INVARIANT SUBMANIFOLDS OF AN f-MANIFOLD WITH COMPLEMENTED FRAMES

By Minoru Kobayashi and Susumu Tsuchiya

Introduction. Recently, invariant hypersurfaces of a Kaehler manifold with constant holomorphic sectional curvature and invariant Einstein (or η-Einstein) submanifolds of normal contact or cosymplectic manifolds with constant ϕ-sectional curvature have been studied by several authors [2], [3], [4], [7]. Blair [1] has quite recently defined and studied \mathcal{S}-manifolds and \mathfrak{I}-manifolds which reduce, in special cases, to normal contact manifolds and cosymplectic manifolds respectively.

Generalizing the notion of η-Einstein contact manifolds, we shall define, in $\S 1$, η-Einstein \mathcal{S}-manifolds and \mathscr{I}-manifolds and obtain some formulas giving curvature tensors for \mathcal{S}-manifolds and \mathscr{I}-manifolds with constant f-sectional curvature. In $\S 2$, we shall define f-invariant and invariant submanifolds in an \mathcal{S}-manifold or a \mathscr{T}-manifold and study invariant η-Einstein submanifolds of codimension 2 in an \mathcal{S}-manifold or a \mathscr{T}-manifold of constant f-sectional curvature. In the last section, we shall study f-invariant hypersurfaces in a certain \mathcal{S}-manifold or a \mathfrak{I}-manifold. The authors wish to express their deep gratitude to Professor S. Hokari for his kind guidances and encouragement.

1. f-manifolds with complemented frames.

Let $\tilde{M}=\tilde{M}^{2 n+s}$ be a manifold with an \tilde{f}-structure of rank $2 n$. In the sequel, we assume that $n>1$. If there exist in \tilde{M} vector fields ${\underset{x}{x}}_{\tilde{\xi}}(x=1, \cdots, s)$ such that

$$
\begin{aligned}
& \tilde{\eta}(\tilde{\xi})=\delta_{x y}, \\
& x y
\end{aligned},
$$

$$
\begin{align*}
& \tilde{f} \tilde{x}=0, \quad \tilde{y}_{x}^{\tilde{f}} \circ \tilde{f}=0, \tag{1.1}\\
& \tilde{f}^{2}=-1+\sum_{x} \tilde{\xi} \otimes \tilde{\eta}_{x} \tilde{x},
\end{align*}
$$

where $\underset{\tilde{x}}{\tilde{x}}$ are duals to $\underset{\xi_{x}}{\tilde{\xi}}$, then the \tilde{f}-structure is said to be with complemented frames ${ }^{x} \tilde{\xi}, \cdots, \tilde{\xi}$ or simply to be with complemented frames. If \tilde{M} has an \tilde{f}-structure with complemented frames, then there exists in \tilde{M} a Riemannian metric \tilde{C} such that

$$
\begin{equation*}
\tilde{G}(\tilde{X}, \tilde{Y})=\tilde{G}(\tilde{f} \tilde{X}, \tilde{f} \tilde{Y})+\tilde{\Phi}(\tilde{Y}, \tilde{Y}), \tag{1.2}
\end{equation*}
$$

Received August 13, 1971.
where \tilde{X} and \tilde{Y} are vector fields in \tilde{M} and $\tilde{\Phi}(\tilde{X}, \tilde{Y})=\sum_{x} \tilde{\eta}(\tilde{X}) \tilde{x}(\tilde{Y}) . \quad \tilde{M}$ is then said to have a metric \tilde{f}-structure. The 2 -form \tilde{F} defined by

$$
\begin{equation*}
\tilde{F}(\tilde{X}, \tilde{Y})=\tilde{G}(\tilde{X}, \tilde{f} \tilde{Y}) \tag{1.3}
\end{equation*}
$$

is called the fundamental 2 -form in \tilde{M}. The \tilde{f}-structure is said to be normal if it has complemented frames and

$$
\begin{equation*}
N \equiv[\tilde{f}, \tilde{f}]+\sum_{x} \tilde{\xi} \otimes d \tilde{y}=0, \tag{1.4}
\end{equation*}
$$

where $[\tilde{f}, \tilde{f}]$ is the Nijenhuis tensor of \tilde{f}.
A metric \tilde{f}-structure is called a \mathcal{K}-structure if it is normal and has closed fundamental 2 -form. \tilde{M} is then said to be a \mathcal{K}-manifold. A \mathcal{K}-manifold whose structure 1-forms ${\underset{1}{1}}_{\tilde{\eta}}, \cdots, \tilde{\eta}_{s}$ satisfy $d \tilde{\eta}=\cdots=d \tilde{\eta_{s}}$ and $\tilde{\eta}_{1}^{\tilde{\eta}} \wedge \cdots \wedge \tilde{g} \wedge(d \tilde{\eta})^{n} \neq 0$ is called an \mathcal{S} manifold. A \mathcal{K}-manifold with $d \tilde{\eta}=0$ is called a \mathscr{I}-manifold. When $s=1$, a \mathcal{K} manifold is an almost contact manifold, an \mathcal{S}-manifold is a normal contact manifold and a \mathscr{T}-manifold is a cosymplectic manifold.

Now, for later use, we shall list up the results given in [1], in the following two propositions:

Proposition 1. 1. In a \mathcal{K}-manifold $\underset{x}{\tilde{\xi} \text { 's are killing and }}$

$$
\begin{equation*}
d \underset{x}{\tilde{\gamma}}(\tilde{X}, \tilde{Y})=-2\left(\tilde{V}_{\tilde{Y}}^{\tilde{\eta}} \tilde{x}\right)(\tilde{X}) \tag{1.5}
\end{equation*}
$$

holds, where $\tilde{\nabla}$ denotes covariant differentiation with respect to the Riemannian metric \tilde{G}. In an \mathcal{S}-manifold

$$
\begin{equation*}
\tilde{\tilde{F}}_{\tilde{x}} \tilde{\tilde{s}}=-\frac{1}{2} \tilde{f} \tilde{X} \tag{1.6}
\end{equation*}
$$

and in a I-manifold

$$
\begin{equation*}
\tilde{\Gamma}_{\tilde{x}} \tilde{\tilde{s}}=0 . \tag{1.7}
\end{equation*}
$$

Proposition 1.2. In an \mathcal{S}-manifold we have

$$
\left(\tilde{\tilde{V}}_{\tilde{X}} \tilde{F}\right)(\tilde{Y}, \tilde{Z})=\frac{1}{2} \sum_{x}(\tilde{\eta}(\tilde{Y}) \tilde{G}(\tilde{X}, \tilde{Z})-\tilde{x}(\tilde{Z}) \tilde{G}(\tilde{X}, \tilde{Y}))
$$

$$
\begin{equation*}
-\frac{1}{2} \sum_{x, y} \tilde{\eta}(\tilde{X})(\tilde{\eta}(\tilde{y}(\tilde{Y}) \tilde{y}(\tilde{Z})-\tilde{x}(\tilde{Z}) \underset{y}{\tilde{\eta}(\tilde{Y})) .} \tag{1.8}
\end{equation*}
$$

