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Introduction.

The aim of this paper is to generalize a previous result [10] of the author.
Oka [12] proved that a domain of holomorphy in Cn is a Cousin-I domain. Oka
[13] also proved that a Cousin-II distribution in a domain of holomorphy in Cn

has an analytic solution if and only if it has a topological solution. Grauert [5]
proved that the canonical mapping of H\X, JίL) in H\X, CL) is bijective for a
Stein space X and a complex Lie group L where JίL and CL are, respectively,
the sheaves over X of all germs of holomorphic and continuous mappings in L.
Roughly talking, many cohomology sets have the possibility of vanishing in a
Stein space.

Conversely, by Cartain [2] and Behnke-Stein [1], a Cousin-I domain in C2

is always a domain of holomorphy. By Cartan [3] C3—{(0, 0, 0)} is a Cousin-I
domain which is not a domain of holomorphy. By Thullen [15] D={(zlt z2)^C2

| z i |< l , \z2\ <1} — {(0, 0)} is a Cousin-II domain which is not a domain of holo-
morphy. By a previous remark [6] of the author, the Thullen's domain D is an
example of a Cousin-II domain which satisfies Hί(Dy O*)φ0 for the sheaf #* of
multiplicative groups of all germs of never vanishing holomorphic functions. By
the previous result [11] of the author and Kazama, however, a subdomain X of
a two-dimensional Stein manifold is a Stein manifold if X satisfies H\X, cΛL)=0
for a complex Lie group L. In the case of higher dimension, the author [10]
proved that a subdomain X of a Stein manifold 5 with real one-codimensional
smooth boundary is a Stein manifold, if, for an abelian complex Lie group L, X
satisfies H\Xr\P, ΛL)=0 for all analytic polydisc P in 5.

The aim of this paper is to prove that a subdomain 1 of a Stein manifold
S with real one-codimensional smooth boundary is a Stein manifold if, for a
complex Lie group L, X satisfies H\Xf\P, JlL)—Q for all analytic polydisc P in
S. The above boundary condition for X can not be omitted as the above Car-
tan's example C3—{(0, 0, 0)} shows. Roughly talking, a subdomain of a Stein
manifold with many vanishing cohomology sets is also a Stein manifold. This
is the principle which the author wants to maintain. In the proof, we use
Lemmata and methods used in [11] and [9]. In this occasion the author ex-
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presses his hearty gratitude to Professor Y. Komatu who gives his continuous
and kind encouragements since 1957.

§ 1. Monotonically increasing sequence of domains.

Let M be a complex manifold. If φ is a locally biholomorphic mapping of
a complex manifold D in M, (D, φ) is called an open set over M. Let (Dlf φλ)
and (D2, ψ2) be open sets over M. If there is a holomorphic mapping τ of (Dlf φϊ)
in (D2, <p2) such that φ1=φ2

oτ, we write (Dlf φ1)<(D2, φ2). By this relation the
set of all open sets over M forms a partially ordered set Φ. A sequence {(Dp, φp)
ί = l , 2, 3, •••} of open sets over M is called a monotonically increasing sequence
of open sets over M if (Dp, φp)<(Dp+1, φp+1) for any p. Let {(Dp, φp) ί = l , 2, 3, •••}

be a monotonically increasing sequence of domains over M. Then it is a mono-
tonically increasing sequence in the partially ordered set ®. In the previous
paper [8] the author proved the unique existence of its supremum in ® and
called it the limit of the sequence {{Dp, φp) p=l, 2, 3, •••}. Let D be a complex
manifold and L be a complex Lie group. The sheaf over D of all germs of
holomorphic mappings in L is denoted by JίL. Let U~{Uτ; κ=I} be an open
covering of Zλ We define an element {gιj} of ZιQX, JίL) by putting gΊy=l in
UiΓ\Uj for any z, e/ . Then {g\;} defines an element of H\D, JLL), which is
called a trivial element of H\D, JlL). If Hι(D, JίL) consists of only a trivial
element, we write H\D, JlL)=0 for the sake of brevity.

A complex manifold D is said to be analytically contractible if there is a
continuous mapping f(x, t) of Dx[Q, 1] in D such that f(x, t) is a holomorphic
mapping of D in D for any fixed ίe [0 , 1], that f(x, 0) is the identity mapping
of D and that f(x, 1) is a constant mapping of Z> in D.

LEMMA 1. Let {(Dp, φp) p=l, 2, 3, •••} be a monotonically increasing sequ-
ence of open sets over a Stein manifold S such that each Dp is analytically con-
tractible and connected, (D, φ) be its limit and τp be the canonical mapping of
Dp in D for each p. Let L be a complex Lie group and a be an element of
H\D, JlL). If the image τ*(a) of a by the canonical mapping τ% of Hλ(D, JlL)
in Hι(Dp, cAL) induced by τp is a trivial element for any p, then a is a trivial
element of H\D, JlL).

