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INVARIANT SUBMANIFOLDS OF AN f-MANIFOLD

WITH COMPLEMENTED FRAMES

BY MINORU KOBAYASHI AND SUSUMU TSUCHIYA

Introduction. Recently, invariant hypersurfaces of a Kaehler manifold with
constant holomorphic sectional curvature and invariant Einstein (or ^-Einstein)
submanifolds of normal contact or cosymplectic manifolds with constant ^-sectional
curvature have been studied by several authors [2], [3], [4], [7]. Blair [1] has quite
recently defined and studied S -manifolds and £Γ -manifolds which reduce, in special
cases, to normal contact manifolds and cosymplectic manifolds respectively.

Generalizing the notion of ^-Einstein contact manifolds, we shall define, in § 1,
57-Einstein S -manifolds and £Γ -manifolds and obtain some formulas giving curvature
tensors for S -manifolds and £Γ -manifolds with constant /-sectional curvature. In
§ 2, we shall define /-invariant and invariant submanifolds in an S -manifold or a
£Γ -manifold and study invariant ^-Einstein submanifolds of codimension 2 in an
£ -manifold or a £Γ -manifold of constant /-sectional curvature. In the last section,
we shall study /-invariant hypersurfaces in a certain S -manifold or a £Γ -manifold.
The authors wish to express their deep gratitude to Professor S. Hokari for his
kind guidances and encouragement.

1. /"-manifolds with complemented frames.

Let M=M2n+s be a manifold with an /-structure of rank 2n. In the sequel,
we assume that n>l. If there exist in M vector fields j (α?=l, •••, s) such that

(i.

where η are duals to f, then the /-structure is said to be with complemented

frames f, •••, ζ or simply to be with complemented frames. If M has an /-struc-
1 S „ „

ture with complemented frames, then there exists in M a Riemannian metric C
such that

(I- 2) G(X, Ϋ) =
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where X and Ϋ are vector fields in M and Φ(X, f) = Σ9W^) M is then said
XX X

to have a metric /-structure. The 2-form F defined by

(1-3) F(XyΫ}=G(XjΫ]

is called the fundamental 2-form in M. The /-structure is said to be normal if
it has complemented frames and

(1-4) ΛΓ=[/,/] + Σf (8)^=0,
X X

where [/, /] is the Nijenhuis tensor of /.
A metric /-structure is called a JC -structure if it is normal and has closed

fundamental 2-form. M is then said to be a JC -manifold. A JC -manifold whose
structure 1-forms 9, ••-, 9 satisfy drj = ~ =dή and η/\'~/\η/\(dή)n*b is called an S-

i s 1 s 1 s x

manifold. A JC -manifold with dη=ΰ is called a £Γ -manifold. When s=l, a JC-
or

manifold is an almost contact manifold, an <5 -manifold is a normal contact manifold
and a £Γ -manifold is a cosymplectic manifold.

Now, for later use, we shall list up the results given in [1], in the following
two propositions :

PROPOSITION 1. 1. In a JC -manifold ξ's are killing and
X

(1.5)

holds, where V denotes covariant differentiation with respect to the Riemannian
/v

metric G. In an S -manifold

.
x Δ

and in a %-manifold

(1. 7) Pj|=0.
X

PROPOSITION 1. 2. In an S -manifold we have

(F^X?, Z)= 4- Σ OXW*, Z)-η(Z)G(X, F))
Δ x x x

(1.8)

- 4-Σ v(XMY)y(Z)-y(Z)i}(Y».
£ x,yV x y x y

In an S -manifold, (1. 8) is equivalent to the condition
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)=-g"Σ(%ί^-ί
(1-9)

_J_

2 ^~y y y x y x y'

Let R(X, Ϋ) = Pίχ,γι-PχPγ+PγFχ and the §(X, Ϋ) be the curvature and the Ricci
tensors of M respectively. Then, by (1. 6) and (1. 9), we have in an S -manifold

(1. 10) G((X, )|, Z) = -

Hence we have, from (1. 10),

(1.11)
Z xx

PROPOSITION 1. 3. There is no Einstein S -manifold if s^2.

