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CONTINUOUS LINEAR FUNCTIONALS ON THE SPACE
OF BOUNDED HARMONIC FUNCTIONS

By MAKOTO SAKAI

Introduction.

Let X=(X, | II) be a Banach space, and let T be a continuous linear func-
tional on X. The norm of T is defined by ||T||=su)PIIT(x)I, where X' is the
FAS

set of points x€X such that [|x|<1. If ye X' satisfies T(y)=|T|, y is called
an extremal point (an extremal function if X is a funcion space) of T. The
following fundamental assertions are known :
(i) If X is reflexive, then for every continuous linear functional T there
exist extremal points of T.
(ii) If X is strictly convex, then for every continuous linear functional T
(#0) there exists at most one extremal point of T.
Let HB(R) be the Banach space of all bounded harmonic functions # on a
Riemann surface R with the supremum norm :

IlullR=§gglu(2) |

Then HB(R) is neither reflexive nor strictly convex, in general. Hence there
needs the special discussion to obtain the existence and uniqueness theorem of
the extremal problems of continuous linear functionals on HB(R).

In this paper we shall deal with the extremal problems of continuous linear
functionals on HB(R) and their applications to analytic mappings. In §1 we
give the existence and uniqueness theorem of extremal functions of continuous
linear functionals of HB(R). To do this, we use the Wiener compactification
of Riemann surfaces and the Riesz representation theorem. The definition of
absolutely continuous linear functionals is given in §2. Linear functionals
which appear in function theory are usually absolutely continuous. In § 3 we are
concerned with the extensions of continuous linear functionals. As a corollary
we see that if HB(R) is of infinite dimension, then HB(R) is not separable.
§ 4 deals with the so-called harmonic lengths. We give two examples of cycles
whose extremal functions of harmonic lengths are not determined uniquely. In
the last section, §5, we discuss applications of the extremal problems to an-
alytic mappings.
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§1. Continuous linear functionals on the space of bounded
harmonic functions and their extremal functions.

Let 4 be a compact Hausdorff space, and let C(4) be the Banach space of
all continuous real-valued functions f on 4 with the supremum norm:

1fla= sup D).

The Riesz representation theorem asserts that to each continuous linear func-
tional T on C(d4) there corresponds a unique real regular Borel measure g on
4 such that

T=f fdu  (feCWA)).

Let p¢*, ¢~ and |p¢| be the positive, negative and total variations of x, respec-
tively. Then we have p=p*—p~ and |T||=|gl(4). If we denote by S(v) the
support of a real regular Borel measure v, we have the following lemmata. The
proofs of them are omitted.

LEMMA 1.1. Let g be an extremal function of T. Then g=1 on S(y*) and

g=—1 on S(u").
LEMMA 1.2. There exists an extremal function of T 1f and only 1f S(g*)n
S(p)=9.

LEMMA 1.3. There exists at most one extremal function of T 1f and only 1f
S(p)=S(e")US(p)=4.

LEMMA 1.4. There exists a unique extremal function of T if and only 1f
each component of 4 is contained S(p*) or S(p™). If 4 1s connected and 1f there
exists a unique extremal function of T, then T 1s positive or negative.

Let R be an open Riemann surface, and let HB(R) be the Banach space of
all bounded harmonic functions on R with the supremum norm. Let Ry be the
Wiener compactification of R, and let 4 be the Wiener harmonic boundary of
R (cf. Constantinescu-Cornea [3]).

Each function u HB(R) can be extended continuously to Ry. We denote
it by uw. We define a mapping 7 by

Tiu—> uy|d,

where uy |4 denotes the restriction of uy to 4. =7 is a one-to-one mapping of
HB(R) onto C(4). Moreover, 7 is an isometric isomorphism of HB(R) onto C(d)
(cf. Hayashi [5] and Sario-Nakai [10]).

LEMMA 15. Let X and Y be Banach spaces, and let X* and Y* be the con-
jugate spaces of X and Y, respectively. Let © be an isometric isomorphism of X
onto Y. Then x is an exiremal point of Te X* if and only if n(x) is an extremal
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point of Tor*eY*.
Using these lemmata we have the following theorem:

THEOREM 1.6. To each continuous linear functional T on HB(R), there cor-
responds a unique real regular Borel measure pu=p*—p~ on the Wiener harmonic
boundary 4 of R such that

T(u):er(u)dy (ue HB(R)).

Moreover, there exists an extremal function of T 1f and only 1f S(e)NS(p™)=9¢,
and there exists at most one extremal function of T 1f and only 1f S(u)=4.

