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INVARIANT SUBMANIFOLDS OF AN f-MANIFOLD
WITH COMPLEMENTED FRAMES

By Minoru KoBAYAsHI AND SusuMuU TSUCHIYA

Introduction. Recently, invariant hypersurfaces of a Kaehler manifold with
constant holomorphic sectional curvature and invariant Einstein (or »-Einstein)
submanifolds of normal contact or cosymplectic manifolds with constant ¢-sectional
curvature have been studied by several authors [2], [3], [4], [7]. Blair [1] has quite
recently defined and studied S -manifolds and & -manifolds which reduce, in special
cases, to normal contact manifolds and cosymplectic manifolds respectively.

Generalizing the notion of »-Einstein contact manifolds, we shall define, in §1,
»-Einstein & -manifolds and g -manifolds and obtain some formulas giving curvature
tensors for §-manifolds and g -manifolds with constant f-sectional curvature. In
§2, we shall define f-invariant and invariant submanifolds in an S -manifold or a
g -manifold and study invariant 5-Einstein submanifolds of codimension 2 in an
& -manifold or a g-manifold of constant f-sectional curvature. In the last section,
we shall study f-invariant hypersurfaces in a certain $-manifold or a g -manifold.
The authors wish to express their deep gratitude to Professor S. Hokari for his
kind guidances and encouragement.

1. f-manifolds with complemented frames.

Let M =M?*"** be a manifold with an_ f-structure of rank 2z In the sequel,
we assume that #>1. If there exist in M vector fields € (x=1, ---, s) such that

(L.1) FE=0,  gof=0,
=-1+2é®7,

where 7 are duals to & then the f-structure is said to be with complemented
Z . ~ x ~ ~
frames ¢, -+, &€ or simply to be with complemented frames. If M has an f-struc-
1 s ~ ~
ture with complemented frames, then there exists in M a Riemannian metric C
such that

1.2 GX, =G X, ith+o, V),
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INVARIANT SUBMANIFOLDS OF AN f-MANIFOLD 431
where X and ¥ are vector fields in M and @()?, 17)=Zr7()?)77()7). M is then said
to have a metric f-structure. The 2-form F defined by
(.3 KX, 1)=GX, 77)

is called the fundamental 2-form in M. The f -structure is said to be normal if
it has complemented frames and

(1.4 N=[f, 71+ Zé@dj=

where [f, f] is the Nijenhuis tensor of f.

A metric f-structure is called a J(-structure if it is normal and has closed
fundamental 2-form. M is then said to be a X -manifold. A X -manifold whose
structure 1-forms 7?, -+, 7 satisfy df{=-~~=d;7 and 7/\---/\37/\(51;7)"#0 is called an S-

manifold. A K -manifold with d5=0 is called a g-manifold. When s=1, a K-

manifold is an almost contact manifold, an S-manifold is a normal contact manifold
and a g-manifold is a cosymplectic manifold.

Now, for later use, we shall list up the results given in [1], in the following
two propositions :

ProposiTioN 1.1. In a K-manifold &s are killing and

1.5) ai(X, ?>=—2<7yg><)?)

x

holds, zghere V denotes covariant diffeventiation with respect to the Riemannian
metric G. In an S-manifold

= 1 ~
(1. 6) ff == fX
and in a T-manifold

@7 V=0.

x

ProrosiTION 1. 2. In an S-manifold we have
PPN, 2= 5 GEE, -1 2EK, D)
1.8)
— L naa®ud -52ud).
zy? z Ty z Y

In an S -manifold, (1. 8) is equivalent to the condition
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(e P)=—5 5 C&, -5 D)
1.9
— 5 T R D,
z,y Y v x ¥y z Y

Let ﬁ()g , Y)=F. 31— Pelp+PsFlz and the S(X, ¥) be the curvature and the Ricci
tensors of M respectively. Then, by (1.6) and (1.9), we have in an S -manifold

(1.10) GRE, V), 2)= % S aKCGT, P-4 R, 2.
Hence we have, from (1. 10),
1. 11) 8% b= 515 1.

ProposiTiON 1. 3. There is no Einstein S-manifold if s=2.

Proof. If M is Einstein, we have §()?, ?):ké()?, V) for some constant k.
Putting ¥=&, we have S(X, §)=kG(X, &)=ki(X). This, together with (1. 11), shows
that there is no Einstein S -manifold, since &’s are linearly independent.

~ z ~
RemMARrRk. If M is a space of constant curvature, then M is automatically
Einstein so that there is no S-manifold of constant curvature because of Pro-
position 1. 3.