Proof. If M is Einstein, we have S(X,Ϋ)=kG(X,Ϋ) for some constant k.

Putting f =|, we have 5(1, ξ)=kG(X, ξ)=k%(X). This, together with (1. 11), shows
2 2 Z Z _

that there is no Einstein cS -manifold, since f's are linearly independent.
Λ?

REMARK. If M is a space of constant curvature, then M is automatically
Einstein so that there is no S -manifold of constant curvature because of Pro-
position 1. 3.

PROPOSITION 1. 4. In an S -manifold, if the Ricci tensor has the form

(1. 12) S(X, Ϋ)=
x*?y x y x*?y x y

then a and b are necessarily constants.

Proof. Putting Ϋ =ξ in (1. 12), we have by virtue of (1. 1) and (1. 2)

XX

Thus, comparing this with (1. 11), we have

since |'s are linearly independent. If we denote by r the curvature scalar of M,
X

it is given by

r=2an+s(a+b)

because of (1. 12). Hence we have
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(1.13) Vχr

On the other hand, if we denote by {£*}*=! ..... zn+s an orthonormal basis, put
U=Ϋ=Eί,V=Z=Ej in the second Bianchi identity

, V, Ϋ , Z} + (ϊyR}(U, V, Z, X) + (PsRχU, V, X, ?)=0

and sum up with respect to i and j, we then have

Pir=2Σ(P*tSχEt, X}.
^

On the other hand, using (1.6), we have (̂ )(£ΰ = Σ?(fi)(^)W=0. Thus we
x ιx y

get, from (1. 12),

l, X)

+(a+b)Σ Σ

Thus, comparing this with (1. 13), we have

X X X

Putting X=ξ we have P~ξa=Q, which implies F^=0 since n>l. Hence a is constant
Z X

and consequently b is also constant.

DEFINITION. An <S -manifold is said to be η-Einstein if the Ricci tensor of M
has the form (1.12).

REMARK. By the definition above, we see that a £Γ-manifold is ^-Einstein if
the Ricci tensor has the form S(X, Ϋ)=aG(X, Ϋ) + bΦ(X, Ϋ).

A plane section π is called an /-section if it is determined by a vector
XeJ?(m), msM such that [X, f X } is an orthonormal pair spanning the section, Jc
being the distribution determined by the projection tensor —/2. We now put
H(X}=K(X, f X ) , where K denotes the sectional curvature, and call H the /-
sectional curvature.
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PROPOSITION 1.5. If M is an S -manifold of constant f -sectional curvature
d, then we have

G(R(X, F)Z, W) = + (G(X, Z)G(W, Ϋ}-G(X, W)G(Ϋ, Z)-G(X, Z)Φ(W, Ϋ)

-G(W, Ϋ)Φ(Z, X)+G(X, W}Φ(Z, Ϋ)+G(Ϋ, Z}Φ(X, W)

(1. 14) + Φ(Z, X)Φ(W, F) - Φ(X, W)Φ(Z, Ϋ)} + (-^-JQ) { W X)P(Ϋ, Z)

+F(Ϋ, W )P(X, Z)~2P(X, Ϋ)P(W, z)}- -f Σ W&wXwfZ, fΫ )
4 x,y V x

-ή(W)ί)(Ϋ}G(fZ, fX} + ϊί(Ϋ}η(Z}G(fW, fX}-η(Z}η(X]G(fW, /F)}
y x y x y x

and, if M is a £Γ '-manifold of constant f -sectional curvature c, then

G(8(X, Ϋ)Z, W) = -^-{G(X, Z)G(W, Ϋ)-G(X, W)G(Ϋ, Z)-G(X, Z}Φ(W, Ϋ )

, X)+G(X, W}Φ(Z, Ϋ )+G(Ϋ , Z)Φ(X, W)
(1. 15)

+ Φ(Z, X}Φ(W, Ϋ)-Φ(X, W}Φ(Z, Ϋ} + F(W, X)F(Ϋ, Z}

, Z}-2F(X, Ϋ)F(W, Z)}

for any vector fields X, Ϋ, Z and. W in M.