Proof. We denote by τξ the canonical mapping of Dp in Dq for any p and
q with p^q. Let {Qp p=l, 2, 3, •••} be a sequence such that each Qp is a rela-
tively compact subdomain of Dp, that τ^+1(Qp)dQp+1 for any p and that

D=\J τp(Qp). Then (Qp, φp\Qp) is a monotonically increasing sequence of do-

mains over 5 and (D, φ) is its limit. Let (Qp, ψp) be the envelope of holomorphy
of (Qp, φp I Qp) over 5 and λp be the canonical mapping of Qp in Qp. For any
p and q with p^q, there is a holomorphic mapping τξ of Qp in Qq such that
9p—9q°?q and λqo{τ%\ Qp)—τ$oλp. Hence {(QP,ΦP)} is a monotonically increas-
ing sequence of domains over 5. Let (D, φ) be its limit. Then (D, ψ) is the
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envelope of holomorphy of (D, φ). Let λ be the canonical mapping of D in D.
For any p there is a holomorphic mapping τp of Qp in i) such that ψv—_
and φp=?q°τq for any £ and # with ί^<7. Since D is a Stein manifold by
Docquier-Grauert [4], there is a sequence {Pp ί = l , 2, 3, •••} of relatively com-
pact analytic polycylinders Pp defined by holomorphic functions in D such that

Pp is a relatively compact subdomain of Pp+1 for any p and that D= \J Pp.
~ p=1

Since (D, ψ) is the limit of (Qp, φp), there is a sequence {vp ί = l , 2, 3, •••} of
positive integers such that τVp maps a relatively compact subdomain i% of QVp

biholomorphically onto Pp for any p. Without loss of generality, we may assume
that vp=p.

Now we go to prove Lemma 1. Let {ftJ} be an element of Z\U, dL) for an
open covering Vί—{Uι ;ze/}of D such that {flJ} is an element corresponding to
a. We put Tp1(Xΐ)={τp1(Uι) Ϊ G / } for each p. Then τ^Ql) is an open covering
of Dp and {fijOTp} is an element of Z^r^OI), cJJL). Since τ*(α) is trivial, there
is an element {/?} of C ^ T ^ U ) , C J L ) for any ί such that

in TpKUtΓ^Uj) for any f, e/ . If we put

in τ~ί(Ut), then / p is a well-defined element of H°(DP, JίL). Since Dp is analyti-
cally contractible, H°(DP, JlL) forms a connected topological group. Therefore,
any neighborhood of the neutral element of H°(DP, JLL) generates H°(DP, JlL).
Let exp be the exponential mapping of the Lie algebra C m of L in L. There is
a polydisc neighborhood W of the origin of Cm such that exp maps an open
neighborhood of the closure of W biholomorphically onto a neighborhood of 1 in
L. We put W'=exp(W). There is a finite set {fPίV} of holomorphic mappings
fp'v of Dp in L for any p such that

and the fp'v(Qp)aW' for any p and v. Then each (exp WίY1o{p^\Qp) is a
holomorphic mapping of Qp in Cm. Since (Qp, ψp) is the envelope of holomorphy
of (Qp, ψp I Qp), there is a holomorphic mapping Fp>v of Qp in Cm for any ί and
v such that

Then FPfVo(τp\Ppy
l is holomorphic mapping of Pv in C m for any p and v. Let

{εP'> P=h 2, 3, •••} be a sequence of positive numbers. Since Pp is holomorphic-
ally convex with respect to D, there is a holomorphic mapping GPfV of Z) in Cm

for any ί and v such that
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in Pp-i for any p and v. We put

in D for any p. Then gp is a holomorphic mapping of D in L which approxi-
mates fp in some sense. We put

in τ~\Uι). Then {#?; ί = l , 2, 3, •••} converges to a holomorphic mapping gτ of
Z7t in L uniformly in any compact subset of Ut if {εp} is sufficiently small and
decreasing. Then { ^ } G C ° ( U , J L ) satisfies

in UiΓλUj for any i, e/ . Q. E. D.

§ 2. Domains exhausted by L-regular domains.

In the following Lemmata 2 and 3, we put

and
; \z1\<l,0<\z2\<l}.

The following Lemmata 2 and 3 are, respectively, Lemmata 6 and 10 in the
previous paper [11], so the proofs are omitted.

LEMMA 2. Let B be an (m, m)-matrιx with a non-zero eigen-value. There are
not gt(ΞH0(Ut, JLGL<.m,n) 0 = 1 , 2) such that

exp(—•τ-)=g2gT1

\ Z-LZC, /

in U1Γ\U2.
LEMMA 3. Let B be a non-zero (rn, m)-matrιx, whose eigen-values are all

zero. There are not gi<^H°(Uι, c_iGL(OT,o) such that

in U1r\U2.