The measure g in theorem 1.6 is called the representing measure for T.
Let z be a point on K. Then
T,: u—> u(z2)

is a continuous linear functional on HB(R). The representing measure for T,
is called the harmonic measure with respect to z, and is denoted by w=w,.

COROLLARY 1.7. Let p be the representing measure for a continuous linear
Sfunctional T on HB(R). If w 1s absolutely continuous with respect to |u| there
exists at most one extremal function of T.

Proof. 1f w is absolutely continuous with respect to ||, then S(w)CS(|¢l).
Since S(w)=4, we have S(u)=4. Hence the corollary follows from theorem 1.6.

A generalized harmonic measure is a harmonic function # such that 0=u=1
on_R and the greatest harmonic minorant of u and (1—u) is equal to zero.

COROLLARY 1.8. If v s the unique extremal function of T, then the function
(1+v)/2 1s a generalized harmonic measure.

COROLLARY 1.9. If there exists more than one extremal function of T, then
for some extremal function v the function (14v)/2 1s not a generalized harmonic
measure,

§2. Absolutely continuous linear functionals and their
representing measures.

Let {u,} be a sequence of bounded harmonic functions on a Riemann sur-
face R. We say that {u,} converges boundedly to u if

(i) {u,} is uniformly bounded on R, and

(ii) {u,} converges uniformly on compact subsets of R to u.

THEOREM 2.1. Let T be a continuous linear functional on HB(R). Then the
following two conditions are equivalent
(a) If {u,}CHB(R) converges boundedly to 0, then {T(u,)} converges to 0.
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(b) The representing measure p for T is absolutely continuous with respect to
the harmonic measure w.

Let us call a linear functional T absolutely continuous if it satisfies the con-
ditions (a) and/or (b). First we show the following lemma :

LEMMA 2.2. If {u,}CHB(R) converges boundedly to 0, then {.fEﬂ(un)dw}
converges to 0 for every Borel subset E of A.

Proof. Set v,,(z):n"l(XE'n(un))(z)EfEn(un)de, where Xz denotes the charac-

teristic function of E. Then {v,} is uniformly bounded on R. A uniformly
bounded subfamily of HB(R) is a normal family with respect to uniform con-
vergence on compact subsets of R. Assume that a subsequence {v,,} of {v,}
converges uniformly on compact subsets of R to v. Then |v|=|v|zwg on R,
where wg=n"'(Xg). The sequence {u,,—v,,} converges boundedly to —v, and
hence | —v|=Z||—v|zws-r on R, namely |v|<Z|v|z(l1—wg) on R. There fore v=0,
and {v,} converges boundedly to 0. This proves the lemma.

Proof of Theorem 2.1. (a) implies (b). Let E be a Borel subset of 4 such
that w(E)=0. Assume that p#(E)#0. By the Hahn decomposition theorem we
may assume that p#*(E)>0 and g (E£)=0. Since g* and g~ are regular there
exist a compact set KCFE such that g*(K)>0 and an open set ODF such that
¢ (0)< p*(K)/2. Since w(E)=0 and w is regular, there exists a sequence {0,}
of open subsets of 4 such that EC0O,cCO and {w(0,)} converges to 0. Let f,
be continuous functions on 4 such that Xx=<f, <X, on 4. From the inequalities

Lfndwga)(On) we see that {#"'(f,)} converges boundedly to 0. The condition

(a) implies that {T(n‘l(fn)):jdf,,d,u} converges to 0. On the other hand, we

! ! + , -
j‘,'fn L j]fn i ‘f fn ‘U

= p*(K)— ()
= p*(K)— p(0)
>t (K)/2.

This is a contradiction. Hence p(E)=0, and p is absolutely continuous with
respect to .

(b) implies (a). Let {u,} be a sequence of bounded harmonic functions on
R such that ||u,|z=1 and {u,} converges uniformly on compact subsets of R. If
p¢ is absolutely continuous with respect to o, then the Radon-Nikodym theorem
guarantees the existence of an w-integrable function 2 on 4 such that duy=hdw.
It is sufficient to show that for any given ¢>0 there exists a natural number N
such that
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| T | =|f mun)hdo] <3¢
4

for every n=N. Since h is w-integrable there exists a positive number M such
that

j lhldo<e,
EM

where Ey={{cd||h()|=M}. Let m be a natural number such that M<em,
and define E, (j=—m, —m+1, -+, m—1) by

E={{edlg=h{{}<e(j+1)}.
Then

| { E]n(un)hdw—ejj ) n(un)dw’
={_in(u)ledo

<e¢| dow.
Ey

By lemma 2.2, to each E, (j#0) there exists a natural number N, such that

1
I E‘,”<””>d“’!§—“<2m—1>m

for every n=N,. Hence
€
UE]n(un)hdw1 §55‘E]d(u—|—’(2—m;1—)’.