In an \mathcal{S}-manifold, (1.8) is equivalent to the condition

$$
\left(\tilde{V}_{X} \tilde{f}\right)(\tilde{Y})=\frac{1}{2} \sum_{x}(\tilde{G}(\tilde{X}, \tilde{Y}) \underset{x}{\tilde{\xi}}-\tilde{y}(\tilde{Y}) \tilde{X})
$$

$$
\begin{equation*}
\left.-\frac{1}{2} \sum_{x, y}(\tilde{\eta}(\tilde{X}) \tilde{y}) \tilde{x}(\tilde{Y}) \underset{y}{\tilde{\xi}}-\tilde{\tilde{y}}(\tilde{X}) \tilde{x}(\tilde{Y}) \underset{y}{\tilde{\xi}}\right) . \tag{1.9}
\end{equation*}
$$

Let $\tilde{R}(\tilde{X}, \tilde{Y})=\tilde{V}_{[\tilde{X}, \tilde{Y}]}-\tilde{\sigma}_{\tilde{X}} \tilde{V}_{\tilde{Y}}+\tilde{V}_{\tilde{Y}} \tilde{V}_{\tilde{X}}$ and the $\tilde{S}(\tilde{X}, \tilde{Y})$ be the curvature and the Ricci tensors of \tilde{M} respectively. Then, by (1.6) and (1.9), we have in an \mathcal{S}-manifold

$$
\begin{equation*}
\left.\tilde{G}(\tilde{R}(\tilde{X}, \tilde{Y}) \tilde{\varepsilon}, \tilde{Z})=\frac{1}{4} \sum_{x}\{\tilde{x} \underset{x}{ } \tilde{X}) \tilde{G}(\tilde{f} \tilde{Y}, \tilde{f} \tilde{Z})-\tilde{\eta_{x}}(\tilde{Y}) \tilde{G}(\tilde{f} \tilde{X}, \tilde{f} \tilde{Z})\right\} \tag{1.10}
\end{equation*}
$$

Hence we have, from (1.10),

$$
\begin{equation*}
\tilde{S}(\tilde{X}, \tilde{\xi})=\frac{1}{2} n \sum_{x} \tilde{\eta}(\tilde{X}) . \tag{1.11}
\end{equation*}
$$

Proposition 1.3. There is no Einstein \mathcal{S}-manifold if $s \geqq 2$.
Proof. If \tilde{M} is Einstein, we have $\tilde{S}(\tilde{X}, \tilde{Y})=k \tilde{G}(\tilde{X}, \tilde{Y})$ for some constant k. Putting $\tilde{Y}=\underset{\tilde{\xi}}{\tilde{\xi}}$, we have $\tilde{S}(\tilde{X}, \underset{z}{\tilde{\xi}})=k \tilde{G}(\tilde{X}, \underset{z}{\tilde{\xi}})=k \tilde{z}(\tilde{X})$. This, together with (1. 11), shows that there is no Einstein \mathcal{S}-manifold, since $\tilde{\xi}_{x}$'s are linearly independent.

Remark. If \tilde{M} is a space of constant curvature, then \tilde{M} is automatically Einstein so that there is no \mathcal{S}-manifold of constant curvature because of Proposition 1.3.

Proposition 1.4. In an \mathcal{S}-manifold, if the Ricci tensor has the form

$$
\begin{equation*}
\tilde{S}(\tilde{X}, \tilde{Y})=a\left(\tilde{G}(\tilde{X}, \tilde{Y})+\sum_{x \neq y} \tilde{\eta}(\tilde{X}) \tilde{y}(\tilde{Y})\right)+b\left(\tilde{\tilde{\sigma}}(\tilde{X}, \tilde{Y})+\sum_{x \neq y} \tilde{\eta}(\tilde{X})_{y} \tilde{\eta}(\tilde{Y})\right), \tag{1.12}
\end{equation*}
$$

then a and b are necessarily constants.
Proof. Putting $\tilde{Y}=\tilde{\xi}$ in (1.12), we have by virtue of (1.1) and (1.2)

$$
\tilde{S}(\tilde{X}, \tilde{\xi})=(a+b) \sum_{x} \tilde{\eta}(\tilde{X}) .
$$

Thus, comparing this with (1.11), we have

$$
a+b=\frac{1}{2} n,
$$

since $\tilde{\xi}$'s are linearly independent. If we denote by \tilde{r} the curvature scalar of \tilde{M}, it is given by

$$
\tilde{r}=2 a n+s(a+b)
$$

because of (1.12). Hence we have

$$
\begin{equation*}
\tilde{\nabla}_{\tilde{X}} \tilde{r}=2 n \tilde{\nabla}_{\tilde{X}} a \tag{1.13}
\end{equation*}
$$

On the other hand, if we denote by $\left\{E_{i}\right\}_{i=1, \ldots, 2 n+s}$ an orthonormal basis, put $\tilde{U}=\tilde{Y}=E_{\imath}, \tilde{V}=\widetilde{Z}=E_{\jmath}$ in the second Bianchi identity

$$
\begin{gathered}
\left(\tilde{V}_{\tilde{X}} \tilde{R}\right)(\tilde{U}, \tilde{V}, \tilde{Y}, \tilde{Z})+\left(\tilde{\nabla}_{\dot{Y}} \tilde{R}\right)(\tilde{U}, \tilde{V}, \tilde{Z}, \tilde{X})+\left(\tilde{\nabla}_{\tilde{Z}} \tilde{R}\right)(\tilde{U}, \tilde{V}, \tilde{X}, \tilde{Y})=0 \\
\tilde{R}(\tilde{U}, \tilde{V}, \tilde{Y}, \tilde{Z})=\tilde{G}(\tilde{R}(\tilde{U}, \tilde{V}) \tilde{Y}, \tilde{Z})
\end{gathered}
$$

and sum up with respect to i and j, we then have

$$
\tilde{V}_{\tilde{X}} \tilde{\gamma}=2 \sum_{\imath}\left(\tilde{V}_{E_{i}} \widetilde{S}\right)\left(E_{\imath}, \tilde{X}\right)
$$

On the other hand, using (1.6), we have $\left(\tilde{V}_{E_{i}} \tilde{\eta}\right)\left(E_{i}\right)=\sum_{i} \tilde{y}\left(E_{i}\right)\left(\tilde{V}_{E_{i}} \tilde{y}\right)(\tilde{X})=0$. Thus we get, from (1.12),

