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QUASI-NORMAL ANALYTIC SPACES, 11
By Nozomu MocCHIZUKI

In [2], we have discussed relations between three kinds of analytic sheaves on
an analytic space, that is, ©, @’ and © which are, respectively, the sheaf of germs
of holomorphic functions, the sheaf of germs of continuous and weakly holomorphic
functions, and the sheaf of germs of weakly holomorphic functions.

The present paper is a continuation of [2]. §1 is devoted to a result concern-
ing the product of analytic spaces, which will be used for dealing with an example
in §3. In §2, we discuss a quasi-normality condition in the case of subvarieties
which consist of certain submanifolds; § 3 contains some examples.

The notations and terminology of [2] will be used without any specific mention.

§1. Quasi-normality of product spaces.
We prove the following

THEOREM 1. Let X=X,X -+ X Xy be the Cartesian product of analytic spaces
X, i=1,---,m. Let p=(p1, -, pn)€X. Then, X is quasi-normal at p if and only if
X, are quasi-normal at p; for all i.

Proof. 1t is sufficient to treat the case in which m=2. Let V=V;x V, where
V., are neighborhoods of p; which are subvarieties of open subsets D; of C™¢, p;
being origins of C™, i=1,2. Assume that V is quasi-normal at p=(p,, p.), and let
fey,0p,. Choose a representative f of £ which is continuous and weakly holomor-
phic on VN4, where 4, is a suitable neighborhood of p, in D,. Let 4d=4,x4,
where 4, is a neighborhood of p, in D, and let = denote the projection of VN4
onto ViN4;. Since

RVNDH=(R(V)N A1) X(R(V3) N L),

we see that for is continuous and weakly holomorphic on ¥'N4, hence holomorphic
on VN4’/, where 4’=4", x4, with 4’;C 4;. From this follows that f is holomorphic
on ViN4’y, which implies that fey O,

Conversely, let ¥, be quasi-normal at p;, i=1,2. We can choose neighborhoods
4; of p; in D; so that V,N4; are quasi-normal spaces; this is possible, because the
set of points where a space is quasi-normal is open ([2], p. 182). Let Fey(®p There
exist neighborhoods 47, of p;, 4’;C4;, and a representative F° of F such that F is
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bounded, continuous and weakly holomorphic on VN (4’;x4’;). For an arbitrarily
fixed point e ViNd4’',, we define F, by Fu(v)=F(u,v), ve VoNd’s; F, is similarly
defined on ViN4’; for a fixed ve VoN4d’s. If ue R(Vi)N4’y, the assumption implies
that F, is holomorphic on V,N 4’,. Now, let ue V;N4’:; choose u,€ R(Vi)N4’, such
that #,—u, n—oco. Since {F,} is a uniformly bounded sequence of holomorphic
functions on V,N4’,, a subsequence {F.,.} converges to a function G uniformly
on compact subsets, which is holomorphic on V,N4’,. The continuity of F implies
that G(v)=F,(v) for veVoaN4’,. Similarly, F, is holomorphic, and a generalized
theorem of Hartogs ([1], p. 292) assures that F' is holomorphic on VN (4'1N4’,);
hence we have Fey(®, This completes the proof.

§2. Quasi-normality at certain reducible points.

Let W=M,UM,, where M, are connected complex submanifolds of an open
neighborhood of 0 in C*». We are interested in the problem: What condition is
necessary and sufficient for W to be quasi-normal at 0? This is equivalent to the
following: What is a necessary and sufficient condition for a continuous function
on a neighborhood U of 0 in W which is holomorphic on M,NU,i=1,2, to be
holomorphic on U? In this section, we are concerned with the following restricted
case. Let D be a connected open neighborhood of 0 in C™ and fi, -+, fn be holo-
morphic functions on D such that f;(0)=0,i=1, ---,m. Let

M1=DX{0}CDXC"", M2={<Z, fl(z): "',fm(z))l-z:(zl, ) Zn)ED}'

M is the graph of the holomorphic map f=(fi, -, fm): D>C™ Now, W=M UM,
is an analytic subvariety of DX C™; M, are irreducible branches. Let V'={zeD] fi(2)
=0,:=1, ---,m}. The set of singular points of W is then &(W)=M,N M,= Vx{0}.