Put N=max {N;}. Then
JF0

55 | _ 2w hdo

J=—m

< eLEde—l-e

=2
for every n=N. Therefore

[ mundol<| [ wundal+ [ xul ihldo

=2¢+¢

=3e
for every n=N.

As mentioned in the proof of lemma 2.2, a uniformly bounded subfamily of
HB(R) is a normal family with respect to uniform convergence on compact
subsets of R. Therefore we have:

PROPOSITION 2.3. Let T be an absolutely continuous linear functional on
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HB(R). Then there exists an extremal function of T.

Remark. In §4, we shall construct an absolutely continuous linear functional
which has more than one extremal function.

A topological space 4 is called extremely disconnected if the closure of
every open subset of 4 is again open. It is known that the Wiener harmonic
boundary 4 is extremely disconnected (cf. Dixmier [4], Hayashi [5] and Mori
[9]). We shall give an alternative proof of this fact.

COROLLARY 2.4. The Wiener harmonic boundary 4 1s extremely disconnected.

Proof. Let O be an open subset of 4, and let S be the support of X,dw.
By definition, we have 4—SD(4—0)°, where (4—O0)° denotes the open kernel
of (4—0). Since S(w)=4, we have 4—Sc(4—0). Hence 4—Sc(4—0)°. There-
fore S=4—(4—0)°, namely S is equal to the closure O of O. We consider next
the measure dp=Xodw—X4_odw. It is clear that positive and negative variations
of dy are equal to Xodw and X4_odw, respectively. Hence S(y¢)=4 and S(Xodw)
=0. By theorem 1.6 and proposition 2.3 we have S odw)N\S(X y—pdw)=¢.
Therefore O=4—S(X4_odw) is open.

§ 3. Extensions of continuous linear functionals.

Let A be a linear subspace of HB(R), let T be a continuous linear func-
tional on A and set

IT]L= sup | Tw)l,
UE A

where A'={ucA||ul|z=1}. A continuous linear functional T on HB(R) is called
an extension of T if

(i) Tw)=T(u) for every ucA, and

i) NI7I=0T) s
The Hahn-Banach theorem asserts that for every continuous linear functional
T there exists an extension of 7.

In this section we consider the following problem: Under what conditions
does there exist an absolutely continuous extension of T?

Let us call a linear functional T on A absolutely continuous if it satisfies
the following condition :

(a) If {u,}CA converges boundedly to us HB(R), then {T(u,)} converges.

THEOREM 3.1. For every absolutely continuous linear functional T on every
linear subspace of HB(R) there exists an absolutely continuous extension of T 1f
and only if HB(R) 1s of finite dimension.

Proof. Suffictency. Assume that HB(R) is of finite dimension. Then HB(R)
has a base consisting of HB-minimal functions (cf. Constantinescu-Cornea [3]).
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Hence every boundedly convergent sequence converges uniformly on R. There-
fore every extension of a continuous linear functional T is absolutely continuous.

Necessity. Assume that HB(R) is of infinite dimension. It is easy to con-
struct a continuous function g on 4 such that 0=g=1 on 4, |g]|=1 and w(g™*(1))=
0. Set A={a'7"'(g)|a is real} and define T by T(ar"'(g))=a. Then T is an
absolutely continuous linear functional on A of the norm 1. Assume that there
exists an absolutely continuous extension T of T. Then z"!(g) is an extremal
function of T, and by theorem 1.6 we see that S(2*)Cg (1) and S(2")Cg (—1)=
é, where A% and £~ are the positive and negative variations of the represent-
ing measure £ for T, respectively. Hence w(S(2*))=0and S(2")=¢. Since £is
absolutely continuous with respect to w, we have 2(S(2*))=0. Therefore 7T=0.
This is a contradiction.

We give now two extension theorems.

THEOREM 3.2. Let A be the umage of a linear mapping p of HB(R) into
itself such that
) pop=p,
(i)  leWle=lullz  for every use HB(R), and
(iii) if {u,} CHB(R) converges boundedly to 0, then {p(u,)} converges
boundedly to 0.

Then for every absolutely continuous linear functional T on A there exists an
absolutely continuous extension T of T.

Proof. We define T by T=Top. Then the assertion is evident.

Example 3.3. Let E be a Borel subset of 4. We define a linear mapping p
of HB(R) into itself by p(u)=n"'(Xgz-w(u)). It is easy to see that p satisfies the
conditions (i) and (ii). lemma 2.2 implies that p satisfies the condition (iii).