$$
\begin{aligned}
& \tilde{\nabla}_{\tilde{X}} \tilde{r}=2 \sum_{\imath}\left(\tilde{\nabla}_{E_{i}} \widetilde{S}\right)\left(E_{\imath}, \tilde{X}\right) \\
& =2\left\{\sum_{\imath}\left(\tilde{V}_{E_{i}} a\right) \tilde{G}\left(E_{\imath}, \tilde{X}\right)+\sum_{\imath}\left(\tilde{V}_{E_{i}} b\right) \tilde{\Phi}\left(E_{\imath}, \tilde{X}\right)+b \sum_{\imath}\left(\tilde{V}_{E_{i}} \tilde{\Phi}\right)\left(E_{\imath}, \tilde{X}\right)\right. \\
& \left.+(a+b) \sum_{\imath} \sum_{x \neq y}\left(\left(\tilde{V}_{E_{i}}, \tilde{\eta}\right)\left(E_{i}\right) \tilde{\eta}(\tilde{X})+\tilde{\eta}_{x}^{\tilde{y}}\left(E_{\imath}\right)\left(\tilde{V}_{E_{i}} \tilde{y}\right)(\tilde{X})\right)\right\} \\
& =2\left\{\tilde{\nabla}_{\tilde{X}} a+\sum_{i}\left(\tilde{\nabla}_{E_{i}} b\right) \tilde{\Phi}\left(E_{\imath}, \tilde{X}\right)+b \sum_{i} \sum_{x}\left(\left(\tilde{V}_{E_{i}} \tilde{x}\right)\left(E_{\imath}\right) \tilde{x}(\tilde{X})+\underset{x}{\tilde{\eta}}\left(E_{i}\right)\left(\tilde{V}_{E_{i}} \tilde{\eta}\right)(\tilde{X})\right)\right\} \\
& =2\left(\tilde{\nabla}_{\tilde{X}} a+\sum_{x}\left(\tilde{V}_{\underset{z}{\hat{E}}} b\right) \underset{x}{\tilde{\eta}}(\tilde{X})\right) \\
& =2\left(\tilde{V}_{\tilde{X}} a-\sum_{x}\left(\tilde{V}_{\underset{\sim}{s}} a\right) \tilde{x}(\tilde{X})\right) .
\end{aligned}
$$

Thus, comparing this with (1.13), we have

$$
(n-1) \tilde{\Gamma}_{\tilde{X}} a=-\sum_{x}\left(\tilde{\nabla}_{\tilde{z}} a\right) \underset{x}{\tilde{\eta}}(\tilde{X}) .
$$

Putting $\tilde{X}=\underset{z}{\tilde{\xi}}$ we have $\tilde{V}_{\frac{\hat{\varepsilon}}{x}} a=0$, which implies $\tilde{\nabla}_{\tilde{X}} a=0$ since $n>1$. Hence a is constant and consequently b is also constant.

Definition. An \mathcal{S}-manifold is said to be η-Einstein if the Ricci tensor of \tilde{M} has the form (1.12).

Remark. By the definition above, we see that a \mathscr{I}-manifold is η-Einstein if the Ricci tensor has the form $\widetilde{S}(\tilde{X}, \tilde{Y})=a \tilde{G}(\tilde{X}, \tilde{Y})+b \tilde{\Phi}(\tilde{X}, \tilde{Y})$.

A plane section π is called an \tilde{f}-section if it is determined by a vector $\tilde{X} \in \tilde{\mathcal{L}}(m), m \in \tilde{M}$ such that $\{\tilde{X}, \tilde{f} \tilde{X}\}$ is an orthonormal pair spanning the section, $\tilde{\mathcal{L}}$ being the distribution determined by the projection tensor $-\tilde{f}^{2}$. We now put $H(\tilde{X})=K(\tilde{X}, \tilde{f} \tilde{X})$, where K denotes the sectional curvature, and call H the \tilde{f} sectional curvature.

Proposition 1.5. If \tilde{M} is an \mathcal{S}-manifold of constant \tilde{f}-sectional curvature \tilde{c}, then we have
$\tilde{G}(\tilde{R}(\tilde{X}, \tilde{Y}) \tilde{Z}, \widetilde{W})=\left(\frac{\tilde{c}}{4}+\frac{3 s}{16}\right)\{\tilde{G}(\tilde{X}, \tilde{Z}) \tilde{G}(\widetilde{W}, \tilde{Y})-\tilde{G}(\tilde{X}, \widetilde{W}) \tilde{G}(\tilde{Y}, \tilde{Z})-\tilde{G}(\tilde{X}, \tilde{Z}) \tilde{\Phi}(\widetilde{W}, \tilde{Y})$ $-\tilde{G}(\widetilde{W}, \tilde{Y}) \tilde{\Phi}(\tilde{Z}, \tilde{X})+\tilde{G}(\tilde{X}, \widetilde{W}) \tilde{\Phi}(\tilde{Z}, \tilde{Y})+\tilde{G}(\tilde{Y}, \tilde{Z}) \tilde{\Phi}(\tilde{X}, \widetilde{W})$ $+\tilde{\Phi}(\tilde{Z}, \tilde{X}) \tilde{\Phi}(\widetilde{W}, \tilde{Y})-\tilde{\Phi}(\tilde{X}, \widetilde{W}) \tilde{\Phi}(\tilde{Z}, \tilde{Y})\}+\left(\frac{\tilde{c}}{4}-\frac{s}{16}\right)\{\tilde{F}(\widetilde{W}, \tilde{X}) \tilde{F}(\tilde{Y}, \tilde{Z})$ $+\tilde{F}(\tilde{Y}, \widetilde{W}) \tilde{F}(\tilde{X}, \tilde{Z})-2 \tilde{F}(\tilde{X}, \tilde{Y}) \tilde{F}(\widetilde{W}, \tilde{Z})\}-\frac{1}{4} \sum_{x, y}\{\tilde{y}(\widetilde{W}) \tilde{x}(\tilde{X}) \tilde{G}(\tilde{f} \tilde{Z}, \tilde{f} \tilde{Y})$ $-\underset{y}{\tilde{\eta}}(\widetilde{W}) \tilde{\eta_{x}}(\tilde{Y}) \widetilde{G}(\tilde{f} \tilde{Z}, \tilde{f} \tilde{y} \underset{x}{\tilde{\gamma}} \underset{y}{\tilde{\eta}}(\tilde{Y}) \tilde{\eta}(\widetilde{Z}) \tilde{G}(\tilde{f} \widetilde{W}, \tilde{f} \tilde{X})-\tilde{y}(\widetilde{Z}) \tilde{\eta}(\tilde{X}) \tilde{G}(\tilde{f} \widetilde{W}, \tilde{f} \tilde{Y})\}$
and, if \tilde{M} is $a \mathscr{I}$-manifold of constant \tilde{f}-sectional curvature \tilde{c}, then

$$
\begin{align*}
\tilde{G}(\tilde{R}(\tilde{X}, \tilde{Y}) \tilde{Z}, \widetilde{W})= & \frac{\tilde{c}}{4}\{\tilde{G}(\tilde{X}, \tilde{Z}) \tilde{G}(\widetilde{W}, \tilde{Y})-\tilde{G}(\tilde{X}, \widetilde{W}) \tilde{G}(\tilde{Y}, \tilde{Z})-\tilde{G}(\tilde{X}, \tilde{Z}) \tilde{\Phi}(\widetilde{W}, \tilde{Y}) \\
& -G(\widetilde{W}, \tilde{Y}) \tilde{\Phi}(\tilde{Z}, \tilde{X})+\widetilde{G}(\tilde{X}, \widetilde{W}) \tilde{\Phi}(\tilde{Z}, \tilde{Y})+\tilde{G}(\tilde{Y}, \tilde{Z}) \tilde{\Phi}(\tilde{X}, \widetilde{W}) \\
& +\tilde{\Phi}(\tilde{Z}, \tilde{X}) \tilde{\Phi}(\widetilde{W}, \tilde{Y})-\tilde{\Phi}(\tilde{X}, \widetilde{W}) \tilde{\Phi}(\tilde{Z}, \tilde{Y})+\tilde{F}(\widetilde{W}, \tilde{X}) \tilde{F}(\tilde{Y}, \tilde{Z}) \tag{1.15}\\
& +\tilde{F}(\tilde{Y}, \widetilde{W}) \tilde{F}(\tilde{X}, \tilde{Z})-2 \widetilde{F}(\tilde{X}, \tilde{Y}) \tilde{F}(\widetilde{W}, \tilde{Z})\}
\end{align*}
$$