A complex manifold P is called an analytic polydisc if there is a biholomor-
phic mapping of a polydisc {w=(wλ, w2, •••, wn) \w^ <rl9 \w2\ <r2, — , \ws\ <rs}

(O^s^n) onto P. An analytic polydisc P is analytically contractible and H\P, JL£)
= 0 for any complex Lie group L. Let D be an open subset of a complex mani-
fold M and I be a complex Lie group. If H1(Dr\P, JlL)=0 for any analytic
polydisc P in M, D is called an L-regular open set in M. A domain D in a
complex manifold M is said to be exhausted by L-regular open sets if there is a



262 JOJI KAJIWARA

sequence {Dp} of L-regular open sets Dp in M such that Dp is relatively com-

pact open subset of Dp+1 for any p and D= \J Dp.
p = l

LEMMA 4. Let L be a complex Lie group whose dimension m is positive.
Let Ω be a domain in Cn exhausted by L-regular domains Ωp in Cn. Then Ω is
a Stein manifold.

Proof. In case that n=l, there is nothing to prove. In case that n—2, each
Ωp and, therefore, Ω is a Stein manifold by the previous paper [11]. So we
may assume that n ^ 3 . It suffices to prove that Ω is £7-convex in the sense of
Docquier-Grauert [4] by Oka [14]. Assume that Ω were not £7-convex. For
any positive numbers ε and ε' with l > ε > ε / we put

D(ε) = {w=(wl9 w2, . . . , w/ n )eC n \wx\<l+e, \wx\ < l ( ι = 2 , 3, - , n)}

\J{w=(wu w2, ..., wn)^Cn; l - e < | w ; 1 | < l + e , | « ; J < l + e 0 = 2 , 3 , •••, n)} ,

D(e, e') = {w=(w>i, w2t .-, wn)e,Cn; I ^ K l + e - e ' , I ^ K l - e 7 (ι=2, 3, •••, n)

and
\w%\ < l + ε (z=2, 3, - , n)} .

Then there are a positive number ε and a biholomorphic mapping τ of £(ε) in C n

such that τ(D(e)) is a subdomain of J2, that there is a point a=(alf a2, •••, αn)
of C n such that its mage τ(α) is a boundary point of τ(D(ε)) and J2 at the same
time and that it satisfies l α j ^ l — ε , | α 2 | = l , |α»| < l + e (z=3, 4, — , n). Since the
L-regularity and the ^7-convexity which is a local property are invariant under
the analytic isomorphism τ, we may assume that τ is the identity mapping of
£(ε). We put

H={(wl9 w2, 0, .- , 0 ) e C n (wlf w2)Φ{al} a2)}.

There are strictly monotonically decreasing sequences {εp} and {δp} of positive
numbers such that D'(ep)—D(e, εp)(zΩp and the set

Gp={w=(wlt w2, ... , wn)^Ωp; \w%\<δp ( ι=3, 4, — , n)}

satisfies Oi, w2)Φ(alt a2) for any point (u^, w2, •••, wn) of Gp and that εp-*0 and
δp^0 as ί-^oo.

Let U={£/ t; i e / } be any open covering of i/ and {ftj(wuw2)} be any ele-
ment of ZλQX, JlL). We define an open covering S$P={V?} of Gp for any ί by
putting

γp={w=(wlf w2, ..., wn)£ΞGp; (wlf w2tθ, •• ,0)e/7J .

for any I G / . Then {fxj{wu w2)} defines an element of Z\^SPf JlL). Since Ωp is
L-regular in Cn, we have //'(Gp, JlL)=Q. There is an element {gf} of C°(95P, c^L)
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for any p such that

fιj(wlf W2)=g*(wlf W2, ••• , Wn)(gf(wl9 W2, "' , Wn))-1

in VξΓ\Vvj for any i, e/. We put

VL*={V*nD'(6p)nH; tε/}
and

for any p. Then IP is an open covering of D\εp)r\H and {gf(wlf w2, 0, •••, 0)}
is an element of C°(1P, JίL) such that

Λ,(wi, w>2)=S?(wΊ, ̂ 2, 0, -. , 0) U K ^ , U/2, 0, - , 0))-1

in V*Γ\V*Γ\D'(βp)r\H. Since {D'(εp)(^H\ p=l, 2, 3, •••} is a monotonically in-
creasing sequence of analytically contractible open sets in C2 and since D(ε)r\H
is its limit, by Lemma 1 there is an element {/J of C°(Un#(e)Γ\#, <ΛL) such that

in Uir\UjΓλD(ε)r\H for any f, ε/.
Now we continue to prove Lemma 4. If L is abelian, by the previous paper