Example 3.4. Consider an open Riemann surface R’, and let R be a sub-
region of R’ such that R’—R is compact in R’. In the following the symbol
“m stands for “with respect to R’”. We denote by R the closure of R in Rj.
Then there exists a unique continuous mapping j of Ry onto R which fixes R
elementwise (cf. Sario-Nakai [107], Theorem IV. 5C). The mapping j is a homeo-
morphism of RUj *(4’) onto R\J4’ such that if E is a Borel subset of 4’, then
®’(E)>0 if and only if w(j7'(E))>0. In other words, ;™' is a measure preserv-
ing transformation from a measure space (4’, »’) onto a measure space (77'(4’),
®’0j), and w’oj is absolutely continuous with respect to w. We define a linear
mapping p of HB(R) into itself by

pw)y=r""{(x(u) |17 (4))oj "} R.

Then p satisfies evidently the conditions (i) and (ii). Let z be a point of R,
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set ®w=w, and ®'=w), and define a linear functional T on HB(R) by T(u)=p(u)(2).
Then

Tw)={ {(x@)i(d")os }do’

= f  a(wd(w’of).
i~ 4

Since w’oj is absolutely continuous with respect to , T is absolutely con-
tinuous. By theorem 2.1 p satisfies the condition (iii).

Every linear subspace A of HB(R) is not always the image of a linear
mapping p of HB(R) into itself which satisfies the conditions (i)~(iii). Let A
be the class of all bounded harmonic functions on R to which some sequence
{u,} CA converges boundedly. If A is the image of such a mapping p, then we
have A=A.

Example 3.5. Assume that R& O, and define Re AB by
Re AB={Ref|feAB},

where AB/genotes the class of all bounded analytic functions on R. Then

Re ABS Re AB, and hence Re AB is not the image of any linear mapping which
satisfies the conditions (i)~(iii). In fact, there exists a nonconstant unbounded
analytic function g on R such that —1=<Re g=<1 on R. Reg does not belong to
Re AB. Let ¢, be conformal mappings of {w|—1<Rew<1} into {w|—1<Rew<1,
—n<Imw<n} such that ¢, converges uniformly on compact subsets of R to
the identity mapping. El&n ¢,0oge AB, and Re(¢,og) converges boundedly to
Re g. Hgnce Re ABS Re AB.

Let A be the class of all bounded harmonic functions on R to which some
sequence {u,} CA converges uniformly on compact subset of R.

THEOREM 3.6. Let A be a linear subspace of HB=HB(R) such that
(i) A=A, and
(ii) there exists a countable subset S of HB such that AJS is dense in HB.
Let T be a linear functional on A satisfying the following condition:
(a’) If {u,}CA converges uniformly on compact subsets of R to 0, then {T(u,)}
converges to 0.
Then there exists an absolutely continuous extension T of T.

Proof. Let {R,} be an exhaustion of R. Set ||u]z,= sup |u(2)| and |lu|=
|ullz, and define norms |ul, (k=1, 2, ---) by n

= 35 s/ 29
Then
1) fule=|ull for every k,
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(2) lull<1  if [ul.=1 for every &,

(3) E<Fk’ implies |u|,=I|uls=2%"*|ul,,

4) {u,} converges uniformly on compact subsets of R to 0 if {||u,/.}
converges to 0,

(5)  |lu|x=1 if {u,} converges uniformly on compact subsets of R to u
and |u,l|,<1 for every n,

(6) {llunll;} converges to 0 if {u,} converges boundedly to 0.

Let H be the class of all harmonic functions on R, and set H,={us H||u|,<co}.
Then (3) implies H,=H, for every k, and (1) implies HBCH,. Let {u,} be a
sequence of functions in A, and let usA. If {|u,—ul,} converges to 0, then
(3) and (4) imply that {u,} converges uniformly on compact subsets of R to u.
Hence {T(u,)} converges to T(u). Therefore T is continuous with respect to the
norms | |z and there exist the norms |||, of T such that

I T@ =T llule  (vsA).

The Hahn-Banach theorem asserts that T can be extended to linear functionals
T, on H, of the same norms |T|,. Hence

ITW@)| I Tl lulle  (weH,).