for any vector fields $\tilde{X}, \tilde{Y}, \tilde{Z}$ and \widetilde{W} in \tilde{M}.
Proof. The proof of above proposition is given by a lengthy but straight computation, so that we shall show only the process how to obtain it. First, we put $B(\tilde{X}, \tilde{Y})=\tilde{G}(\widetilde{R}(\tilde{X}, \tilde{Y}) \tilde{X}, \tilde{Y})$. Then, in general, we have

$$
\begin{aligned}
3 \tilde{G}(\tilde{R}(\tilde{X}, \tilde{Y}) \tilde{Z}, \widetilde{W})= & B(\widetilde{W}+\tilde{Y}, \tilde{Z}+\tilde{X})+\frac{1}{2} B(\tilde{X}+\tilde{Y}, \tilde{Z}+\widetilde{W})-B(\widetilde{W}, \tilde{Z}+\tilde{X}) \\
& -B(\tilde{Y}, \tilde{Z}+\widetilde{X})-B(\tilde{X}, \widetilde{W}+\tilde{Y})-B(\tilde{Z}, \widetilde{W}+\tilde{Y})--\frac{1}{2} B(\widetilde{X}, \tilde{Z}+\widetilde{W}) \\
& -\frac{1}{2} B(\tilde{Z}, \tilde{X}+\tilde{Y})-\frac{1}{2} B(\widetilde{W}, \tilde{X}+\tilde{Y})-\frac{1}{2} B(\tilde{Y}, \tilde{Z}+\widetilde{W})+\frac{3}{2} B(\tilde{Z}, \tilde{Y}) \\
& +B(\tilde{Z}, \widetilde{W})+B(\tilde{X}, \tilde{Y})+\frac{3}{2} B(\tilde{X}, \widetilde{W})+\frac{1}{2} B(\tilde{Z}, \tilde{X})+\frac{1}{2} B(\widetilde{W}, \tilde{Y})
\end{aligned}
$$

By Lemma 2.4 of [1], we find

$$
\begin{equation*}
B(\tilde{X}, \tilde{Y})=\frac{1}{32}\{3 D(\tilde{X}+\tilde{f} \tilde{Y})+3 D(\tilde{X}-\tilde{f} \tilde{Y})-D(\tilde{X}+\tilde{Y})-D(\tilde{X}-\tilde{Y}) \tag{1.17}
\end{equation*}
$$

$$
-4 D(\tilde{Y})-6 s P(\tilde{X}, \tilde{Y} ; \tilde{X}, \tilde{f} \tilde{Y})\}
$$

in an \mathcal{S}-manifold and
(1. 18) $B(\tilde{X}, \tilde{Y})=\frac{1}{32}\{3 D(\tilde{X}+\tilde{f} \tilde{Y})+3 D(\tilde{X}-\tilde{f} \tilde{Y})-D(\tilde{X}+\tilde{Y})-D(\tilde{X}-\tilde{Y})-4 D(\tilde{X})-4 D(\tilde{Y})\}$ in a \mathscr{I}-manifold, where $\tilde{X}, \tilde{Y} \in \tilde{L}(m), D(\tilde{X})=B(\tilde{X}, \tilde{f} \tilde{X})$ and $P(\tilde{X}, \tilde{Y} ; \tilde{Z}, \widetilde{W})$ $=\tilde{F}(\tilde{X}, \tilde{Z}) \tilde{G}(\tilde{Y}, \widetilde{W})-\tilde{F}(\widetilde{X}, \widetilde{W}) \tilde{G}(\tilde{Y}, \tilde{Z})-\tilde{F}(\tilde{Y}, \tilde{Z}) \tilde{G}(\tilde{X}, \widetilde{W})+\tilde{F}(\tilde{Y}, \widetilde{W}) \tilde{G}(\tilde{X}, \tilde{Z})$, Thus, substituting (1.17) and (1.18) into (1.16) and taking account of $D(\tilde{X})=\tilde{c}\|X\|^{4}$, we have for $\widetilde{X}, \tilde{Y}, \tilde{Z}, \widetilde{W} \in \widetilde{L}(m)$,

$$
\begin{align*}
\tilde{G}(\tilde{R}(\tilde{X}, \tilde{Y}) \tilde{Z}, \widetilde{W})= & \left(\frac{1}{4} \tilde{c}+\frac{3 s}{16}\right)\{\tilde{G}(\tilde{X}, \tilde{Z}) \tilde{G}(\widetilde{W}, \tilde{Y})-\tilde{G}(\tilde{X}, \widetilde{W}) \tilde{G}(\tilde{Y}, \tilde{Z})\} \\
& +\left(\frac{1}{4} \tilde{c}-\frac{s}{16}\right)\{\tilde{F}(\widetilde{W}, \tilde{X}) \tilde{F}(\tilde{Y}, \tilde{Z})+\tilde{F}(\tilde{X}, \tilde{Z}) \tilde{F}(\tilde{Y}, \widetilde{W}) \tag{1.19}\\
& -2 \tilde{F}(\widetilde{W}, \tilde{Z}) \tilde{F}(\tilde{X}, \tilde{Y})\}
\end{align*}
$$

in an \mathcal{S}-manifold and
(1.20) $\quad \tilde{G}(\widetilde{R}(\widetilde{X}, \tilde{Y}) \tilde{Z}, \widetilde{W})=\frac{1}{4} \tilde{c}\{\tilde{G}(\tilde{X}, \tilde{Z}) \tilde{G}(\widetilde{W}, \tilde{Y})-\tilde{G}(\widetilde{X}, \tilde{Z}) \tilde{G}(\tilde{Y}, \widetilde{W})+\tilde{F}(\widetilde{W}, \tilde{X}) \tilde{F}(\tilde{Y}, \tilde{Z})$

$$
+\tilde{F}(\widetilde{X}, \tilde{Z}) \tilde{F}(\tilde{Y}, \widetilde{W})-2 \tilde{F}(\widetilde{W}, \tilde{Z}) \tilde{F}(\tilde{X}, \tilde{Y})\}
$$

in a \mathscr{I}-manifold. Therefore, since for vector fields $\tilde{X}, \tilde{Y}, \tilde{Z}$ and \widetilde{W} in \tilde{M},
lie in \widetilde{L}, substituting them into (1.19) and (1.20), we have (1.14) and (1.15) respectively.

As a direct corollary to Proposition 1.5, we have
Proposition 1.6. We have

$$
\begin{align*}
\tilde{S}(\tilde{X}, \tilde{Y})= & \left\{\left(\frac{1}{4} \tilde{c}+\frac{3 s}{16}\right)(2 n-1)+\frac{3}{4} \tilde{c}+\frac{s}{16}\right\} \tilde{G}(\tilde{X}, \tilde{Y})-\left\{\left(\frac{1}{4} \tilde{c}+\frac{3 s}{16}\right)(2 n-1)\right. \\
& \left.+\frac{3}{4} \tilde{c}+\frac{s}{16}-\frac{n}{2}\right\} \tilde{\Phi}(\tilde{X}, \tilde{Y})+\frac{n}{2} \sum_{x \neq y} \tilde{\eta}(\tilde{X}) \tilde{y}(\tilde{Y}) \tag{1.21}
\end{align*}
$$

in an \mathcal{S}-manifold of constant \tilde{f}-sectional curvature \tilde{c} and

$$
\begin{equation*}
\tilde{S}(\tilde{X}, \tilde{Y})=\frac{n+1}{2} \tilde{c}\{\tilde{G}(\tilde{X}, \tilde{Y})-\tilde{\Phi}(\tilde{X}, \tilde{Y})\} \tag{1.22}
\end{equation*}
$$

in a \mathfrak{I}-manifold of constant \tilde{f}-sectional curvature \tilde{c}.