Proof. The proof of above proposition is given by a lengthy but straight
computation, so that we shall show only the process how to obtain it. First, we
put B(X, Ϋ)=G(R(X, Ϋ)X, Ϋ). Then, in general, we have

3G(R(X, Ϋ)Z, W)=B(W+Ϋ, Z + X)+-^-B(X+Ϋ, Z+W)-B(W, Z + X)
£i

-B(Ϋ, Z+X)-B(X, W+Ϋ}-B(Z, W+Ϋ) — \ B(X, Z+W)

(1. 16)

~B(2, X+Ϋ}-±B(W, X+γ)-±-B(Ϋ, Z+W)+^-B(Z, F)

+B(Z, W)+B(X, Ϋ) + --B(X, W) + -B(Z, X)+-B(W, F).

By Lemma 2. 4 of [1], we find

(1. 17) B(X, Ϋ)=:-±r {W(X+?Ϋ)+W(X-fΫ)-D(X+Ϋ)-D(X-Ϋ)
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-4D(? )-6sP(X, Ϋ XjΫ)}

in an S -manifold and

(1. 18) B(X, ?) = ~{3D(X+fΫ)+3D(X~fΫ)-D(X + Ϋ)-D(X-Ϋ)-4,D(X)--^D(Ϋ

in a 2 -manifold, where X, Ϋ e Γ(m), £>(1) - 5(1, /Z) and P(X, f Z, TF)

=£(*, Z)G(Ϋ , ίΐθ - F(l, ίF)G(f , Z) - F(f , Z)G(X, W] + F(f , ί̂ )G(l, Z), Thus,

substituting (1. 17) and (1. 18) into (1. 16) and taking account of D(X)=c\\X\\*> we

have for X, Ϋ, Z, T^eΓ(m),

G(8(X, Ϋ)Z, W) = (~c + ~^ {G(X, Z}G(W, Ϋ}-G(X, W)G(Ϋ, Z)}

(1. 19) + (-J- c - -^ {F(W, X}F(Ϋ, Z)+F(X, Z)F(Ϋ, W}

-2F(W, Z}F(X, Ϋ)}

in an <S -manifold and

(1. 20) G(R(X, f)Z, W)=-^-c{G(X, Z)G(W, Ϋ)-G(X, Z)G(f , W)+F(W, X}F(Ϋ, Z)

+ F(X, Z)F(Ϋ, W}-2F(W, Z)F(X, Ϋ)}

in a £Γ -manifold. Therefore, since for vector fields X, Ϋ, Z and W in M,

and W-
X X X X X X X X X X X X

lie in L, substituting them into (1. 19) and (1. 20), we have (1. 14) and (1. 15)
respectively.

As a direct corollary to Proposition 1. 5, we have

PROPOSITION 1. 6. We have

5

16 16
(1. 21)

3 „ s n
1 4 16 2

> -manifold of constant f-sectional curvature c and

^r ~ / —— — ~ —

(1. 22) S(Λ , 7)= ~ c{G(X, Y)-Φ(X, Y)}

in a ^[-manifold of constant f-sectional curvature δ.
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REMARK. We see easily that if M is of constant /-sectional curvature, it is
57-Einstein.

2. Invariant submanifolds of codimension 2 in an S -manifold and in a £Γ-
manifold.

Let M be a submanifold in an /-manifold with complemented frames f, •••, ξ
1 s

and i: M->M its imbedding.

DEFINITION. M is said to be an /-invariant submanifold of M if the tangent
space Tp(i(M)) is invariant by the linear map / at each point p of i(M}.

DEFINITION. An /-invariant submanifold is said to be invariant if all of
I (#=1, •••, s) are always tangent to i(M}.
X

Hereafter we assume that M is an /-invariant or invariant submanifold of M.
For arbitrary vector fields X and Y in M, we put

(2.1) g(X, F)=G(f*-X;i*n

(2.2)

where TxY is the normal component of Ϋi*χi*Y. Then g is a Riemannian metric
in M, Γ is the covariant differentiation with respect to g and TxY is the so called
second fundamental tensor of the submanifold M. We next put

(2. 3) Ji*X=i*fX,

where / is a (1. l)-type tensor in M. We have the following Propositions 2. 1—2. 4,
which are quite similar to those proved in contact cases, so that the proofs of
them are omitted here (cf. [8].