ProposiTION 1. 4. In an S-manifold, if the Ricci tensor has the form
L.12)  S& )=aGX, )+ Zand)+@(X, ¥)+ Z aDn)),
then a and b are necessarily constants.

Proof. Putting Y= in (1. 12), we have by virtue of (1.1) and (1. 2)

~

§X, H=(a+HZaX).
Thus, comparing this with (1. 11), we have

a+b=%n,

since &'s are linearly independent. If we denote by # the curvature scalar of ﬁ,
x
it is given by
F=2an+s(a+b)

because of (1.12). Hence we have
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(1.13) Ve =2nlza

On the other hand, if we denote by {Eii.1,..z04s an orthonormal basis, put
=V=E, V=Z=E, in the second Bianchi identity

RO, V, ¥, 2)+ RO, V, Z, %)+ (7RO, V, X, ¥)=0
RO, V, ¥, 2)=GRU, Y, 2)
and sum up with respect to 7 and j, we then have
g?=2;(7Ei§)(Ez, X.
On the other hand, using (1.6), we have (VE@(Ei)=%];7(&)(7,@)()?):0. Thus we
get, from (1. 12),

7;7’:22%}(7Ei§)(Et, X
=2 ;(VEia)é(E,, X+ S(Ps)d(E,, )?)+b>t:(7Eiq3)(Et,X>
+@+D) T T B+ E) P X))

=2{ga+ Rsp)B(Ey ) +0 5 L(Prg ENHE) + () Pr) (X))}

=2(Fza+ Z(AD)(X))

=2lza— S (Ppa)p(X)).
Thus, comparing this with (1. 13), we have

(n=1)Fza=— L (Fa)y(X).

Putting X =§ we have 73(1:0, which implies Fze=0 since #>1. Hence ¢ is constant

and consequently b is also constant.

DEFINITION. An §-manifold is said to be »-Einstein if the Ricci tensor of M
has the form (1.12).

ReMARK. By the definition above, we see that a =R -manifold is 5-Einstein if
the Ricci tensor has the form S(X, ¥)=aG(X, V)+00(X, V).

A plane section =z is called an f-section if it is determined by a vector
X e_L(m), meM such that {X fX} is an orthonormal pair spanmng the section, _f*
being the distribution determined by the projection tensor —f2.. We now put
HX)=K(X, fX), where K denotes the sectional curvature, and call H the f-
sectional curvature.
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ProrosiTiON 1.5. If M is an S-manifold of constant F-sectional curvature
&, then we have

GREX, 72, W):( ‘ fg ~~~~~~

NN A~ e o~ N NN s A A~

—GW, HdZ, X)+G X, WdZ, T)+6F, 2)8(X, W)

~ N A = NN

(1. 14) +0(Z, oW, V- X, MdZ, V) + (—Z— - %){ﬁ(ﬁ/‘, XFF, 2)
+ BT, WER, 2)-28&, VW, D)~ 2 6@ RCG 2, 79
—g(%g(?)é(fi, fX>+g(?>g<Z>é<fW, f)b—g(@g()b&fﬁ 129
and, if Misa g -manifold of constant f-sectional curvature ¢, then
GRE, NZ, W)=-3- G, 26W, 1)~G(&, WG, 2)-C(X, 23W. )

NN A~ e o~ N

(1. 15) ~ o o~ N ~ o~ o
+&(Z, X)oW, V)-8X, W& Z, ¥)+ FEW, X)F(¥, Z)

+FP, WMFX, 2)-28X, D)FW, Z))
for any vector fields X, }7', Z and W in M.

Proof. The proof of above proposition is given by a lengthy but straight
computgtioNn, S tha} we ~shall show only the process how to obtain it. First, we
put BX, V)=GRX, "X, Y). Then, in general, we have

GRE, T2, W=BW+7,Z +X’)+%B(X+?, Z+W—BW, Z+X)
-BY,Z+X)-BX, W+Y)-B(Z, W+17)—~;—B(X, Z+W)
(1. 16)

