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ALMOST TANGENT STRUCTURES

BY D. S. GOEL

0. Let M be a differentiate manifold of class C°° and of dimension 2n. A
(1, 1) tensor field J of rank n on M such that / 2 = 0 defines a class of conjugate
G-structures on M. A group G for a representative structure consists of all
matrices of the form

Ά ^
where A, B are matrices of order nXn and A is non-singular. This structure
is called an almost tangent structure [4]. Suppose that such a structure is
defined on M then M is called an almost tangent manifold. A (1,1) tensor field
J on M can be defined by specifying its components to be

relative to any adapted frame. If σ=Xlf •••, X2n is any adapted moving frame
defined at a given point m^M, then JXa=Xa+n, JXa+n=0 (α=l , •••, n). The
tensor field / has constant rank n and it satisfies the equation / 2 = 0 . Conversely
any such tensor field / determines an almost tangent structure on M [5], The
(1, 1) tensor field / on an almost tangent manifold M determines a linear map-
ping Jm: v-*(Jm)v on each tangent vector space TmM. The function Ker/ : m->
kernel j m is an n -dimensional distribution on M. If σ is an adapted moving
frame at any given point rn^M, then the vector fields Xn+1, •••, X2n form a local
basis for the distribution Ker / at m.

In this paper we shall study the conditions under which an almost tangent
structure is integrable, and show that the group of automorphisms of such a
structure is not necessarily a Lie group even on a compact manifold.

1. Suppose that we have any G-structure on a manifold M of dimension n
with adapted fram bundle P(M, G). Let θ be the canonical 1-form on P(M, G)
with values in Rn and ω the connection form of a given linear connection on P.
If Θ=DΘ is the torsion form then the torsion tensor T(θ) has values in V=

2 2

= Rn®ΛRn and is of type R=μ®/\μ* where μ is a representation of G in Rn

defined by the matrix multiplication. We denote W=L(G)®Rn, where L(G) is
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the Lie algebra of G. If the linear mapping 9: W—*V is defined by dS: u, v—>
(Su)v—(Sv)u, where u, v<=Rn and S<^W, then the subspace dW of V is invariant
under RG. Consider the natural surjection v : V->V/dW. Since dW is invariant
under RG we can define a linear representation e of G in V/dW by ( ^ ) o y =
vo(Rg). The function B=v(T(Θ)) is a linear function on P with values in V/dW
and is of type e. It is independent of the choice of the connection on P and is
the Bernard tensor, or the structure tensor for the G-structure [1]. S. S. Chern
[3] originally defined this in a different way as follows. Let Z be a subspace
of V complementary to dW. The natural projection λ: V-+Z determines a map-
ping λ: V/dW->Z such that λov=λf voλ=v and voλ is the identity function on
V/dW. The function C=λ(T(θ)) is a linear function on P with values in Z and
is of type λoR. It is called the Chern tensor for the G-structure. It is inde-
pendent of the choice of the connection on P, but does depend on the choice of
subspace Z. It is easy to show that the vanishing of the Chern tensor is equi-
valent to the vanishing of the Bernard tensor.

The following result for an integrable G-structure is known.

LEMMA 1.1. [1] The Bernard tensor of an integrable G-structure is zero.

2. In this section we shall give some conditions under which an almost tan-
gent structure is integrable.

THEOREM 2.1. An almost tangent structure is integrable if and only if its
Chern tensor is zero.

Proof. Let
θ\~',θ2n (2.1)

be an adapted moving coframe defined at a given point raeM. The codistribu-
tion Ker/ is spanned by θ1, •••, θn. If

^ (2.2)

(z, j , k—l, •••, 2n) we define

=-τr7ViΘe'Λe* (2.3)

A complementary subspace Z of F to dW is spanned by e^e^71 Aec+n (b, c=l,
•••, n) and the projection λ : V-+Z is given by γ)kei®e3 Aek-^C%ei^eJAek where

Gfifc — 0 C%+n = Tb+n c+n (2.4)