PROPOSITION 2. 1. An f -invariant submanifold M imbedded in an f -manifold
with complemented frames ζ (x= 1, -••, s) in such a way that ξ's are never tangent

X x

to f(M) is an almost complex manifold. If the f -structure is normal, then M is a
complex manifold.

PROPOSITION 2. 2. An invariant submanifold M imbedded in an f -manifold
with complemented frames is an f -manifold with complemented frames. If the f-
structure is normal, then M is also normal.

PROPOSITION 2. 3. An f -invariant submanifold M imbedded in an S -manifold
M in such a way that the vectors j (a?=l, •», s) are never tangent to i(M) is a

Kaehler manifold and minimal in M.

PROPOSITION 2. 4. An invariant submanifold M imbedded in an S -manifold
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(resp. in a <3 -manifold) is an 6 -manifold (resp. a <3 -manifold) and minimal in M".

Now, we confine our attention to the case where M is an invariant submanifold
of codimension 2 in an S -manifold of constant /-sectional curvature c. Let C be
a field of unit normals defined on i(M) such that G(C, i*X)=Q and G(/C, z*J£)-0
for all vector fields X tangent to M. Since our submanifold is invariant, we may
put

(2.4) ξ=te
X X

for some tangent vectors ξ (a?=l, •••, s) in M. Let η (#=1, •••, 5) be duals to f, i.e.
Λ? a? #

1-forms satisfying (1. 1). Then we have, by virtue of Proposition 2. 4,

(2. 5)

(2. 6) g(X, Y)=

where we have put Φ(X, Y) = Ση(X)η(Y) We have also, from (I. 9),
X X X

(2. 7) (Vχf}Y= 4- Σ (rf-X; F^-^F)^)- 4- Σ (>?(*¥ F^-
Z j ; x a : Δ XiV V y x y

Furthermore, since our submanifold is of codimension 2, we may put TχY=H(X, Y}C
+K(X, Y)fC, where H and K are (0, 2)-type tensor fields in M. Hence we have

(2.8) P»χi*Y=i*rzY+H(X, Y)C+K(X, F)/C,

(2. 9) Pi*χC= - i*hX+ s(X)fC,

(2. 10) Vi*xfC= -i*kX-s(X)C,

where s is a 1-form in M and h, k are symmetric tensor fields of type (1, 1) in M
satisfying the relation g(hX, Y}=H(X, F) and g(kX, Y}=K(X, F).

Moreover, using (1. 9), we have

= 4- Σ (G(**X> C}ζ-η(C}i*X)- 4- Σ (?(f*
Δ x x x £ x , y y

Hence we have
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(2.11) k=fh, h=-fk,

(2. 12) fh+hf=Q, fk+kf=0,

(2. 13) hξ=Q, kξ=Q.
X X

Now, let R(X, Y)Z be the curvature tensor of M. Then the fundamental
equations of the submanifold M can be written as

, Y)Z+(H(Y, Z}hX-H(X, Z)hY)+(K(Y, Z)kX-K(X, Z)kY)}

(2. 14) -g((Pxh}Y-(Fyfi)X-s(X}kY+s(Y}kX, Z)C

K) Y- (PYk}X+ s(X)h Y- s( Y)hX, Z] fC,

iJi(VzK) Y- (FYh)X- s(X)k Y+ s( Y)kX}
(2. 15)

-((Vxs)(Y)-(Vγs)(χ )-K(X, hY)+K(Y, hX))fC.

Therefore, forming the inner product of i*W with (2. 14) and taking account of
(1. 14), we have

g(R(X, Y)Z, W}=- + {g(X,Z}g(W, Y)-g(X, W)g(Y,Z)-g(X, Z)Φ(W, Y)

-g(W, Y)Φ(Z, X)+g(X, W}Φ(Z, Y)+g(Y, Z)Φ(X, W)

+Φ(Z,X)Φ(W, Y)-Φ(X, W)Φ(Z,

(2. 16) +F(Y, W)F(X, Z)-2F(X, Y}F(W, Z)} — ~ Σ {η(W)η(X)g(fZ, fY)
4 χ,y V X

y x y x y x

-g(hY,Z}g(hX, W}+g(hX,Z)g(hY, W)-g(kY,Z}g(kX, W)