-%B(Z~, 2+ ?)——;—B(W, X’+17)—%B(l7, Z4+W) +-§-B(Z~, )
~ o o 3 o 1 me 1 o
+B(Z, W)+BX, V)+—5-BX, W)+ 5BZ, X)+—5BW, 1.
By Lemma 2.4 of [1], we find

w17 BX, V)= Slz{sp()h I +3DX-7¥)-DX+¥)-DX-Y)
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—-4D)—6sP(X, Y; X, 7Ty

in an S -manifold and

SOV | o o e - o o~ - n
(1.18) B(X,Y)= —37{3D(X+fY)+3D(X—fY)—D(X+Y)—D(X—Y)—4D(X)——4D(Y)}
in a g-manifold, where X,V eL(m),DX)=BZX, fX) and PX, Y; Z, W)
=KX, 2)G¥, W) - KX, W CF, Z) - F¥, 2)GX, W) + FF, W)GX, Z), Thus,
substituting (1. 17) and (1. 18) into (1. 16) and taking account of D(X)=¢l||X||¢, we
have for X, }7, 7, Wef(m),

1.19) + (% o i) (B, ) EF, 2)+F (X, 2HF T, W)
—2FW, HF(X, 1)
in an & -manifold and

(1.20) GREX, VZ, W= %5{5(}?, DG, V)-C(&X, 2)GF, W+FW, DF (T,

1

)
+EX, DHFY, Wy—28W, 2)F(X, )
in a g-manifold. Therefore, since for vector fields X, )7, 7 and W in 1\7[,
X-zg®f  V-2q0E Z-29(2)E and W-LaW)é
lie in L, substituting them into (1.19) and (1.20), we have (1.14) and (1.15)
respectively.
As a direct corollary to Proposition 1.5, we have
Prorosition 1.6. We have
N oo 1 . 3s 3. slaas o 1 _ 3s
S(X, Y)={(Tc+ E>(2n—1)+ Tc+1—6}G(X’ Y)_KThL E) 2n—1)
(1. 21) 3
s n]s s o n o
A S A 709,104
+ it e }@(X, )+ - 2 7(X)it)
in an S -manifold of constant f-sectional curvature ¢ and

1. 22) $(%, 7= ”T“ G(X, T)—0(X, T

in a I -manifold of constant f -sectional curvature €.
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ReMmAark. We see easily that if M is of constant f-sectional curvature, it is
»-Einstein.

2. Invariant submanifolds of codimension 2 in an S-manifold and in a J-
manifold.

Let M be a submanifold in an f-manifold with complemented frames ?, e &
s
and i M—M its imbedding.

DEFINITION. M is said to be an f-invariant submanifold of M if the tangent
space Ty(i(M)) is invariant by the linear map f at each point p of i(M).

DEFINITION. An f-invariant submanifold is said to be invariant if all of
& (x=1, -+, s) are always tangent to i(M).
xr

Hereafter we assume that M is an f-invariant or invariant submanifold of M.
For arbitrary vector fields X and Y in M, we put

@2.1) o X, ¥)=G(xX, ixY),
2.2) Vigxis Y=isVx Y+ TxY,

where TxY is the normal component of FiyxiyY. Then ¢ is 2 Riemannian metric
in M, IV is the covariant differentiation with respect to ¢ and 7%Y is the so called
second fundamental tensor of the submanifold M. We next put

@.3) fixX=ixf X,

where f is a (L. 1)-type tensor in M. We have the following Propositions 2. 1~2. 4,
which are quite similar to those proved in contact cases, so that the proofs of
them are omitted here (cf. [8].

ProrosiTION 2.1. An f -invariant submanifold M imbedded in an f -manifold
with complemented frames & (x=1, ---,s) in such a way that s are never tangent
x x

to i(M) is an almost complex manifold. If the f-structure is normal, then M is a
complex manifold.

ProrosITION 2.2. An invariant submanifold M imbedded in an f-manifold
with complemented frames is an f-manifold with complemented frames. If the f-
structure is normal, then M is also normal.

. ProrosiTiON 2.3. An f -invariqnt submanifold M imbedded in an S -manifold
M in such a way that the vectors & (z=1, ---,s) are never tangent to i(M) is a
xz

Kaehler manifold and minimal in M.

PrOPOSITION 2. 4. An invariant submanifold M imbedded in an S -manifold
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(resp. in a T -manifold) is an S -manifold (resp. a T -manifold) and minimal in M.

Now, we confine our attention to the case where M is an invariant submanifold
of codimension 2 in an §-manifold of constant f -sectional curvature ¢. Let C be
a field of unit normals defined on #(M) such that G(C, xX)=0 and G(fC, i+X)=0
for all vector fields X tangent to M. Since our submanifold is invariant, we may
put

2. 4) f =ixé

for some tangent vectors & (z=1, ---, s) in M. Lety (z=1, .-, s) be duals to &, i.e.