We restrict T, to HB, and denote them again by T.. Then T, are absolutely
continuous. We denote the norms of 7, on HB by |[T:las. Then [T =T llzs=
IT|, for every k. We shall see that U7 s} converges to ||T|l4. It is suf-
ficient to show that ||T,] |T||l4 as k—oo. By (3), £k’ implies ||T|.=|T|l.
Hence {||T|,} converges and satisfies Iikm IT).=IT|l4. Let v, be functions of A
such that [|v,l,=1 and T(v)=|T|,—1/k. Then |v4)z,<2", and hence {v;} is
uniformly bounded on R,. The diagonal process guarantees the existence of a
subsequence {vkj} of {v,} such that {vkj} converges uniformly on compact sub-
sets of R to veH. By (3) and (5) we have |[v],=1 for every k. Hence by (2)

we have |v]|<1. Since A=A, v belongs to A. From the inequality
T(v)=lim T(Ukj)élikm 171
J

we have “T”Agl'}em”T"k, and hence ||T|:! |T|la as k—oco. Therefore we have

shown that T, are absolutely continuous linear functionals on HB and {||T:|luz}
converges |T|4,. From (ii) we see that there exists a subsequence {Tkj} of {T,}
such that {T,,j} converges to a continuous linear functional 7' on HB in the
weak-star topology on HB*, namely lign Tkj(u):T(u) for each uHB. Since T

is an extension of 7, the theorem will be proved if we show the following
lemma :

LEMMA 3.7. Let {y,} be a sequence of regular Borel measures on 4 such that
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(i) each of which 1s absolutely continuous with respect to the harmonic

measure o,
(i) {lpal (D} is uniformly bounded.

Let p be a regular Borel measure, and suppose that {Ludy,,} converges to Lud,a

Sfor every usC(4). Then p is absolutely continuous with respect to w.

Proof. Let E be a Borel subset of 4. Then there exist a continuous func-
tion kg on 4 such that hpy=2%z w-a.e. on 4 (cf. Sario-Nakai [10], Theorem IV.
4D). Hence

pnEY={ Apdpn={ hedpen,

and {u.(E)} converges for every Borel subset E of 4. We denote its limit by
v(E). The Vitali-Hahn-Saks theorem asserts that v is a Borel measure with
finite total variation and is absolutely continuous with respect to w. It is easy
to see that v=y, and hence we have the lemma.

COROLLARY 3.8. If HB(R) is of wnfinite dimension, then HB (R) 1s not separa-
ble.

Proof. Assume that HB(R) is of infinite dimension, and consider a linear
subspace A and linear functional 7 on A which have been defined in the proof of
theorem 3.1. We have seen that there does not exist any absolutely continuous
extension of T. If HB(R) is separable theorem 3.6 asserts that there exists an
absolutely continuous extension of 7. This is a contradiction.

Prof. K. Hayashi suggested to the author that corollary 3.8 should be
extended to C(4) of an arbitrary extremely disconnected compact Hausdorff
space (an arbitrary Stonian space). We show finally the following proposition :

PROPOSITION 3.9. Let 4 be an extremely disconnected locally compact Haus-
dorff space. If 4 is infinite, then CB(4) 1s not separable, where CB(4) denotes
the Banach space of all bounded continuous functions on 4 with the supremum
norm.

Proof. Assume that 4 is infinite, and let © be the class of all simultaneously
open and closed subsets of 4. Let p and ¢ be two distinct points of 4. Then
the Hausdorff separation axiom implies the existence of disjoint open sets U
and V such that pU and g€ V. Since U is again open we have that UeoO
and 4—U (#¢)=0. Hence 4 is decomposed by two elements of ©. Since 4 is
infinite, at least one element of them is infinite and is decomposed again by
two elements of ©. Repeating this process we have a sequence {O,} of mutu-
ally disjoint sets 0,=0. Let a={a,} be a sequence of numbers 0 and 1. We
define f¥=CB(4) by

a, (p€0,, n=N)

F¥(p)= N
0 (ped-U0).



SPACE OF BOUNDED FUNCTIONS 125

Since 4 is extremely disconnected, every bounded subset of CB(4) has a supre-
mum in CB(4) relative to the natural ordering for real-valued functions. Set
fa=sgpf2’ECB(A). Then we have fJ(p)=a, (p=0,) for every n. In fact, it is

sufficient to prove when a,=0. Let p be a point of O,. Since 4 is a locally
compact Hausdorff space, there exists a function g€CB(4) such that 0<g<1
on 4, g=1 on 4—0, and g(p»)=0. Since fY=g for every N we have f,<g, and
hence f.(p)=0. Therefore we see that |fo.—f«lls=1 if and only if a#a’. Set

Do={feCBU) If~fula<4}.

Then a+a’ implies D,N\Dyo=¢. Let S be a dense subset of CB(4). Then for
every sequence a of numbers 0 and 1 there exists at least one function f€S
such that feD,. Since the class of all such sequences is uncountable, S is
uncountable.

§4. Harmonic length.