+g(kX,Z}g(kY, W\

where we have put F(X, Y)=g(X,fY). If we denote by S(X, Y) the Ricci tensor
of M, we have

S(X, F) = - + (2,-3)+

(2. 17)

3? s n-l
~\ ~r~ ~\ 77;

16 2
Φ(X, F)+- Yλη(X)η(Y)-2g(^X1 F),

2 x

since M is minimal by Proposition 2. 4.
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Assume that M is ^-Einstein. Then the Ricci tensor of M has the form

(2. 18) S(X, Y)=ag(X,

Thus, comparing this with (2. 17), we have

(2.19) g(h*X, Y}=μg(fX>fY)ί

since a+b = (n— 1)/2, where we have put

μ=~2 i v T
Therefore, we have

(2.20) μ^O,

(2.21) kh=μf.

Next, forming the inner products of C and fC with (2.14), we have respectively

(2. 22) (ΓxA) F- (PTK)X- s(X}k Y+ s( Y}k F= 0,

(2.23) (ΓχA)F-(ΓΓA)-X +s(Z)AF-s(F)AJC=0.

LEMMA 2. 5. #" Λf is η-Einstein,

(2. 24) (ΓχA)F=s(X)AF- 4" Σ WX)kY+ij(Y)kX+g(kX,
Δ x X X

1

2 x X X X

Proof. Differentiating the second equation of (2.11) covariantly and taking
account of (2.13) and (2. 7), we have

(ΓXA)F=(1

Putting F=£, we have

Thus, putting X=ξ in (2. 22), we have
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On the o}her hand, we have, from (2.19), h?=μl in L(m). Hence, using (2.23)
and similar method used in Proposition 7 of [5], we have for any X', Γ'e«Γ,

(Fx.k}Y'=-s(X')hYr.

Therefore, using (2. 7), we have.

Hence, for

= - 4- Σ g(X', kY')ζ+s(X')kY>.

X=X'+ Σ ?(*)£, F= 7' + Σ ?(F)f (*', Γ'
a; x x x x x

we have

X X X X X

=s(X')kY'--Σθ(X', kY')ζ+
A X x x x

x x x

=s(X)kY- ~ Σ (η(Y}kX+η(X}kY+g(X, kY)ξ),
" X X X X

which proves (2. 24). We can prove (2. 25) as follows:

= 4- Σ 9(X, hY)ξ+s(X)fkY- ~ Σ (ri(Y)fkX+r1(X)fkY)
6 x x Δ $ x x

= -s(X)hY+ -ί- Σ (y>(Y)hX+η(X)hY+g(X, hY)ξ).
" x x x x

Forming the inner product of fC with (2. 15) and taking account of (2. 21), we
have (cf. Lemma given in [3])

LEMMA 2.6. If M is η-Einstein, then

(2. 26)

THEOREM 2.7. If M is an invariant η-Einstein submanifold of codimension 2
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in an S -manifold of constant f -sectional curvature c, then

(I) M is totally geodesic for c^— 35/4,

(II) M is totally geodesic or η-Einstein with the scalar curvature

for *>--j

Proof. Differentiating (2. 24) covariantly, we have, for vector fields X and Y
such that [X, F]=0,

= (Vχs)( Y)kZ- (Vγs)(X}kZ

~ 4- Σ (η(Y}η(Z}hX+η(Y}g(hX, Z}ξ-η(X}η(Z}hY
^ x,y x v y x x y

~{2F(Y, X)kZ+F(Z, X}kY
y x *

+ g(kY,Z)fX-F(Z, Y)kX-g(kX,Z)fY}.