1-forms satisfying (1.1). Then we have, by virtue of Proposition 2. 4,
v(§)=5zy:
x Y
2.5) ff:O, ::70f= 0,
F=-1+Z¢®1,
(2. 6) 9 X, V)=9(fX, fY)+0(X, Y),
where we have put O(X, Y)=29(X)n(Y). We have also, from (1. 9),
@D TeNY=5 DX VE=19X)~ o E GCY =XV
x r x, ¥ x x

Furthermore, since our submanifold is of codimension 2, we may put 7xY=H(X, Y)C
+K(X, Y)fC, where H and K are (0, 2)-type tensor fields in M. Hence we have

©.8) Pxix Y=ixlx Y+H(X, Y)C+K(X, Y)FC,
(2.9) FisxC=—ixh X+s(X)fC,
(2. 10) Pz FC=—ixk X—s(X)C,

where s is a 1-form in M and 4, £ are symmetric tensor fields of type (1,1) in M
satisfying the relation ¢(2X, Y)=H(X, Y) and ¢g(kX, Y)=K(X, Y).
Moreover, using (1. 9), we have

7i*XfC=(Z*Xf)C+f7i*XC
1

= L B @, OF—1CX)~ - T (i YO~ 16X ON ~fiuh Y +5X0f*C

=—iy fhX—s(X)C.

Hence we have
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@.11) k=fh, h=—fk,
@2.12) Fh+hf=0, Fh+Ef =0,
©.13) hE=0, kE=0.

Now, let R(X, Y)Z be the curvature tensor of M. Then the fundamental
equations of the submanifold M can be written as

R(13X, 14 Y)ixZ=i4[R(X, Y)Z+(H(Y, Z)h X~ H(X, Z)hY)+(K(Y, Z)k X~ K(X, Z)kY )]
2.14) —g(Pxh)Y —(Peh) X—s(X)BY +s(Y)kX, Z)C
—g(Pxk)Y —(FeB) X+s(X)hY —s(Y)hX, Z) fC,

RBuX, 14 Y)C=is[(Pxh) Y — (Pel) X — (X)) Y +5(Y)EX]
@.15)
—((Pxs) (V)= (Pes) X)—K(X, hY)+K(Y, hX)JC.

Therefore, forming the inner product of i, W with (2.14) and taking account of
(1. 14), we have

o 3
4 16

—o(W, Y)0(Z, X)+9(X, W)P(Z, Y)+¢(Y, Z)D(X, W)

oR(X, Y7, W>=( ){g<X, D)W, Y)—g(X, We(Y, Z)—o(X, Z)O(W, Y)

+0Z, X0, Y)= 00X, W)OZ, V) + (- = 15 ) FW, XOF(Y, 2)

(2.16) +F(Y, W)F(X, Z)—2F(X, Y)F(W, Z)}— —;i— 2 in(Wn(X)e(fZ, 1Y)
z,y Y &z

_Z( WY )o(f2, fX)+ ;7( Y(Z)a(fW, fX)~ g(Z WX)g(fW, FY)}

—g(hY, Z)g(hX, W)+9hX, Z)ghY, W)—g(kY, Z)g(kX, W)
+9(kX, Z)9(kY, W),

where we have put F(X, Y)=¢(X, fY). If we denote by S(X, Y) the Ricci tensor
of M, we have

S(X, Y)={<-—4— + 175—)(2%—3)+—?%4-€ +—1%}g(X, Y)—{(% +%§-)(2n—3)

@.17)

PR

S n-1
AT

5— LXn(Y)=29(°X, Y),
TxYyx Y

n—1
T}@(X, )+

since M is minimal by Proposition 2. 4.



INVARIANT SUBMANIFOLDS OF AN f-MANIFOLD 439

Assume that M is »-Einstein. Then the Ricci tensor of } has the form

-1
@.18) SX, Y)=ag(X, V)+b0(X, Y)+ 2= T, 2XKY).
Txy T
Thus, comparing this with (2. 17), we have
(2.19) 9? X, Y)=pg(fX, fY),

since a+b=(mn—1)/2, where we have put

1 ¢ , 3s 3¢ s

Therefore, we have
(2. 20) ©=0,
2.21) kh=pf.
Next, forming the inner products of C and fC with (2. 14), we have respectively
(2. 22) Txh)Y —(Pxh) X—s(X)RY +s(Y)kY =0,
(2. 23) (Vxk)Y —(Pyk) X+s(X)hY —s(Y )hX=0.
LemMA 2.5. If M is y-Einstein,

(2. 24) (al) Y =s(X)RY ~ 5 5 (OB +5(VIRX +(kX, V%),

©.25)  (xR)Y=—sCORY + = 5 OB+ +g(hX, V),

Proof. Differentiating the second equation of (2.11) covariantly and taking
account of (2.13) and (2.7), we have

(el Y =(Fxb)f ¥ — - S VX,

Putting Y=¢, we have
¥

1
(Pxh)=— - kX.

