $(i=1, 2, \dots, n)$ where n is the dimension of S. For a sufficiently small ε , we put

$$U = \{s \in V ; |z_i(s)| < \varepsilon\}$$

264

and we may assume that there is a real-valued differentiable function g in variables $z_1, z_2, \dots, z_{n-1}, y_n$ such that

$$\partial D \cap U = \{ s \in V ; x_n = g(z_1, z_2, \cdots, z_{n-1}, y_n) \}$$

where x_n and y_n are, respectively, the real and imaginary parts of z_n . It suffices to consider the case that

$$D \cap U = \{s \in V; x_n < g(z_1, z_2, \cdots, z_{n-1}, y_n)\}.$$

For $0 \leq t < 1$ we put

$$\begin{split} E_t &= \{ s \in V \; ; \; x_n < g(z_1, \, z_2, \, \cdots, \, z_{n-1}, \, y_n) - t \varepsilon/2 \; , \\ &|z_i| < (1-t)\varepsilon/2 \; (i=1, \, 2, \, \cdots, \, n) \} \; . \end{split}$$

Then E_t is an L-regular open set for $0 \le t < 1$ and E_0 is exhausted by them. Hence E_0 is a Stein manifold by Lemma 4. Therefore D is pseudoconvex in the sense of Cartan, that is, p_4 -convex in the sense of Docquier-Grauert [4]. Therefore D is a Stein manifold by Docquier-Grauert [4].

REFERENCES

- [1] BEHNKE, H. UND K. STEIN, Analytische Funktionen mehrerer Veränderlichen zu vorgebenen Null- und Pol-stellenflähen. Jber. D. M. V., 47 (1937), 177-192.
- [2] CARTAN, H., Les problèmes de Poincaré et de Cousin pour les fonctions de plusieurs variables complexes. C. R. Paris, 198 (1934), 1284-1287.
- [3] CARTAN, H., Sur les premières problèmes de Cousin. ibid., 207 (1938), 558-560.
- [4] DOCQUIER, F. UND H. GRAUERT, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeit. Math. Ann., 140 (1960), 94-123.
- [5] GRAUERT, H., Analytische Faserungen über holomorph-volständigen Räume. Math. Ann., 135 (1958), 263-273.
- [6] KAJIWARA, J., On Thullen's example of Cousin-II domain. Sci. Rep. Kanazawa Univ., 9 (1964), 1-8.
- [7] KAJIWARA, J., Some characterizations of Stein manifold through the notion of locally regular boundary points. Kodai Math. Sem. Rep., 16 (1964), 191-198.
- [8] KAJIWARA, J., On the limit of a monotonous sequence of Cousin's domains.
 J. Math. Soc. Jap., 17 (1965), 36-46.
- [9] KAJIWARA, J., Relations between domains of holomorphy and multiple Cousin's problems. Ködai Math. Sem. Rep., 17 (1965), 261-272.
- [10] KAJIWARA, J., Some extension of Cartan-Behnke-Stein's theorem. Pub. Res. Inst. Math. Sci. Kyoto Univ., 2 (1966), 133-156.
- [11] KAJIWARA, J. AND H. KAZAMA, Two dimensional complex manifold with vanishing cohomology set. Math. Ann., 204 (1973), 1-12.
- [12] OKA, K., Sur les fonctions analytiques de plusieurs variables. II. Domaine d'holomorphie. J. Sci. Hiroshima Univ., 7 (1937), 115-130.

JOJI KAJIWARA

- [13] ΟκΑ, Κ., ——— III. Deuxième problème de Cousin. ibid., 9 (1939), 7-19.
 [14] ΟκΑ, Κ., ——— IX. Domaines finis sans point critique intérieur. Jap. J. Math., 23 (1953), 97-155.
- [15] THULLEN, P., Sur deuxième problème de Cousin. C.R. Paris, 200 (1935), 720-721.
- [16] THULLEN, P., Bemerkungen über analytische Flächen in Raume von n komplexen Veränderlichen. Math. Ann., 183 (1969), 1-5.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KYUSHU UNIVERSITY.