Since R(X, Y).h=-(PχVY-PYVχ}h and (R(X, Y} h)Z=R(X, Y)hZ-hR(X, Y)Z, we
have

("T + "§" -

+g(Y,hZ)Φ(X, W}-g(X,hZ}Φ(W, Y}-g(X,hW}Φ(Zt Y)-g(hW, Y}Φ(Zy X)

+ F(W, X)g(Y, kZ)+F(Y, W)g(X, hZ}-2F(Xt Y)g(W, kZ)+F(Y, Z)g(X, kW)

-g(Y,kW}F(X,Z)}=0,

by virtue of (2. 16), (2. 19), (2. 21) and (2. 26). Thus, taking the trace with respect
to W and Y, we have

since M is minimal. Hence we see that M is totally geodesic except in the case
where μ^c74+3s/16, which implies μ>0 by (2. 20). Therefore Theorem 2. 7 is
proved.

In the sequel, we assume that M is an invariant submanifold of codimension
2 in a £Γ -manifold of constant /-sectional curvature c. Then we have

g(R(X, Y)Z, W ) = - - { g ( X , Z ) g ( W , Y)-g(X, W}g(Y, Z)+G(X, W)Φ(Z, Y)

+g(Y, Z}Φ(W, X)-g(X, Z}Φ(W, Y)-g(W, Y)Φ(Z, X)
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(2. 27) +Φ(Z, X)Φ(W, Y)-Φ(X, W)Φ(Z, Y)+F(W, X)F(Y, Z)

+F(Y, W)F(X, Z)-2F(X, Y)F(W, Z)}-g(hY, Z}g(hX, W)

+g(hX, Z)g(hY, W)-g(kY, Z}g(kX, W)+g(kX, Z)g(kY, W),

by virtue of (2. 14) and (1. 14). Hence we have

(2. 28) S(X, Y}= {g(X, Y)-Φ(X, Y}}-2cι(h*X, F).

Assume that M is ^-Einstein. Then the Ricci tensor of M has the form

(2. 29) S(X, Y)=ag(X, Y} + bΦ(X, F)

with a+b=Q. Thus, comparing this with (2. 28), we have

(2.30) o(0X, Y}=λg(fX,fY\

where we have put λ=(l/2)(nc/2—a). Hence we have

(2. 31) Λ^O,

(2. 32) hk=λf.

The proof of the following Lemma 2. 8 is similar to that of Lemma 4. 11 given
in [2], so that the proof is omitted.

LEMMA 2. 8. If M is η-Einstein, then

(2.33) (

(2.34) (

The proof of the following Lemma 2. 9 is similar to that of Lemma 2. 6.

LEMMA 2. 9. If M is η-Einstein, then

(2. 35) (Vxs)(Y}-(Fγs)(X} = 2λ+ -γF(X, F).

THEOREM 2. 10. If M is an invariant η-Einstein submanifold of codimension
2 in a 3 '-manifold of constant f -sectional curvature c, then

(I) M is totally geodesic for c^O,

(II) M is totally geodesic or η-Einstein with the scalar curvature (n—Vfc for
c>0.

Proof. First we have
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by virtue of (2.32), (2.33) and (2.34). Thus, using the identity (R(X9 Y)>h)Z
= (VγVχh-VxVγti}Zivc any vector fields X and Y in M such that [X, F]=0, we have

, hZ)-g(X, Z}g(hW, Y}+g(X, hW)g(Y, Z)

, Y)Φ(X, W}-g(X,hZ}Φ(W, Y)+g(X, hW)Φ(Z, Y} + g(hW, Y}Φ(Z, X)

+ F(W, X)F(Y, hZ)+F(Y, W)F(X, hZ)-2F(X, Y)F(W, hZ)}=0.

Therefore, taking the trace with respect to W and F, we have

from which we have Theorem 2. 10.

In closing this section, we state the following Theorems 2. 11 and 2. 12 which
can be proved in a quite similar way for the corresponding theorems proved in
the case 5=1 (See [2]).

THEOREM 2. 11. Let M be an invariant submanifold of codimension 2 in an S -
manifold or in a % -manifold of constant f -sectional curvature. Then M is totally
geodesic if and only if M is of constant f -sectional curvature.

THEOREM 2. 12. An invariant η-Einstein submanifold of codimension 2 in a
3 '-manifold of constant f -sectional curvature is locally symmetric.

3. /-invariant hypersurfaces of M2n+2.