Thus, putting X=¢ in (2. 22), we have
v

Teh) Y=s@kY — - 1Y.
y Y 2
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On the ojher hand, we have, from (2.19), A?=pl in L(m). Hence, using (2.23)
and similar method used in Proposition 7 of [5], we have for any X’, Y’e_r,

FxR)Y' =—s(XhY".
Therefore, using (2. 7), we have.
Pxh)Y' =Vx(—fR)Y"
==z Y —f(Px k)Y’

1
== 5 LoX, kY)e+s(XNRY’.
Hence, for
X=X+ gg(X)g, Y=Y'+29Y) (X, Yer)

we have

Pxh)Y =z h)Y'+ (Vxh)( ; 2( Y)i) + %} o X )V B)Y
1 1
=s(X)Y'— 5~ § o(X, kY')§+ § 2( Y)( -5 kX’)

+ TyX) (s(xf)k y— % kY)

=SCORY — -5 5 (Y X+ 5CORY +o(X, £Y)S),

which proves (2.24). We can prove (2.25) as follows:
xR Y=WxfR)Y=Fx Y +f(Vxh)Y

= —;—- 29X, hY)§+s(X)ka— —;—Z(Q(Y)ka+2(X)ka)

—s(X)hY + —;— Z (VX5 XORY +9(X, hY)E).

Forming the inner product of fC with (2.15) and taking account of (2. 21), we
have (cf. Lemma given in [3])

LemMA 2. 6. If M is y-Einstein, then
¢
(2. 26) (Tas)(¥)—(Prs) (X) = (2#+ - %)F(X, Y).

THEOREM 2. 7. If M is an invariant 3-Einstein submanifold of codimension 2
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in an S-manifold of constant f-sectional curvature ¢, then
(I) M is totally geodesic for ¢=—3s/4,
() M is totally geodesic or y-Einstein with the scalar curvature

(n—1)1etn—1)+ %(3;1—5) for 6>——313—.

Proof. Differentiating (2. 24) covariantly, we have, for vector fields X and YV
such that [X, Y]=0,

PxVyh)Z—VeVxh)Z=Vxs) (Y )kZ—(Vys)(X)kZ

1
-1 xZE/ WY WZhX+n(Y)ghX, Z)e—y(X );/(Z Y

~y(X)(hY, Z2))+ — RF(Y, X)eZ+F(Z, X)kY
v z

+o(kY, 2)f X—F(Z, Y)EX—9kX, Z)f Y}

Since R(X, Y)-h=—FxVyr—VeVx)h and (R(X, Y)-hZ=R(X, Y)hZ—hR(X, Y)Z, we
have

16 H
+9(Y, hZ)D(X, W)—g(X, hZ)D(W, Y)—g(X, hW)D(Z, Y )—g(hW, Y)P(Z, X)

+EW, X)0(Y, kZ)+ F(Y, W)g(X, hZ)—2F (X, Y)g(W, kZ)+ F(Y, Z)g(X, W)
—9(Y, EW)F(X, 2)}=0,

<i 42 ){Q(X, hZ)g(W, Y)—og(X, W)g(Y, hZ)— (X, Z)g(hW, Y)+ (X, hW)g(Y, Z)

by virtue of (2.16), (2.19), (2.21) and (2. 26). Thus, taking the trace with respect
to W and Y, we have

é 3s
(T + 16 —,u)Zn 9(X, hZ)=0,

since M is minimal. Hence we see that M is totally geodesic except in the case

where p3¢/4+3s/16, which implies >0 by (2.20). Therefore Theorem 2.7 is
proved.

In the sequel, we assume that M is an invariant submanifold of codimension
2 in a g-manifold of constant f -sectional curvature ¢. Then we have

9(R(X, Y)Z, W)= -i—{G(X, Z)(W, Y)—g(X, W)g(Y, Z)+G(X, W)P(Z, Y)

+9(Y, Z)0(W, X)—o(X, Z)0(W, Y)—g(W, Y)D(Z, X)
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2.27) +0(Z, X)0(W, Y)—-0(X, W)d(Z, Y)+F(W, X)F(Y, Z)
+F(Y, W)F(X, Z)—2F(X, Y)F(W, Z)}—g(hY, Z)g(hX, W)
+9(hX, Z)ghY, W)—g(RY, Z)g(kX, W)+g(kX, Z)gkY, W),
by virtue of (2.14) and (1. 14). Hence we have

2.28) S(X, Y)= %6{9()5, Y)-0(X, Y)}-29(A°X, Y).