C a+n —^.a+n J _ ^ α v α (O ^

b+n c+n — fb+n c+n ι / c b+n fb c + n K^ ^J

The Chern tensor C is determined on π~1U by the function C=λoγ on U with
values in Z calculated above, where π is the natural projection of P(M, G) on
M and U is a neighbourhood of the point m^M, on which the coframe (2.1) is
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defined. If the Chern tensor is zero we have from (2.4)

Yb+n c+ft —V

189

(2.6)

Hence from the Frobenius theorem it follows that the codistribution Ker/ is
integrable. Consequently there exists a chart x at the point m such that

dx1 ]

=

Ά 0

.B D

' θ1 '

θ2n

Therefore the moving coframe

at m given by
/ 0

0 E)

dx1

dx2n ^

(2.7)

(2.8)

where E=AD~1

9 is adapted for the almost tangent structure. For the coframe
(2.7) the corresponding f satisfy fϊj=O. Hence the vanishing of the Chern tensor
implies from (2.5)

Tb+n c+n — U . \^-^)

From (2.8) we get θa+n=E<

b

ιdxb+n, and hence

ώ

Using (2.10) we have from (2.9)

dθa+n=dEϊ Λdxb+n. (2.10)

xe+n dxd+n ) —

Since the matrix E is non-singular we get

dEϊ dί

Condition (2.11) implies that the system of differential equations

(2.11)

(2.12)

has a solution Ha+n at the point m. We define a chart y at m as follows

ya=χa

f ya+n = Ha+n(x\ ••• , X2n) . (2.13)

It is easy to verify that y does define a chart at m. From (2.8), (2.12) and (2.13)
we get

• / o i r Θ2

. dy2n J L *
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Therefore the chart y at m is adapted for the almost tangent structure. We can
find such charts whose domains cover M. Hence the almost tangent structure
is integrable.

Conversely it follows from Lemma 1.1 that the Chern tensor of an integrable
almost tangent structure is zero.

Associated with any (1, 1) tensor field / on a manifold M we have a (1, 2)
tensor field N, the Nijenhuis tensor. If / defines a G-structure on M which is
integrable then the Nijenhuis tensor is zero. The converse is true sometimes.
But in general the vanishing of the Nijenhuis tensor is not a sufficient condition
for the integrability of the G-structure [7].

For an almost tangent structure the following theorem is known [5].

THEOREM 2.2. For an almost tangent structure the Nijenhuis tensor vanishes
if and only if its Chern tensor vanishes.

A different concept of integrability was introduced by Chern [3] which is
now called almost transitivity. A G-structure is said to almost transitive if its
Bernard tensor is constant. An integrable G-structure is almost transitive but
the converse is not necessarily true. For example, a Lie group carries an I-
structure, the structure constants of which determine the Bernard tensor which
is always a constant but not necessarily zero. The /-structure on a non-abelian
Lie group is almost transitive but not integrable.

THEOREM 2.3. // a group G contains the element —I then the Bernard ten-
sor of a G-structure is zero if it is constant.

Proof. If the value of the Bernard tensor is k at some point ί e P , then its
value at P(—I) is

=—v(T(Θ)p) (since the mapping v is linear)

Since the Bernard tensor is constant k= — k, and so k=0.

Combining the above results we have

THEOREM 2.4. For an almost tangent structure the following conditions are
equivalent.

1. It is integrable.
2. Its Nijenhuis tensor is zero.
3. Its Chern tensor is zero.
4. It is almost transitive.
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3. Suppose we have a G-structure on a manifold M of dimension n with
adapted frame bundle P(M, G). A local diffeomorphism f of M into itself induces
a local automorphism /* of the frame bundle H{M, GL(Rn)). f is a local auto-
morphism of the G-structure if /* maps adapted frames into adapted frames.

A vector field X in M is a G-vector field if the local diffeomorphisms gener-
ated by X are local automorphisms of the G-structure. For a given G-structure
the problem is to determine whether the group of global automorphism is a Lie
group. A solution may sometimes be obtained using a following particular case
of Palais's theorem [9].