Let M be an /-invariant hypersurface of an /-manifold M2n+2 with comple-
mented frames f , f and i: M-*M its imbedding. We denote the induced Riemannian

1 2

metric of M by g, that is,

(3.1) g(X, Y}=G(i*X,i*Y)

for any vector fields X and Y tangent to M. Since M is /-invariant, we may put

(3. 2) ?i*X=i*fX,

where / is a tensor field of type (1, 1) in M.
We assume that M is orientable so that there exists a field of unit normals C

to i(M}. Then, since G(/C, i*F) = -G(C, /V*Q=0, we have /C=0. Hence we
may put
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(3.3) C=aξ+βζ,
1 2

where α=9(C), β=η(C) and α2+/32=l. If we define ξ by
1 2

(3.4) |=-#+α|,
1 2

then we see easily that f is a unit tangent vector field to i(M) and therefore we
may put

(3. 5) f =!„£

where f is a unit vector field in M. We denote by η the 1-form dual to ξ , that is,

(3. 6) ύX)=θ(X, f).

From (3. 3) and (3. 4), we have

(3. 7) ξ=aC-βξ,

(3.8) ξ=βC+aξ.
2

THEOREM 3. 1. An orientable f -invariant hypersurface of an f -manifold M2n+2

with complemented frames admits an almost contact metric structure (/, f , η, g)
defined by (3. 1), (3. 2), (3. 5) and (3. 6).

Proof. First, we have

(η°f}(X}= η(fX}=g(ξ,fX)=G(i*ξ, i

1 2

= -i*X-β fl(X)(aC-βζ)+aη(X}(βC+aζ)

We have also

=g(X, F)-?(i**XKί, F) -η(i*X)η(i* Y)
1 1 2 2
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Thus, (/, £, η, g) is an almost contact metric structure on M.

REMARK. If we define /' by f'X=fX for Xτ£. f'ζ=ζ and /'£=-£, then
~ 1 2 2 1

/' is an almost complex structure on M2n+2 so that the existence of an almost
contact structure on an orientable hypersurface of M2n+2 is clear (See [6]).

Next, since M is of codimension 1, we may put

(3. 9) Pt*zi*Y=i*rzY+H(X, F)C,

(3.10) Pi*χC=-i*hX,

where h is a symmetric tensor field of type (1, 1) in M satisfying H(X, Y)=g(hX, Y}.

THEOREM 3. 2. An orientable /-invariant hypersurface of an <S -manifold M2n+2

is a normal contact manifold and totally geodesic in M2n+2.

Proof. We have here

(by (3. 3))
2

=(Xa)ζ- -<*?i
1 Δ 2 Δ

= (Xa)(aC-βj)- -j- ai*fX+(Xβ)(βC+oιξ) — 7>~βi*fX (by (3. 7) and (3. 8))

Thus, comparing this with (3. 10), we have

(3. 11) hX= - - (a+β)fX+((Xa )β-(Xβ )a)ξ.

Putting X=ξ here, we have

hζ=γξ,

where we have put γ=(ξά)β—(ξβ)a. Thus for F'eL we have

g(hY', ξ)=g(Y', hξ)=γg(Y', «=0.
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Hence we have by (3. 11)

But, since h is symmetric and / is skew-symetric with respect to g, we must have

which implies a+β=Q and consequently (3. 11) becomes hX=Q, since α=—j8=l/\/2~
or a=— β— — l/ v/2. Thus, Mis totally geodesic. We also have

l?J](i*X,i*Y)=i*lf,f](X,yi

and

{/W(9(**F)^ Π)}£
I 1 1 1

Y])}ξ

adη(X, Y)ζ
1 2

Thus, we have [/,/](X, Y)+dy(X, F)?=0, that is, M is an almost normal contact
manifold. Finally, we have

F(X, Y)=

Thus, to show that M is normal, it is sufficient to prove the following Lemma 3. 3:

LEMMA 3. 3. Let M be an almost normal contact manifold with an (φ, ξ, ηyg)-
structure and fundamental 2-form F. If F(X, Y)=kdη(X, F), where k is a non-
zero contant, then M is a normal contact manifold.