Assume that M is y»-Einstein. Then the Ricci tensor of M has the form

2. 29) S(X, Y)=ag(X, Y)+b0(X, Y)

with a¢+b=0. Thus, comparing this with (2. 28), we have
(2. 30) oW’ X, Y)=2(f X, fY),

where we have put 2=(1/2)(n¢/2—a). Hence we have

2. 31) 2=0,

(2.32) hk=2f.

The proof of the following Lemma 2. 8 is similar to that of Lemma 4. 11 given
in [2], so that the proof is omitted.

LemMA 2.8. If M is y-Einstein, then
(2. 33) xh)Y =s(X)kY,
2.34) Pxk)Y=—s(X)hY.
The proof of the following Lemma 2.9 is similar to that of Lemma 2. 6.

LemmMmA 2.9. If M is y-Einstein, then
(2. 35) (Txs) (V) — (Fys)(X) = <2z + —S—)F(X ).

THEOREM 2.10. If M is an invariant y-Einstein submanifold of codimension
2 mn a I -manifold of constant f -sectional curvature ¢, then

(I) M is totally geodesic for ¢=0,

() M is totally geodesic or y-Einstein with the scalar curvature (n—1)%¢ for
¢>0.

Proof. First we have
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(VeVxh)Z—(PxVyh)Z= (22 + —;—)F(Y , X)kZ,

by virtue of (2.32), (2.33) and (2.34). Thus, using the identity (R(X, Y)-2)Z
=(PyVxh—VxVyh)Z for any vector fields X and Y in M such that [X, Y]=0, we have

(= 2) 0, K20(W, Y)=o(X, Wia(¥, 12)=o(X, 23 W, V)+0(X, hWW(Y, 2)

+9(hZ, Y)OX, W)—9(X, hZ)YO(W, Y)+9(X, hW)D(Z, Y)+ghW, Y)P(Z, X)
+F(W, X)F(Y, h2)+F(Y, W)F(X, hZ)-2F(X, Y)F(W, hZ)}=0.

Therefore, taking the trace with respect to W and Y, we have

({— —2)211 o(X, hZ)=0,

from which we have Theorem 2. 10.

In closing this section, we state the following Theorems 2.11 and 2. 12 which
can be proved in a quite similar way for the corresponding theorems proved in
the case s=1 (See [2]).

THEOREM 2.11. Let M be an invariant submanifold of codimension 2 in an S -
manifold or in a I -manifold of constant f-sectional curvature. Then M is tolally
geodesic if and only if M is of constant f-sectional curvature.

THEOREM 2.12. An invariant y-Einstein submanifold of codimension 2 in a
T -manifold of constant f-sectional curvature is locally symmetric.

3. F-invariant hypersurfaces of M.

Let M be an f -invariant hNypersurface of an f-manifold M?"** with comple-
mented frames &, & and i: M—M its imbedding. We denote the induced Riemannian
metric of M by 1g,2 that is,

3.1 o(X, Y)=GixX, ixY)
for any vector fields X and Y tangent to M. Since M is f-invariant, we may put
(3.2 FixX=isf X,

where f is a tensor field of type (1,1) in M.

We assume that M is orientable so that there exists a field of unit normals C
to iM). Then, since G(fC,ixY)=—G(C, fixX)=0, we have 7C=0. Hence we
may put
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3.3) c=a§+ﬁ§,

where a=177(C), ,B=;7(C) and a*+g=1. If we define & by

3.4 §=—pi+as,

then we see easily that £ is a unit tangent vector field to i(M) and therefore we
may put

(3.5) E=ixt,
where £ is a unit vector field in M. We denote by » the 1-form dual to ¢, that is,
3.6) n(X)=9(X, &)
From (3. 3) and (3. 4), we have
3.7 §=ac— B,
3.98) §= BC+aé.

THEOREM 3. 1. An orientable f-invariant hypersurface of an F-manifold Men+2
with complemented frames admits an almost contact metric structure (f,§,7, )
defined by (3.1), (3.2), (3.5) and (3. 6).