Remark. We see easily that if \tilde{M} is of constant \tilde{f}-sectional curvature, it is η-Einstein.

2. Invariant submanifolds of codimension 2 in an \mathcal{S}-manifold and in a \mathscr{I} manifold.

Let M be a submanifold in an \tilde{f}-manifold with complemented frames $\underset{1}{\tilde{\xi}}, \cdots, \tilde{\boldsymbol{\xi}}$ and $i: M \rightarrow \tilde{M}$ its imbedding.

Definition. M is said to be an \tilde{f}-invariant submanifold of \tilde{M} if the tangent space $T_{p}(i(M))$ is invariant by the linear map \tilde{f} at each point p of $i(M)$.

Definition. An \tilde{f}-invariant submanifold is said to be invariant if all of $\underset{x}{\tilde{\xi}}(x=1, \cdots, s)$ are always tangent to $i(M)$.

Hereafter we assume that M is an \tilde{f}-invariant or invariant submanifold of \hat{M}. For arbitrary vector fields X and Y in M, we put

$$
\begin{align*}
& g(X, Y)=\tilde{G}\left(i_{*} X, i_{*} Y\right), \tag{2.1}\\
& \tilde{\nabla}_{i * X} i_{*} Y=i_{*} \nabla_{X} Y+T_{X} Y, \tag{2.2}
\end{align*}
$$

where $T_{X} Y$ is the normal component of $\tilde{V}_{i * x} i_{*} Y$. Then g is a Riemannian metric in M, V is the covariant differentiation with respect to g and $T_{X} Y$ is the so called second fundamental tensor of the submanifold M. We next put

$$
\begin{equation*}
\tilde{f} i_{*} X=i_{*} f X, \tag{2.3}
\end{equation*}
$$

where f is a (1.1)-type tensor in M. We have the following Propositions 2.1~2.4, which are quite similar to those proved in contact cases, so that the proofs of them are omitted here (cf. [8].

Proposition 2.1. An \tilde{f}-invariant submanifold M imbedded in an \tilde{f}-manifold with complemented frames $\underset{x}{\tilde{\xi}}(x=1, \cdots, s)$ in such a way that $\tilde{\xi}_{x}^{\tilde{\prime}}$'s are never tangent to $i(M)$ is an almost complex manifold. If the \tilde{f}-structure is normal, then M is a complex manifold.

Proposition 2.2. An invariant submanifold M imbedded in an \tilde{f}-manifold with complemented frames is an f-manifold with complemented frames. If the \tilde{f} structure is normal, then M is also normal.

Proposition 2.3. An \tilde{f}-invariant submanifold M imbedded in an \mathcal{S}-manifold \tilde{M} in such a way that the vectors $\underset{\tilde{x}}{\tilde{\tilde{x}}}(x=1, \cdots, s)$ are never tangent to $i(M)$ is a Kaehler manifold and minimal in $\stackrel{\tilde{\tilde{M}}}{ }$.

Proposition 2.4. An invariant submanifold M imbedded in an S-manifold
(resp. in a \mathfrak{I}-manifold) is an \mathcal{S}-manifold (resp. a \mathscr{I}-manifold) and minimal in \hat{M}.
Now, we confine our attention to the case where M is an invariant submanifold of codimension 2 in an \mathcal{S}-manifold of constant \tilde{f}-sectional curvature \tilde{c}. Let C be a field of unit normals defined on $i(M)$ such that $\tilde{G}\left(C, i_{*} X\right)=0$ and $G\left(\tilde{f} C, i_{*} X\right)=0$ for all vector fields X tangent to M. Since our submanifold is invariant, we may put

$$
\begin{equation*}
\underset{x}{\tilde{\xi}=i_{x} \xi} \tag{2.4}
\end{equation*}
$$

for some tangent vectors $\underset{x}{\underset{x}{f}}(x=1, \cdots, s)$ in M. Let ${\underset{x}{x}}^{x}(x=1, \cdots, s)$ be duals to $\underset{x}{\xi}$, i.e. 1 -forms satisfying (1.1). Then we have, by virtue of Proposition 2.4,

$$
\begin{align*}
& \eta_{x y}(\xi)=\delta_{x y}, \tag{2.5}
\end{align*}
$$

where we have put $\Phi(X, Y)=\sum_{x} \underset{x}{\eta}(X) \underset{x}{\eta}(Y)$. We have also, from (1.9),

$$
\begin{equation*}
\left.\left(\nabla_{X} f\right) Y=\frac{1}{2} \sum_{x}\left(g(X, Y) \underset{x}{\xi}-\eta_{x}^{\eta}(Y) X\right)-\frac{1}{2} \sum_{x, y}(\underset{y}{\eta}(X){\underset{\eta}{y}}(Y) \underset{x}{\xi}-\underset{y}{\eta}(X))_{x}(Y) \underset{y}{\xi}\right) . \tag{2.7}
\end{equation*}
$$

Furthermore, since our submanifold is of codimension 2, we may put $T_{X} Y=H(X, Y) C$ $+K(X, Y) \tilde{f} C$, where H and K are (0,2)-type tensor fields in M. Hence we have

$$
\begin{equation*}
\tilde{\tilde{r}}_{i * x} i_{*} Y=i_{*} \nabla_{X} Y+H(X, Y) C+K(X, Y) \tilde{f} C, \tag{2.8}
\end{equation*}
$$

$$
\begin{gather*}
\tilde{\Gamma}_{i * X} C=-i_{*} h X+s(X) \tilde{f} C \tag{2.9}\\
\tilde{\Gamma}_{i * X} \tilde{f} C=-i_{*} k X-s(X) C \tag{2.10}
\end{gather*}
$$

where s is a 1 -form in M and h, k are symmetric tensor fields of type (1,1) in M satisfying the relation $g(h X, Y)=H(X, Y)$ and $g(k X, Y)=K(X, Y)$.