Proof. We now put
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(3. 13) φ = φ,

Then, (3. 13) gives a normal contact metric structure on M. Indeed, we have

,o0=0, φξ=kφζ=0,

-X+η(X)ξ= -

-,?(K F])}

and, if we denote by /* the fundamental 2-form corresponding to φ, we have

F(X, Y)=δ(X,φY)=± g(X,φY)=±-F(X, Y}=±-dη(X, Y)=dή(X, F),

which shows that M is a normal contact manifold.

Next, we shall prove

THEOREM 3. 4. If M is an /-invariant hypersurface of an <S -manifold M27!+2

of constant j '-sectional curvature C, then M is η-Einstein.

Proof. Since M is totally geodesic, by Theorem 3. 2, we have

8(i*X, i*Y)i*Z=i*R(X, Y}Z.

Thus, by the formula of Proposition 1. 5 with s=2, noticing that

Φ(i*X, i, F) =ϊj(i*X)}i(i* F) + tKit
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and

9(ι *X )9(ι * F) + 9(ιVSΓ >?(i* F) = - * j
1 2 2 1

we then have

g(R(X, Y)Z, W) = -- + - { g ( X , Z ) g ( W , Y)-g(X, W)g(Y, Z)}

~-{-g(X, Z)η(W)r,(Y}-g(W,

+g(Y,Z)r,(X)r,(W)+F(W, X)F(Y, Z)+F(Y, W)F(X,

-2F(X, Y)F(W, Z)}.

Thus, taking the trace with respect to F and W, we have

S(X, Z}= j (^- + -|

which shows that M is ^-Einstein.

COROLLARY 3. 5. If M is an f -invariant hypersurface of an S -manifold M2n+2

of constant J -sectional curvature 1/2, then M is of constant curvature 2.

In the last step, we consider the case where M2w+2 is a £Γ -manifold. We shall
now prove

THEOREM 3. 6. An orientable f -invariant hypersurface of a %-manifold is a
cosympletic manifold.

Proof. Putting Y=ξ in (3. 9), we have

Pi**i*ε=i*rχξ+H

On the other hand, using (3. 4) and (1. 7), we have

= -(Xβ)(aC-βξ)+(Xa)(βC+aξ)

= {-a(Xβ)+β(Xa)}C.

Hence we have Fzί=0. Thus, we have here

d η(X, Y)=X(y(Y) )-YWX))-η([X, F])

=g(V*Y, ξ)-g(VYX, ξ)-g([X, F],

=0,
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which shows }hat M is a cosymplectic manifold.

THEOREM 3. 7. If M is an orienίable f -invariant hypersurface of a 3 '-manifold
/V /v

M2n+2 of constant f -sectional curvature cy then M is η-Einstein.

Proof. Using (1. 7), we have

^χC=^χ(aj+βζ) = (Xa}ς + (Xβ)j
1 2 1 2

= (Xa )(aC-βξ) + (Xβ)(βC+aξ)

Thus we have, by (3. 10),

hX={(Xa)β-(Xβ)a}ζ,

from which we have

(3.14) hX'=Q (for X'eL)

(3. 15) hξ=γξ.

On the other hand, we have the equation of Gauss

G(R(iίfX,i^Y)^Z,^W)=g(R(X, Y)Z, W)+g(hY, Z}g(hX, W)-g(hX, Z}g(hY, W).

Thus, by the formula of Proposition 1. 5 with s=2, we have

g(R(X, Y}Z, W)=~~{g(X, Z}g(W, Y}-g(X, W}g(Y, Z)-g(X, Z)η(W)η(Y)

-g(W, Y)η(Z)η(X} + g(X, W}η(Z}η(Y} + g(Y, Z}η(X}η(W}

+F(W, X)F(Y, Z)+F(Y, W)F(X, Z)-2F(X, Y}F(W, Z)}

-g(hY, Z)g(hX, W)+g(hX, Z}g(hY, W}.

Therefore, taking account of (3. 14) and (3. 15), we have

S(X, Y)=-{g(X,Z)-ri(X)7](Z)}-g(hX,hZ)+g(hX,Z)trac& h
Z

Mr
= -{g(X, Z}-η(X)η(Z}}-g(hX, ξ)g(hZ, ξ}+g(hX, ξ}g(Z, f)

= . {g(X, Z)-

~
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Thus M is ^-Einstein.
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