We denote by ,®, the ring of germs of holomorphic functions at 0 in C"®. The
germ of a variety defined by the germs £, will be denoted by V=V (fy, -+, fn); the
ideal of V will be denoted by id V, that is, id V={g€,Qolg vanishes on V}.

THEOREM 2. Let fi, -, fm be holomorphic functions on D such that f,(0)=0,
i=1,---,m. Let W=M UM, be as above. Let J=(fi, -, Fn), the ideal of .0
generated by the germs f,. Then W is quasi-normal at 0 if and only if

id V(fl, ey fm)zj
or, equivalently, ¥ 9 =9 wheve V' 9 is the vadical of 9.

Proof. Let W be quasi-normal at 0; let geid V(fy, -+, fn). g is represented by
a holomorphic function g on a polydisk 4,cD; g=0 on the variety {ze€4,|fi(2)=0,
i=1,---,m}. By means of the projection =: DX C™—D, we define a function G as

follows:
o {0, on M N(4,x{0}),
" lgen, on Mun(dixc™).
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G is continuous and weakly holomorphic on WnN(4,XxC™), hence holomorphic on
a neighborhood of 0 in W. Consequently, there exist suitable polydisks 4’;C4,,
4, C™ such that GNextends to a holomorphic function G on 4’;X4,. The Taylor
series expansion of G is so arranged that

6(5’ w)=90<z)+ Z gi(z) Wiy *y wm)wi7
1=1

where ¢; are holomorphic; z=(zy, -+, 2,), w=(w,, -, wn). From the definition of G
we see that go(2)=0. Let 4/, be so small that f(4’’,)C .. Putting w;=fi(2), i=1, ---,
m, we obtain

9(2)=2 a(2) fi(z),  zed"”,,
1=1
where a, are holomorphic functions on 4’/;. We have thus

g= aifl.

Mz

1=1

Conversely, let id V(fy, -+, fn)=J9 and let Gew O,, i.e., a germ of a continuous,
weakly holomorphic function at 0. Let G be a representative of G on WN(4,X4,),
and let G;=G|M;N(4:X 4,),i=1,2. We may suppose that f(4,)Cd,. Let ¢ 4:—>M;
N(41X 4,) be such that ¢,(2)=(z,0), p2(2)=(7, f(2)), z€4,. G; are holomorphic by the
Riemann extension theorem, hence G;op; are holomorphic functions on 4;,. Since
Gio01—Gzo0,€ 9 by assumption, there exist a polydisk 4’;c4; and holomorphic
functions @; on 4’y,i=1, ---,m, such that

Gzo02=Gro1+ D, a;f, on 4.
1=1
We define G by
G(z,w)=G(z,0)+ i a(Dwi, (2, w)ed s X ds.
1=1

G is a holomorphic function on 4’,X 4. and it is easily seen that G=G on W
N(4d’1x4d,). We have thus Gew®,. The second statement is clear from the Null-
stellensatz. This completes the proof.

COROLLARY 3. If (f1, -+, ) is @ prime ideal, then M, U M, is quasi-normal at 0.

COROLLARY 4. If the map f=(f1, -+, fm) is nonsingular at 0, then M,UM, is
quasi-normal at 0.

Proof. First, let m<n. We denote by J,(0) the Jacobian matrix of f at 0.
Since rank J;(0)=m, there exists a local coordinate set w, -, w, at 0 in which
wi=f,i=1, -, m. For geid V(f,, -, fn), We have as in Theorem 2,
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n
9=, ai(ws, -+, wa)w;.
1=1

Putting w,=---=w,, =0, we obtain

Mz

=2 aws, -+, Wn)Ws,

3

I

1

which implies that ge(fy, -+, fn). In case where n=m, {f, -, fu} contains a local
coordinate set at 0; therefore, (fi, -+, fn) is the maximal ideal of ,©®, It follows
that id V(f,, -, fu)=(fy, -+, Fu), completing the proof.