Moreover, using (1.9), we have

$$
\begin{aligned}
\tilde{\nabla}_{i * X} \tilde{f} C & =\left(\tilde{\nabla}_{\imath * X} \tilde{f}\right) C+\tilde{f} \tilde{\nabla}_{i * x} C \\
& =\frac{1}{2} \sum_{x}\left(\tilde{G}\left(i_{*} X, C\right) \underset{x}{\tilde{\xi}}-\tilde{\eta}(C) i_{*} X\right)-\frac{1}{2} \sum_{x, y}\left(\tilde{\eta}\left(i_{*} X\right) \tilde{y}(C) \underset{x}{\tilde{\xi}}-\tilde{y}\left(i_{*} X\right)_{x}^{\tilde{\eta}}(C) \tilde{y}\right)-f i_{*} h Y+s(X) \tilde{f}^{2} C \\
& =-i_{*} f h X-s(X) C .
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
k=f h, \quad h=-f k, \tag{2.11}
\end{equation*}
$$

$$
\begin{equation*}
f h+h f=0, \quad f k+k f=0, \tag{2.12}
\end{equation*}
$$

$$
\begin{equation*}
h \underset{x}{\xi}=0, \quad k \xi=0 . \tag{2.13}
\end{equation*}
$$

Now, let $R(X, Y) Z$ be the curvature tensor of M. Then the fundamental equations of the submanifold M can be written as
$\tilde{R}\left(i_{*} X, i_{*} Y\right) i_{*} Z=i_{*}[R(X, Y) Z+(H(Y, Z) h X-H(X, Z) h Y)+(K(Y, Z) k X-K(X, Z) k Y)]$

$$
\begin{align*}
&-g\left(\left(\nabla_{X} h\right) Y-\left(\nabla_{Y} h\right) X-s(X) k Y+s(Y) k X, Z\right) C \tag{2.14}\\
&-g\left(\left(\nabla_{X} k\right) Y-\left(\nabla_{Y} k\right) X+s(X) h Y-s(Y) h X, Z\right) \tilde{f} C \\
& \tilde{R}\left(i_{*} X, i_{*} Y\right) C= i_{*}\left[\left(\nabla_{X} h\right) Y-\left(\nabla_{Y} h\right) X-s(X) k Y+s(Y) k X\right] \\
& \quad-\left(\left(\nabla_{X} s\right)(Y)-\left(\nabla_{Y} s\right)(X)-K(X, h Y)+K(Y, h X)\right) \tilde{f} C .
\end{align*}
$$

Therefore, forming the inner product of $i_{*} W$ with (2.14) and taking account of (1. 14), we have

$$
\begin{aligned}
g(R(X, Y) Z, W)= & \left(\frac{\tilde{c}}{4}+\frac{3 s}{16}\right)\{g(X, Z) g(W, Y)-g(X, W) g(Y, Z)-g(X, Z) \Phi(W, Y) \\
& -g(W, Y) \Phi(Z, X)+g(X, W) \Phi(Z, Y)+g(Y, Z) \Phi(X, W) \\
& +\Phi(Z, X) \Phi(W, Y)-\Phi(X, W) \Phi(Z, Y)\}+\left(\frac{\tilde{c}}{4}-\frac{s}{16}\right)\{F(W, X) F(Y, Z) \\
2.16) & +F(Y, W) F(X, Z)-2 F(X, Y) F(W, Z)\}-\frac{1}{4} \sum_{x, y}\left\{\underset{y}{\eta}(W){ }_{x}^{\eta}(X) g(f Z, f Y)\right. \\
& \left.-\underset{y}{\eta}(W) \underset{x}{n}(Y) g(f Z, f X)+\underset{y}{\eta}(Y)_{x}(Z) g(f W, f X)-\underset{y}{\eta}(Z)_{x}^{\eta}(X) g(f W, f Y)\right\} \\
& -g(h Y, Z) g(h X, W)+g(h X, Z) g(h Y, W)-g(k Y, Z) g(k X, W) \\
& +g(k X, Z) g(k Y, W),
\end{aligned}
$$

where we have put $F(X, Y)=g(X, f Y)$. If we denote by $S(X, Y)$ the Ricci tensor of M, we have

$$
\begin{equation*}
S(X, Y)=\left\{\left(-\frac{\tilde{c}}{4}+\frac{3 s}{16}\right)(2 n-3)+\frac{3 \tilde{c}}{4}+\frac{s}{16}\right\} g(X, Y)-\left\{\left(\frac{\tilde{c}}{4}+\frac{3 s}{16}\right)(2 n-3)\right. \tag{2.17}
\end{equation*}
$$

$$
\left.+\frac{3 \tilde{c}}{4}+\frac{s}{16}-\frac{n-1}{2}\right\} \Phi(X, Y)+\frac{n-1}{2} \sum_{x \neq y x} \eta(X) \underset{y}{\eta}(Y)-2 g\left(h^{2} X, Y\right),
$$

since M is minimal by Proposition 2.4.

Assume that M is η-Einstein. Then the Ricci tensor of M has the form

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \Phi(X, Y)+\frac{n-1}{2} \sum_{x \neq y} \eta(X) \underset{y}{\eta}(Y) . \tag{2.18}
\end{equation*}
$$

Thus, comparing this with (2.17), we have

$$
\begin{equation*}
g\left(h^{2} X, Y\right)=\mu g(f X, f Y) \tag{2.19}
\end{equation*}
$$

since $a+b=(n-1) / 2$, where we have put

$$
\mu=\frac{1}{2}\left\{\left(\frac{\tilde{c}}{4}+\frac{3 s}{11}\right)(2 n-3)+\frac{3 \tilde{c}}{4}+\frac{s}{16}-a\right\} .
$$

Therefore, we have

$$
\begin{gather*}
\mu \geqq 0, \tag{2.20}\\
k h=\mu f . \tag{2.21}
\end{gather*}
$$

Next, forming the inner products of C and $\tilde{f} C$ with (2.14), we have respectively

$$
\begin{equation*}
\left(\nabla_{X} h\right) Y-\left(\nabla_{Y} h\right) X-s(X) k Y+s(Y) k Y=0 \tag{2.22}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla_{X} k\right) Y-\left(\nabla_{Y} k\right) X+s(X) h Y-s(Y) h X=0 \tag{2.23}
\end{equation*}
$$

Lemma 2.5. If M is η-Einstein,

$$
\begin{equation*}
\left(\nabla_{X} h\right) Y=s(X) k Y-\frac{1}{2} \sum_{x}(\underset{x}{(\eta}(X) k Y+\underset{x}{\eta}(Y) k X+g(k X, Y) \underset{x}{\xi}), \tag{2.24}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla_{X} k\right) Y=-s(X) h Y+\frac{1}{2} \sum_{x}\left(\underset{x}{(\eta}(X) h Y+{\underset{x}{x}}(Y) h X+g(h X, Y) \xi \xi_{x}\right) . \tag{2.25}
\end{equation*}
$$

Proof. Differentiating the second equation of (2.11) covariantly and taking account of (2.13) and (2.7), we have

$$
\left(\nabla_{x} h\right) Y=\left(\nabla_{x} k\right) f Y-\frac{1}{2} \sum_{x} \eta_{x}(Y) k X .
$$

Putting $Y=\underset{y}{\xi}$, we have

$$
\left(\nabla_{x} h\right)=-\frac{1}{2} k X .
$$

Thus, putting $X=\underset{y}{\xi}$ in (2.22), we have

$$
\left(\nabla_{\bar{\xi}} h\right) Y=s\left(\xi_{y}\right) k Y-\frac{1}{2} k Y
$$

On the ofher hand, we have, from (2.19), $h^{2}=\mu I$ in $L(m)$. Hence, using (2.23) and similar method used in Proposition 7 of [5], we have for any $X^{\prime}, Y^{\prime} \in \mathcal{L}$,

$$
\left(\nabla_{X}, k\right) Y^{\prime}=-s\left(X^{\prime}\right) h Y^{\prime}
$$

Therefore, using (2.7), we have.