Let R be a Riemann surface, and let ¢ be a cycle on R. We define the
harmonic length A(c) of ¢ by

h(c)=sup‘f du*,
uelU Y

where U denotes the class of all harmonic functions on R such that 0=u=1 on
R, and du* denotes the conjugate differential of du. A function veU satisfying

h(c):jc dv*

is called an extremal function of the harmonic length of ¢ (or briefly an ex-
tremal function of ¢).

The notion of harmonic length was introduced by Landau-Osserman [8].
They showed the uniqueness of extremal functions of cycles on Dirichlet do-
mains. Suita [11] improved this result and Kato [7] obtained the uniqueness
theorem for cycles on finite Riemann surfaces (the definition is found in lemma
5.2).

In this section we shall give first an alternative proof of Suita’s theorem
and construct next two examples of cycles whose extremal functions are not
determined uniquely.

We consider the following functional :

T.: u »———»—%—L du*,

Then T, is absolutely continuous linear functional on HB(R). Set H'={usH]|
lulz=1}. Then ucsU if and only if 2u—1=H'. Hence h(c)=|T.|l, and v is an
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extremal function of the harmonic length of ¢ if and only if 2v—1 is an extremal
function of T..

THEOREM 4.1 (Suita [117). Let Rg be the Stoilow compactification of a Rie-
mann surface R. Let c be a diniding cycle which divides the boundary Rs— R into
two closed sets A and B wn such a way that the intersection number of c¢ with
any curve starting from A to B 1s equal to 1. If h(c)>0, the function veU
satisfying

h(c)=\ dv*
(=] dv
1s unique and cowncides with the harmonic measure of B.

Proof. Since the Wiener compactification Ry is of Stoilow type, the cycle
¢ divides the Wiener harmonic boundary 4 into two closed disjoint sets S, and
Sz. Let O(s+¢) be an open subset of Sz. Then there exists a non-negative
continuous function f(#0) on 4 whose support is contained in O. Since u=xr"(f)
is positive on ¢ and since f=0 on S,, we have

Tc(u):—%-jc du*>0

(cf. Ahlfors-Sario [1], IIl. 4C). Therefore SpCS(¢.*), where g.* is the positive
variation of the representing measure g, for T,. Similarly we have S,CS(u.”),
where p.” is the negative variation of g, Hence Sp=S(#.*) and S,=S(u.”),
and from theorem 1.6 and corollary 1.8 we have the theorem.

If ReOyp, then A(c)=0 for every cycle ¢ on R. If R€0%5—Opyp and if
h(c)>0 the extremal function of cycle ¢ is unique. We construct now an ex-
ample of a cycle ¢ on ReO%g—O¥%s.

Example 4.2. Let R,€0gxz—0¢ be a Riemann surface which has one ideal
boundary component. Let [, be an analytic Jordan arc on R,, and let R;—I,
(1=1, 2, 3) be copies of K,—I[,. We joint these copies along their analytic arcs
identifying the upper edges of [, of R, with the lower edges of [;.; of Rjy
(mod 3). Thereby a Riemann surface R is constructed as a covering surface
(R, ¢) of R, (cf. Ahlfors-Sario [1]). R is of class Okz—O%5 (cf. Constantinescu-
Cornea [2]). Let c,=c,(t) (0=¢=<1) be an analytic Jordan curve on R, which
lies in a small neighborhood of [/, and encircles /[, once. Let ¢;=(¢ " oc,)(¥)
(0=t=<1) be an analytic Jordan curve on R which is a component of ¢ (¢c,)
lying on R;, and let ¢,=(¢ 'oc,)(1—1t) (0=t=1) be an analytic Jordan curve on
R which is a component of ¢7*(¢) lying on R,. We set ¢=c¢;+¢,. Let p, be
points of the Wiener harmonic boundary 4 of R corresponding to the ideal

boundary of R,, and set cuj=7t"(X{pj)). Then f dw;*=0, and jdwl*z—f dw,*+

0. Hence S(p)={py, p.} #4, where p. denotes the representing measure for
T.. From theorem 1.6 we find that the extremal function of ¢ are not deter-
mined uniquely.
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Let W be a plane region, and set W={z|ze W}, where Z is the complex
conjugate of z. Let u be a function on W, let w(z)=a(z)dx+b(z)dy be a first

order differential on W and let c= é ¢;(t) (0=t=1) be a differentiable 1l-chain
=1

on W. We define a function # on W, a differential @ on W and a l-chain ¢ on
W as follows:
i(z)=u(),

&(2)=a(z)dx—b(Z)dy

r= 21 &)
It is easy to show that
(1) di=du  for usC (W),
(2) B*=—a* for every differential @ on W,

3) fji:j 10} for every differential @ on W and for every
differentiable 1-chain ¢ on W.
Using (1)~(3) we have the following lemma :
LEMMA 4.3. Let W be a plane region such that W=W, let u be a harmonic
function on W such that fi=u (or fi=—u) and let ¢ be a differentiable 1-chain

such that ¢ is homologous to ¢ (or ¢ 1s homologous to —c=c(1—1t), resp.). Then
we have

J du=0.
Example 4.4. Let E be a compact subset of the closed interval [—1, 1] such
that E€Np and E is of positive capacity. Set
D.={z||zF3| =1}
W={z||z| =} —-(D,VD_VE),

and define cycles c.=c.(t), c=c(t) (0=5t=1) by

c.()=%3i+2¢**

c=c.+c,.