It should be noted that the converse of Corollary 4 does not hold in general.
In fact, let #=2; let f,€,O, for which f1(0)=0, (3f1/02:)(0)#0. Let g =(f.), then

But rank /;(0)=1, which is not maximal.
The following shows, however, the converse is also true in a special case.

ProposiTION 5. Let fi, -+, fm be holomorphic on D with f,(0)=0,i=1, ---, m. Let
dimo V(£y, -+, Fm)=0. Then M,U M, is quasi-normal at 0 if and only if f=(f1, -, fn)
is non-singular at 0.

Proof. Let 9 =(fy, -, fn). If MyUDM, is quasi-normal at 0, then z;eid V(f,, -,
fn)=49,i=1, -, n, so we have

m
2=, Al A €0 0o, i=1,-,m
k=1
hence
Z aik(o) '\fk (0)251]’ Z ]:1, ey M.
k=1 0z,

It follows that rank J,(0)=n.

COROLLARY 6. Let DCC! and f,,1=1,---,m, be holomorphic functions on D;
fi{0)=0. Then M,UM, is quasi-normal at 0 if and only if f./(0)=0 for some i.

§3. Examples.

ExampLE 1. We construct a space which is irreducible at p and ©,% 0% %) -
Let

V={(z, w, u)eC*|2* —w*u=0}, W={(x, y)e C*|z*—y* =0},

and let X=Vx W. X is a subvariety of C® and irreducible at the origin peC?®, but
not locally irreducible the~re because of the same property of V (3], p. 93). Con-
sequently, we have ©pS%®, by Theorem 1 in [2]. On the other hand, X is not
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quasi-normal at » by Theorem 1 in §1 because of that property of W; thus we
have ©,% 0.

EXA~MPLE 2. There exists a space X such that X is irreducible at p and @,
=0 ;,% Oy

Proof. First, we note the following fact: Let ¢ be a holomorphic homeomor-
phism of an analytic space X onto an analytic space Y. Then, (1) X is irreducible
at p if and only if Y is irreducible at ¢(p); (2) X is locally irreducible at p if and
only if Y is locally irreducible at ¢(p). In fact, (2) is immediate from (1). (1) is
easily seen from the following fact:

There exist a neighborhood V of p and a neighborhood W of ¢(#p) such that
V' is a subvariety of an open subset D, of C™ and W is a subvariety of an open
subset D, of C™, and ¢ is a holomorphic homeomorphism of V onto W. {V} and
{W} can be chosen so that they are bases of neighborhoods at p and ¢(2).

Now, let X be an analytic space which is irreducible but not locally irreducible
at peX, e.g., the variety V in Example 1 with p=0eC?. We denote by Y the
quasi-normalization of X with the projection z’. =z’ is a holomorphic homeomor-
phism of ¥ onto X. Let =/(¢)=p,qeY. Then Y is irreducible, but not locally
irreducible at q. Y is clearly quasi-normal. We have thus y0q=Y@4%y(§q.

Last of all, we make a list of examples for all the possible cases:

j irreducible at p I reducible at p
| 5 | | —
| O0p=0>2=0» normal at p | ~
g _ . i/// — R
| [ P
I O0sFO=0p | 22—wi=0 i |
I | —"

|
E O0p=0>%0p | Example 2 I Theorem 6, [2]
| | I r
| OrE0O0E0)p Example 1 Corollary 6
REFERENCES

[1] GrauerT, H.,, unp R. REMMERT, Komplexe Riume. Math. Ann. 136 (1958), 245-318.
[2] MocHizuki, N., Quasi-normal analytic spaces. Proc. Japan Acad. 48 (1972), 181-185.
[3] Oscoop, W.F., Lehrbuch der Funktionentheorie, II. Chelsea, New York (1965).

COLLEGE oF GENERAL EDUCATION,
Tonoku UNIVERSITY.