$$
\begin{aligned}
\left(\nabla_{X}, h\right) Y^{\prime} & =\nabla_{X},(-f k) Y^{\prime} \\
& =-\left(\nabla_{X}, f\right) k Y^{\prime}-f\left(\nabla_{X}, k\right) Y^{\prime} \\
& =-\frac{1}{2} \sum_{x} g\left(X^{\prime}, k Y^{\prime}\right) \xi+s\left(X^{\prime}\right) k Y^{\prime} .
\end{aligned}
$$

Hence, for

$$
X=X^{\prime}+\sum_{x} \eta_{x}^{\eta}(X) \underset{x}{\xi}, \quad Y=Y^{\prime}+\sum_{x} \eta_{x}(Y) \underset{x}{\xi} \quad\left(X^{\prime}, Y^{\prime} \in \mathcal{L}\right)
$$

we have

$$
\begin{aligned}
\left(\nabla_{X} h\right) Y= & \left(\nabla_{X}, h\right) Y^{\prime}+\left(\nabla_{X}, h\right)\left(\sum_{x} \underset{x}{\eta}(Y) \xi_{x}\right)+\sum_{x} \eta_{x}(X)\left(\nabla_{\xi_{x}} h\right) Y \\
= & s\left(X^{\prime}\right) k Y^{\prime}-\frac{1}{2} \sum_{x} g\left(X^{\prime}, k Y^{\prime}\right) \xi+\sum_{x}{\underset{x}{x}}_{\eta}(Y)\left(-\frac{1}{2} k X^{\prime}\right) \\
& +\sum_{x} \eta(X)\left(s(\xi) k Y-\frac{1}{2} k Y\right) \\
= & s(X) k Y-\frac{1}{2} \sum_{x} \underset{x}{(\eta(Y) k X+\underset{x}{\eta}(X) k Y+g(X, k Y) \xi, \xi),}
\end{aligned}
$$

which proves (2.24). We can prove (2.25) as follows:

$$
\begin{aligned}
\left(\nabla_{X} k\right) Y & =\left(\nabla_{X} f h\right) Y=\left(\nabla_{X} f\right) h Y+f\left(\nabla_{X} h\right) Y \\
& =\frac{1}{2} \sum_{x} g(X, h Y) \xi \underset{x}{\xi}+s(X) f k Y-\frac{1}{2} \sum_{x}(\underset{x}{\eta}(Y) f k X+\underset{x}{\eta}(X) f k Y) \\
& \left.=-s(X) h Y+\frac{1}{2} \sum_{x} \underset{x}{\eta}(Y) h X+\underset{x}{\eta}(X) h Y+g(X, h Y) \xi \underset{x}{x}\right) .
\end{aligned}
$$

Forming the inner product of $\tilde{f} C$ with (2.15) and taking account of (2.21), we have (cf. Lemma given in [3])

Lemma 2.6. If M is η-Einstein, then

$$
\begin{equation*}
\left(\nabla_{X} s\right)(Y)-\left(\nabla_{Y} s\right)(X)=\left(2 \mu+\frac{\tilde{c}}{2}-\frac{s}{8}\right) F(X, Y) . \tag{2.26}
\end{equation*}
$$

Theorem 2.7. If M is an invariant η-Einstein submanifold of codimension 2
in an \mathcal{S}-manifold of constant \tilde{f}-sectional curvature \tilde{c}, then
(I) M is totally geodesic for $\tilde{c} \leqq-3 s / 4$,
(II) M is totally geodesic or η-Einstein with the scalar curvature

$$
(n-1)\left\{\tilde{c}(n-1)+\frac{s}{4}(3 n-5)\right\} \quad \text { for } \quad \tilde{c}>-\frac{3 s}{4} .
$$

Proof. Differentiating (2.24) covariantly, we have, for vector fields X and Y such that $[X, Y]=0$,

$$
\begin{aligned}
\left(\nabla_{X} \nabla_{Y} h\right) Z-\left(\nabla_{Y} \nabla_{X} h\right) Z= & \left(\nabla_{X} s\right)(Y) k Z-\left(\nabla_{Y} s\right)(X) k Z \\
& -\frac{1}{4} \sum_{x, y}\left\{\underset{x}{\{ }(Y) \underset{y}{\eta}(Z) h X+\underset{y}{\eta}(Y) g(h X, Z) \underset{x}{\xi}-\underset{x}{\eta}(X)_{y}^{\eta}(Z) h Y\right. \\
& -\underset{y}{\eta}(X) g(h Y, Z) \underset{x}{\xi}\}+\frac{s}{4}\{2 F(Y, X) k Z+F(Z, X) k Y \\
& +g(k Y, Z) f X-F(Z, Y) k X-g(k X, Z) f Y\} .
\end{aligned}
$$

Since $R(X, Y) \cdot h=-\left(\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}\right) h$ and $(R(X, Y) \cdot h) Z=R(X, Y) h Z-h R(X, Y) Z$, we have

$$
\begin{aligned}
& \left(\frac{\tilde{c}}{4}+\frac{3 s}{16}-\mu\right)\{g(X, h Z) g(W, Y)-g(X, W) g(Y, h Z)-g(X, Z) g(h W, Y)+g(X, h W) g(Y, Z) \\
& +g(Y, h Z) \Phi(X, W)-g(X, h Z) \Phi(W, Y)-g(X, h W) \Phi(Z, Y)-g(h W, Y) \Phi(Z, X) \\
& +F(W, X) g(Y, k Z)+F(Y, W) g(X, h Z)-2 F(X, Y) g(W, k Z)+F(Y, Z) g(X, k W) \\
& -g(Y, k W) F(X, Z)\}=0
\end{aligned}
$$

by virtue of (2.16), (2.19), (2.21) and (2.26). Thus, taking the trace with respect to W and Y, we have

$$
\left(\frac{\tilde{c}}{4}+\frac{3 s}{16}-\mu\right) 2 n g(X, h Z)=0
$$

since M is minimal. Hence we see that M is totally geodesic except in the case where $\mu \neq \tilde{c} / 4+3 s / 16$, which implies $\mu>0$ by (2.20). Therefore Theorem 2.7 is proved.

In the sequel, we assume that M is an invariant submanifold of codimension 2 in a \mathscr{I}-manifold of constant \tilde{f}-sectional curvature \tilde{c}. Then we have

$$
\begin{aligned}
g(R(X, Y) Z, W)= & \frac{\tilde{c}}{4}\{g(X, Z) g(W, Y)-g(X, W) g(Y, Z)+G(X, W) \Phi(Z, Y) \\
& +g(Y, Z) \Phi(W, X)-g(X, Z) \Phi(W, Y)-g(W, Y) \Phi(Z, X)
\end{aligned}
$$

$$
\begin{align*}
& +\Phi(Z, X) \Phi(W, Y)-\Phi(X, W) \Phi(Z, Y)+F(W, X) F(Y, Z) \tag{2.27}\\
& +F(Y, W) F(X, Z)-2 F(X, Y) F(W, Z)\}-g(h Y, Z) g(h X, W) \\
& +g(h X, Z) g(h Y, W)-g(k Y, Z) g(k X, W)+g(k X, Z) g(k Y, W),
\end{align*}
$$

by virtue of (2.14) and (1.14). Hence we have

$$
\begin{equation*}
S(X, Y)=\frac{n \tilde{c}}{2}\{g(X, Y)-\Phi(X, Y)\}-2 g\left(h^{2} X, Y\right) \tag{2.28}
\end{equation*}
$$

Assume that M is η-Einstein. Then the Ricci tensor of M has the form

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \Phi(X, Y) \tag{2.29}
\end{equation*}
$$

with $a+b=0$. Thus, comparing this with (2.28), we have

$$
\begin{equation*}
g\left(h^{2} X, Y\right)=\lambda g(f X, f Y) \tag{2.30}
\end{equation*}
$$

where we have put $\lambda=(1 / 2)(n \tilde{c} / 2-a)$. Hence we have

$$
\begin{array}{r}
\lambda \geqq 0, \tag{2.31}\\
h k=\lambda f .
\end{array}
$$

The proof of the following Lemma 2.8 is similar to that of Lemma 4.11 given in [2], so that the proof is omitted.