[11] of the author and Kazama, the limit Ω of L-regular domains Ωp is a Stein
manifold. So we may assume that L is a non-abelian connected m-dimensional
complex Lie group. Let G£(rn, C) and X be, respectively, the Lie algebras of
GL(m, C) and L. Let exp: Q£{m, C)-*GL(m, C) and exp: X->L be the ex-
ponential mappings. Let ad : £-^Q£{m, C) and Ad : L-~>GL(rn, C) be the adjoint
representations. We have

Λdeχp(tX)=exp(tadX)

for any ί e C and XeJ7. Since L is not abelian, there is an element X of X
such that

is a non-zero (m, m)-matrix. We consider an open covering U={Hlf H2} of the
H—{w=(wlf w2f 0, •••, 0 ) e C n O J , M/2)GC2-{(flh α2)}} defined by

Two cases may occur. In case that B has a non-zero eigen-value, we put

k(Wl9 W2) = —{ Γ7 —

in Hλr\H2. And, in case that all eigen-values of B are zero, we put



264 JOJI KAJIWARA

in H1r\H2. Then, in each case, k is a holomorphic function in H1r\H2. There-
fore exp(ft(u>i, w2)X)^H0(H1r\H2, JίL) defines an element of Z\VL, JίL). By the
above argument, there are f^HXH^Diε), JLL) and f2^H\H2r\D{ε)1 JLL) such
that

exp (&(>!, w2)X)=f2fγ
1

ih H1r\H2Γ\D{ε). We put

in ^ Π ^ ( ε ) (ι=l, 2). Then g^H^H^Dφ, JtσLin^) and g2^H\H2Γ\D{ε\
^GLcmfo) satisfy

exp (&(>!, w2)B)=g2gγ1

in H1r\H2Γ\D{ε). Hence each element of the matrix £2, det^ 2 and l/det£"2 are
holomorphic functions in {{wl9 w2, 0, •••, 0)eC 7 1 | M > I | < 1 + S , |w2 | < 1 } ^ { ( W Ί , % 0,
• ••, 0)^Cn 1< l^il < l + ε , w2φa2). g2 is continued to an element of H\H2r\E{ε),
^GL(m,o). Hence

is holomorphic in {(î α, ^ 2 , 0, ••• , 0)^Cn |u;2 | < l + ε , 1< \wx\ <l+ε}W{(iί;1, w2, 0,
•• , 0 ) G C n ; | ^ 2 | < l + ε , w2φa2, | U Ί | < 1 + S , wxΦa2}. Hence ^ is continued to an
element of H°{H1r\E{ε), <JLGL(m,cy)- Each g% is continued analytically to an ele-
ment of H°(HinE(e), JtGLcm,c>) Since C2X{(0, 0, •••, 0)}rλE(ε) is an open neigh-
borhood of (α l f α2, 0, •••, 0) in C2X {(0, 0, •••, 0)} and since (H^Eie^^nEie))
=C2X{(0, 0, ••• , 0)}r\E(ε)—{(alf a2, 0, — , 0)}, this contradicts to Lemma 2 or
Lemma 3. Q. E. D.

§ 3. L-regular domain with smooth boundary.

An open subset G of a complex manifold M is said to have smooth boundary
if for any point x° of the boundary dG of G in M there are a neighborhood V
of x° in M and a real-valued differentiate function g in V such that

and grad^O in V.

THEOREM. Let L be a complex Lie group with positive dimension. Let D
be an L-regular domain with smooth boundary in a Stein manifold S. Then D
is a Stein manifold.

Proof. Let s° be any boundary point of D in S. There are n holomorphic
functions ^(s), z2(s), •••, zn(s) in S such that they form a local coordinate system
in a neighborhood 7 of i ° and that 2rt(s°)=0 ( i = l , 2, —, n) where n is the
dimension of 5. For a sufficiently small ε, we put
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and we may assume that there is a real-valued differentiate function g in
variables zlf z2, •••, zn.lf yn such that

dDr\U={sεiV'; xn=g(zlt z2, •••, zn.lt yn)}

where xn and yn are, respectively, the real and imaginary parts of zn. It suffices
to consider the case that

DΓ\U={S(ΞV; xn<g(zly z2, ••• , zn^, yn)} .

For 0^t<l we put

E t = { s e V xn<g(zi, *<L, ••• , *n-i, yn)—te/2 ,

Then Ej is an L-regular open set for 0 ^ ί < l and Eo is exhausted by them.
Hence Eo is a Stein manifold by Lemma 4. Therefore D is pseudoconvex in the
sense of Cartan, that is, ^-convex in the sense of Docquier-Grauert [4]. There-
fore D is a Stein manifold by Docquier-Grauert [4].
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