THEOREM 3.1. Let Q be the group of automorphisms of a G-structure. A
necessary and sufficient condition that Q is a Lie group is that the set S of all
complete G-vector fields generates a finite dimensional Lie algebra s and in this
case the Lie algebra of Q is s.

The following result of which Bochner's [2] result is a particular case is
known [10].

THEOREM 3.2. Let S be a space of vector fields X on a compact manifold
M such that for every point m<=M there is a system of elliptic differential equa-
tions defined on a neighbourhood of that point and satisfied by all X1 given loc-
ally by X=Xι d/dx\ Then the dimension of S is finite.

A G-structure is said to be elliptic if the G-vector fields satisfy an elliptic
system of differential equations in a neighbourhood of each point raeM.

From Theorems 3.1 and 3.2 we get

THEOREM 3.3. On a compact manifold the group of automorphisms of an
elliptic G-structure is a Lie group.

The ellipticity of G-structure can also be expressed as follows.

THEOREM 3.4. [6] A G-structure is elliptic if and only if the Lie algebra
L(G) of the group G contains no element of rank one.

The almost tangent group is not elliptic for, if B is an n X n matrix of rank
one, then the matrix

rθ 0 Ί
IB OJ

belongs to L(G). Hence by Theorem 3.9 it is not elliptic. In order to show
that the group of automorphisms of an almost tangent structure is not necessarly
a Lie group we consider two almost tangent manifolds of which one is compact.
It can be shown that a diffeomorphism f:M-+M is an automorphism for an
integrable G-structure on M if for each point raeM, there exist adapted charts
x, x at m and /(m) such that the matrix
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Γ d(Γof) Ί
L dx3 Jdx3

has values in the group G. A vector field X is a G-vector field if for each point
, there exists an adapted chart

has values in the Lie algebra L(G) where X=Xιd/dx\

THEOREM 3.5. The group of automorphisms of the almost tangent structure
on the tangent manifold TM of any manifold M is not a Lie group.

Proof. The tangent vectors of any differentiate manifold M of dimension
n form a differentiate manifold TM of dimension 2n. Let π: TM-+M be the
natural projection. Corresponding to any chart x defined on a neighbourhood U
of a point m<=M we can define a standard chart on π~1U which we denote by
(x, y). If Ur\U=φ, then the charts {x, y) and (x, y) on π~xU, π~1D are related
by a change of coordinates whose Jacobian matrix is of the form (1, 1) where

The natural moving frames associated with these charts therefore define an
integrable almost tangent structure on TM.

A diffeomorphism f of M induces a diffeomorphism /* of TM. If v is any
point in TM, (x, y) and (x, y) charts at υ and f*υ then

*, y°U) _
(χ, y)

3(xιof) 0

dx3

which has values in the almost tangent group. Hence /# is an automorphism of
the almost tangent structure on TM. The set Q of all diffeomorphisms /* of
TM is a group isomorphic to group Q of diffeomorphisms of / of M, for, if fx

and f2 are diffeomorphisms of M, then (/i°/2)*=/i*°/2* and /i*=£/2* if and only
if Zi^Λ As the group Q is not a Lie group, Q is not a Lie group.

As the manifold TM considered above is not compact we now study a com-
pact manifold with a similar property.

THEOREM 3.6. The group of automorphisms of an almost tangent structure
on the torus T=S1xS1 is not a Lie group.

Proof. The torus T can be covered by coordinates charts (x\, x\) such that
the change of coordinates on UiΓ\U3 is of the form

x\=x)+nlt
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where nlt n2 are integers. These charts therefore define a parallelisation on T,
and this can be extended to an integrable almost tangent structure. For any
integer p, the local vector fields

agree on the intersection of their domains, therefore they define a global vector
field X on T. At any given point

0 1
. 2pπ cos (2pπx\) 0 J

(α, b=l, 2) for each of these charts so I is a G-vector field. As p varies we
get a set of complete G-vector fields on the torus T which are linearly inde-
pendent, hence they form an infinite dimensional space. Therefore the group of
automorphisms is not a Lie group.
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