We shall show that the extremal functions of the harmonic length of ¢ are
not determined uniquely. From theorem 1.6 it is sufficient to show that S(g.)
#+4, where p, is the representing measure for T..

Let U be a small simply connected neighborhood of E such that U=U, and
let U—E be the closure of U—E in the Wiener compactification of W. Let f
be an arbitrary continuous function on 4 whose support is contained in U—EN4,
and set u=zn"'(f). Then #=u. In fact, the function v=u—1i satisfies I=—v,
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and every cycle y=r(f) (0=t=<1) on U—E is homologous to —7=7(1—1) (0=t<1).
Hence by lemma 4.3 we have

j‘r dv¥=0

for every cycle y on U—E. Therefore we have a single-valued analytic func-
tion g=v+iv* on U—E such that Re g=v is bounded, where v* denotes a con-
jugate harmonic function of v. Since E=Np, g can be extended analytically
onto U, and hence v is a bounded harmonic function on WUE. Since the
boundary values of v is equal to zero we have v=0 on W\JE, and therefore
#i=u on W. Since ¢ is homologous to ¢, by lemma 4.3 we have

f du*=0.
Therefore S(u.)CAd—(U—End)+4.

§5. Applications of the extremal problems to analytic mappings.

Applications of the extremal problems of harmonic lengths to analytic map-
pings is studied by Landau-Osserman [8], Suita [11] and Kato [7]. In this
section we study applications of the extremal problems of continuous linear
functionals on HB to analytic mappings.

Let ¢ be an analytic mapping of a Riemann surface R into a Riemann sur-
face S, and let T be a continuous linear functional on HB(R). We define a
continuous linear functional ¢«(7T") on HB(S) by

P(T)(u)=T(uog) (usHB(S)).
Then we have the following theorem :

THEOREM 5.1. Let ¢«(T) be a continuous linear functional on HB(S) defined
above. Then

1) lg«(MI=ITI,

(2) of T is absolutely continuous, then ¢.(T) 1s absolutely continuous,

3) of |19(T)|=|T| and 1f the extremal function u of T 1s unique, then
there exists at most one extremal function v of ¢«(T),

(4) in addition to the assumption of (3) if u 1s nonconstant and 1f there
exists an extremal function of ¢«(T), then v 1s nonconstant and ¢ 1s of type Bl
wn the sence of Heins [6].

Proof. (1) If veHB(S) satisfies ||[v[s=1, then vo ¢ HB(R) satisfies [vod| =
1. Hence [|¢(D)I=|TI.

(2) If {v,} CHB(S) converges boundedly to v, then {v,0¢} C HB(R) converges
boundedly to vo¢. Hence we have (2).

(8) The assumption of (3) implies u=vo@d. If ¢ is a constant mapping,
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then u is constant. By the uniqueness of the extremal function of 7T, u is equal
to +1. From the maximum principle for harmonic functions v is equal to =+1,
and hence v is determined uniquely. If ¢ is nonconstant the image ¢(R) of R
under ¢ is open, and hence v is determined uniquely.

(4) We set u,=(1+u)/2 and v,=(14v)/2. Then, by corollary 1.8, u, and v,
are generalized harmonic measures and satisfy u,=v,0¢. If u, is nonconstant,
then v, is nonconstant and ¢ is of type B! (cf. Heins [6]).

We consider now an application of theorem 5.1. Let z and z’ be two points
of a Riemann surface R. We define an absolutely continuous linear functional
T,,, on HB(R) by

T, (w)=u(2)—u(z'),

and set pr(z, 2/)=|T,.|. Then pr=pr(z, 2’) is a pseudo-metric on R. Let E be
a compact set defined in example 4.4, and set G={z||z|=<co}—E. Then for
every zeG we have pg(z, 2)=0. Hence pp is not a metric on R, in general
Let W be a plane region defined in example 4.4, Then pw is a metric on W
and for every point z the extremal functions of T,; are not determined uniquely.
We show first the following lemma :

LEMMA 5.2. Let R be a finite Riemann surface, namely a proper subregion
of a compact Riemann surface whose boundary oR consists of a finite number
of analytic Jordan curves. Then

(i) pr is a metric on R,

(ii) for every pair of distinct points z, z' the extremal function of T, is

determined uniquely.