Proof. First, we have
7&)=g(& =1,
infE=Fire=FE= —ﬁf§+af§=0,
o)X X) =9(fX)=9(&, fX)=Gixt, ixf X)=C(ix&, [isX)
=—G(fist, ix X)=—G(ixSE, ixX)=0,

iuf*X= Pl Xm —is X 3 008 X0f = —in X+ OF H6 X0
= — i X B0 )aC — B+ ar(X)(BC-+ ad)
= — i X—aPp(X)C+ B X +ar(X)C-+a'7(X)E

= — i, X+ 9(X)E =iy [ — X+ 9(X)E].

We have also
0(f X, fV)=Clisf X, isxf V)=C(fisX, [ir V)=GG:X, ix Y>—;§ T X)iGx Y)

=0(X, Y) =70 X076 Y) — (i X0 Y)
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=9(X, ¥)—Bp(X)n(Y)—a®n(X)p(Y)
=9(X, ¥)—n(X)(Y).
Thus, (f, & 5, ¢) is an almost contact metric structure on M.
ReMARK. If we define 7/ by f’X=FX for Xe f. f’1§=§ and f’f:—gf, then

f’ is an almost complex structure on M?+2 g0 that the existence of an almost
contact structure on an orientable hypersurface of M?**+2 is clear (See [6]).

Next, since M is of codimension 1, we may put
(3.9 Viuxis Y=iVx Y+ H(X, Y)C,
(3.10) VisxC=—ixhX,
where 7 is a symmetric tensor field of type (1, 1) in M satisfying H(X, Y)=¢(X, Y).

THEOREM 3. 2. An orientable f-invariant hypersurface of an S-manifold M2
is @ normal contact manifold and totally geodesic in M?"+2,

Proof. We have here

Z*XC=(Xa)§+aZ*X§+(Xﬁ)§ +ﬁZ*x§ (by (3.3)
=(Xa)§———%—afi*X+(Xﬂ)§— —;—pﬁ*x (by (1. 6))
=(Xa)(aC—ﬂé)——;—ai*fX+(Xﬁ>(ﬂC+a§)—%ﬁi*fX (by (3.7) and (3.8))
r1
={(Xa)a+(Xﬁ)ﬁ}C—z*[7 (a+ﬂ)fX+((Xa)ﬂ—(Xﬂ)a)e]
!
= —ia] 5 a7 X (K- (X |
Thus, comparing this with (3. 10), we have

(3.11) hX= @+ B X+ (Xa)p— (X Pk

Putting X=¢ here, we have
hE=y§,
where we have put y=(éa)f—(éB)a. Thus for Y’eL we have

g(hY’, §)=g(Y", h&)=rg(Y", §)=0.
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Hence we have by (3.11)
1
hY = —2-(a+,8)fY'.
But, since % is symmetric and f is skew-symetric with respect to g, we must have
1 7
—-(a+pf V=0,
which implies a+8=0 and consequently (3. 11) becomes £X=0, since a=—p=1/+/2

or a=—f=—1/+/2. Thus, M is totally geodesic. We also have
[f, 716X, ix V) =il f, F1(X, ¥)

and
2

2 DX, ix Y e =P (i V)~ Pexr (706 X)) — 706l X, YDIE
P (700 V) = Poxr (706 X0) 700l X, YDIE
= Pax(= (¥ )= Prsr (= (X)) + (X, YDIE
HPiex(@r( ¥ ) = Posr (en( X)) = eop(IX, YD
=—pdy(X, Y +ady(X, V)i
=dy(X, Y)isé.

Thus, we have [f, fI(X, Y)+dn(X, Y)é=0, that is, M is an almost normal contact
manifold. Finally, we have

F(X, V)=¢(X, f Y)=G(ixX, ixf V)=C(ixX, fisV)=F(isX, ixY)
=d(ixX, ixY)=ady(X, Y).

Thus, to show that M is normal, it is sufficient to prove the following Lemma 3. 3:

LemMma 3.3. Let M be an almost normal contact manifold with an ($, & 7, 9)-
structure and fundamental 2-form F. If F(X, Y)=kdy(X,Y), where k is a non-
zero contant, then M is a normal contact manifold.