Proof. Let # denote the boundary values (the non-tangential limits) of ue
HB(R) on 0R. Then

u(2)=—f aRa(c)ﬁa(%cfl ds.  (ueHB(R)),

where g({, 22=gzr({, z) denotes the Green’s function of R, and the derivative
0/on; is in the direction of the left normal. From an argument similar to §1,
it is sufficient to show that if z#z/, then 0g({, z)/on.—0g(g, z’)/dn, does not
vanish on a set of positive measure. Since the Green’s function of R vanishes
on 0R, we have

d(g(C, 2)+18*(C, 2))—d(g(g, 2)+ig*(¢, 2°)

_ (082 08 2) .
= z(—anc o )(dsc-l—zdnc) on oR,
where g* denotes a conjugate function of g. From the fact that the above dif-
ferential (#0) is analytic on a neighborhood of 6R we obtain that 9g(g, z)/0n.—
0g(&, z')/on, has at most a finite number of zeros on OR.

We show now a corollary of theorem 5.1.



130 MAKOTO SAKAI

COROLLARY 53. Let ¢ be an analytic mapping of a Riemann surface R into
a Riemann surface S. Then

os($(2), $(2')=px(z, 2')

for every pair of points z, z’. Moreover, 1f R satisfies (i) and (ii) in lemma 5.2
and 1f equality holds for some pair of distinct points z, 2/, then ¢ 1s of type Bl.

Proof. 1t is easy to see that @«(T.,)=T4ueen. By theorem 5.1 we have
the corollary.
We show finally the following theorem :

THEOREM 5.4. Let R and S be finite Riemann surfaces, and let ¢ be an
analytic mapping of R wnto S. If ps(P(z), ¢(z'))=pr(z, 2’) for some pair of dis-
tinct points z, z’, then ¢ 1s an n-to-one mapping of R onto S for some natural
number n. Moreover, if R=S, then n=1 namely ¢ 1s a conformal mapping of R
onto itself.

Proof. Let u and v be the extremal functions of 7,,, and ¢«(T.), respec-
tively. We define 0R* by

oR={rcor|-28ae2) _ 8l t) 5},

<

and define similarly 0S* with respect to the points ¢(z), ¢(z’). Then u({)==1
if €0R*, and v(n)==1 if =0S*. If {=0R*, by the reflection principle, # can
be extended harmonically onto some simply connected neighborhood U of .
Let {z,}C R be a sequence which converges to {. Since u=vo¢, {¢(z,)} tends
to 0S. Let »=0S be an accumulating point of {¢(z,)}. Then ¢ can be extended
analytically onto some neighborhood U’'CU of { and p=¢({)=dS*. In fact,
assume that »€0S—(0S*UaS~). Then there is a neighborhood V of 7 such
that V—0S™ is simply connected and v can be extended harmonically onto
V—0S*. Hence there exist single-valued analytic functions f=u+iu* on U and
g=v+iv* on V—0S* such that ¢=g 'of. This contradicts the assumption of 7.
Therefore 7=0S*\UaS~. Hence v can be extended harmonically onto some simply
connected neighborhood of 7. We have again ¢=(v+iv*)"'o(u+1iu*) on some
neighborhood U’ of {. This implies the assertion.

Let R and S be the double of R and S, respectively. Then, by the above
formula, ¢ can be extended analytically onto R. The extension ¢ is an analytic
mapping R onto S such that $(R)=a8S. Hence ¢ is an n-to-one analytic map-
ping of R onto S for some natural number n. If R=S and if R is of positive
genus, ¢ is univalent and a fortiori ¢ is univalent. If R is of genus zero
R is conformally equivalent to the unit disc D. Without loss of generality we
may assume that R=S=D, z=¢(z)=0 and 2/, #(z’) are real positive numbers.
Let a and B be real positive numbers less than 1. Then a=pg if and only if
pp(0, @)=pp(0, B). In fact, assume that «<p. Let u be the extremal function
of T, and define a harmonic function v by v(z)=u(a/B8-2). Then |v|[,<1, and



hence
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(0, a)=u(0)—u(a)
=v(0)—v(B)
< pD(01 ﬁ) .

This implies that a=p if and only if pp(0, )=pp(0, B). Therefore we have
#(z’)=2z'. From the Schwarz lemma ¢ is the identity mapping of D. This
completes the proof.
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