Proof. We now put
é=k§’

pe L
= k 7
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(3.13) b=,
1
0X, ¥)= 25 o(X, V).
Then, (3.13) gives a normal contact metric structure on M. Indeed, we have

HO=0@, &= ks, k=1,

A~ 1 s
ﬁo¢= 7770¢=0, ¢E=k¢§=0,

P X=¢X=—X+9(X)E=—X+H(X)E,
XY—IXY—1 XYleY
(X, )—?g( ) )——k;g(sb , @ )+777( )772( )

=§($X, Y)+H(X)H(Y),

[, X, Y)+dp(X, V)é=I[p, pI(X, V)+HXH(Y)— Y H(X) 71X, YD}
=[p, JIX, ¥)HX (V)= Y (X)) —n([X, Y]}
=[p, $1(X, Y)+dn(X, Y)e=0,

and, if we denote by F the fundamental 2-form corresponding to ¢, we have

X, V)=0(X, §)=— X, $¥)= - F(X, V)= dy(X, V)=d3(X, ),

which shows that M is a normal contact manifold.
Next, we shall prove

THEOREM 3.4. If M is an f-invariant hypersurface of an S -manifold Men+2
of constant f -sectional curvature &, then M is 5-Einstein.

Proof. Since M is totally geodesic, by Theorem 3.2, we have
RG.X, ixV)isZ=ixR(X, Y)Z.
Thus, by the formula of Proposition 1.5 with s=2, noticing that
B(ix X, ix V)= X0 Y )+ 70507 ¥)
=B X Y)+a*n(X)p(Y)
=9(X(Y)
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and
A X )i ¥)+ 7G4 X0 ¥) = =y X0 Y) —apr(Xn(¥)

=p(Xm(Y),
we then have ’

WRX, 12, W)=~ + )X, 2, V)=o(X, Wi(¥, 2)
4 8
0¥, 2K W)+ F (W, X)F(Y, 2)+F(Y, WF(X, 2)

—2F(X, Y)F(W, Z)}.

+ (—g- - -1—>{—9(X, Zy(WynY)—g(W, Y )p(Z)p(X)+9(X, Win(Z)n(Y)

Thus, taking the trace with respect to Y and W, we have

sct 2)={(4+ 5 )2 2( =5 ) Jox 2= (- =5 en+ 2m0m@),

which shows that M is »-Einstein.

COROLLARY 3.5. If M is an f-invariant hypersurface of an S-manifold M+
of constant f-sectional curvature 1/2, then M is of constant curvature 2.

In the last step, we consider the case where M?*+2 is a -manifold. We shall
now prove

THEOREM 3. 6. An orientable f-invariant hypersurface of a I -manifold is a
cosympletic manifold.

Proof. Putting Y=¢ in (3.9), we have
Visxisé =ixVxé+ H(X, £)C.
On the other hand, using (3.4) and (1. 7), we have
Vi xise =Figex€=— (X.B)§ + (Xa)g

= —(XB)(aC— pE)+(Xa)(pC+af)
={—a(Xp)+p(Xa)}C.
Hence we have Fx£=0. Thus, we have here
(X, Y)=X((Y)— Y X)) —»(X, Y]
=9(VzY, §)—9(rX, £)—9(X, Y, &)
=0,
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which shows jhat M is a cosymplectic manifold.

THEOREM 3.7. If M is an orienlable f-invariant hypersurface of @ I -manifold
M™% of constant f-sectional curvature &, then M is y-Einstein.

Proof. Using (1.7), we have
PusxC=Ponx(af + )= (X)f +(XPE

=(Xa)(aC - pé)+(XB)AC+aé)
= —ix[(Xa)f—(XP)alé.

Thus we have, by (3. 10),
hX={(Xa)f—(XP)a}s,

from which we have

(3.14) hX'=0 (for X'eL)

(3.15) h&=7¢.

On the other hand, we have the equation of Gauss

G(R(xX, iy Y)ixZ, ixW)=g(R(X, Y)Z, W)+¢(hY, Z)ghX, W)—ghX, Z)ghY, W).

Thus, by the formula of Proposition 1.5 with s=2, we have
¢
9(R(X, Y)Z, W)=~;1—{9(X, Z)g(W, Y)—g(X, W)g(Y, Z)—9(X, Z)y(W)n(Y)

—g(W, Y Zm(X)+9(X, Wi Z(Y)+9(Y, Z)p(X)(W)
+F(W, X)F(Y, Z)+ F(Y, W)F(X, Z)-2F(X, Y)F(W, Z)}
—g(hY, Z)ghX, W)+g(hX, Z)ghY, W).

Therefore, taking account of (3.14) and (3. 15), we have

S(X, ¥)= 100X, 2)~p(X(Z)) ~o(hX, hZ)+o(hX, Z)trace h
= 1425 (X, Z)— (X (Z)— (X, Eg(hZ, &)+ g(hX, O(Z, &)
= %c: {0(X, Z)— (X (2N =1 X(Z)+1*n(X)n(Z)

= 210X, 2~y X2
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Thus M is »-Einstein.
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