Lemma 2. 8. If M is η-Einstein, then

$$
\begin{align*}
& \left(\nabla_{X} h\right) Y=s(X) k Y, \tag{2.33}\\
& \left(\nabla_{X} k\right) Y=-s(X) h Y . \tag{2.34}
\end{align*}
$$

The proof of the following Lemma 2.9 is similar to that of Lemma 2.6.
Lemma 2.9. If M is η-Einstein, then

$$
\begin{equation*}
\left(\nabla_{X} s\right)(Y)-\left(\nabla_{Y} s\right)(X)=\left(2 \lambda+\frac{\tilde{c}}{2}\right) F(X, Y) \tag{2.35}
\end{equation*}
$$

Theorem 2.10. If M is an invariant η-Einstein submanifold of codimension 2 in a \mathcal{I}-manifold of constant \tilde{f}-sectional curvature \tilde{c}, then
(I) M is totally geodesic for $\tilde{c} \leqq 0$,
(II) M is totally geodesic or η-Einstein with the scalar curvature $(n-1)^{2} \tilde{c}$ for $\tilde{c}>0$.

Proof. First we have

$$
\left(\nabla_{Y} \nabla_{X} h\right) Z-\left(\nabla_{X} \nabla_{Y} h\right) Z=\left(2 \lambda+\frac{\tilde{c}}{2}\right) F(Y, X) k Z,
$$

by virtue of (2.32), (2.33) and (2.34). Thus, using the identity ($R(X, Y) \cdot h) Z$ $=\left(\nabla_{Y} \nabla_{X} h-\nabla_{X} \nabla_{Y} h\right) Z$ for any vector fields X and Y in M such that $[X, Y]=0$, we have

$$
\begin{aligned}
& \left(\frac{\tilde{c}}{4}-\lambda\right)\{g(X, h Z) g(W, Y)-g(X, W) g(Y, h Z)-g(X, Z) g(h W, Y)+g(X, h W) g(Y, Z) \\
& +g(h Z, Y) \Phi(X, W)-g(X, h Z) \Phi(W, Y)+g(X, h W) \Phi(Z, Y)+g(h W, Y) \Phi(Z, X) \\
& +F(W, X) F(Y, h Z)+F(Y, W) F(X, h Z)-2 F(X, Y) F(W, h Z)\}=0
\end{aligned}
$$

Therefore, taking the trace with respect to W and Y, we have

$$
\left(\frac{\tilde{c}}{4}-\lambda\right) 2 n g(X, h Z)=0,
$$

from which we have Theorem 2. 10.
In closing this section, we state the following Theorems 2.11 and 2.12 which can be proved in a quite similar way for the corresponding theorems proved in the case $s=1$ (See [2]).

Theorem 2.11. Let M be an invariant submanifold of codimension 2 in an \mathcal{S} manifold or in a \mathfrak{T}-manifold of constant \tilde{f}-sectional curvature. Then M is totally geodesic if and only if M is of constant f-sectional curvature.

Theorem 2.12. An invariant η-Einstein submanifold of codimension 2 in a \mathfrak{T}-manifold of constant \tilde{f}-sectional curvature is locally symmetric.

3. \tilde{f}-invariant hypersurfaces of $\tilde{M}^{2 n+2}$.

Let M be an \tilde{f}-invariant hypersurface of an \tilde{f}-manifold $\tilde{M}^{2 n+2}$ with complemented frames $\underset{1}{\tilde{\xi}}, \tilde{\xi}$ and $i: M \rightarrow \tilde{M}$ its imbedding. We denote the induced Riemannian metric of M by g, that is,

$$
\begin{equation*}
g(X, Y)=\tilde{G}\left(i_{*} X, i_{*} Y\right) \tag{3.1}
\end{equation*}
$$

for any vector fields X and Y tangent to M. Since M is \tilde{f}-invariant, we may put

$$
\begin{equation*}
\tilde{f} i_{*} X=i_{*} f X, \tag{3.2}
\end{equation*}
$$

where f is a tensor field of type $(1,1)$ in M.
We assume that M is orientable so that there exists a field of unit normals C to $i(M)$. Then, since $G\left(\tilde{f} C, i_{*} Y\right)=-G\left(C, \tilde{f} i_{*} X\right)=0$, we have $\tilde{f} C=0$. Hence we may put

$$
\begin{equation*}
C=\alpha \tilde{\xi}+\beta \tilde{\xi_{2}}, \tag{3.3}
\end{equation*}
$$

where $\alpha=\tilde{1}(C), \beta=\tilde{\eta}(C)$ and $\alpha^{2}+\beta^{2}=1$. If we define $\tilde{\xi}$ by

$$
\begin{equation*}
\tilde{\xi}=-\beta \tilde{\xi}+\alpha \tilde{\xi}, \tag{3.4}
\end{equation*}
$$

then we see easily that $\tilde{\xi}$ is a unit tangent vector field to $i(M)$ and therefore we may put

$$
\begin{equation*}
\tilde{\xi}=i_{*} \xi \tag{3.5}
\end{equation*}
$$

where ξ is a unit vector field in M. We denote by η the 1 -form dual to ξ, that is,

$$
\begin{equation*}
\eta(X)=g(X, \xi) . \tag{3.6}
\end{equation*}
$$

From (3.3) and (3.4), we have

$$
\begin{align*}
& \tilde{\xi}=\alpha C-\beta \tilde{\xi}, \tag{3.7}\\
& \underset{2}{\tilde{\xi}}=\beta C+\alpha \tilde{\xi} . \tag{3.8}
\end{align*}
$$

Theorem 3.1. An orientable \tilde{f}-invariant hypersurface of an \tilde{f}-manifold $\tilde{M}^{2 n+2}$ with complemented frames admits an almost contact metric structure (f, ξ, η, g) defined by (3.1), (3. 2), (3.5) and (3.6).

Proof. First, we have

$$
\begin{aligned}
\eta(\xi) & =g(\xi, \xi)=1, \\
i_{*} f \tilde{\xi} & =\tilde{f} i_{*} \xi=\tilde{f} \tilde{\xi}=-\beta \tilde{f} \tilde{\tilde{\xi}}+\alpha \tilde{f} \tilde{\tilde{\xi}} \tilde{2}=0, \\
(\eta \circ f)(X) & =\eta(f X)=g(\xi, f X)=\tilde{G}\left(i_{*} \xi, i_{*} f X\right)=\tilde{G}\left(i_{*} \xi, \tilde{f} i_{*} X\right) \\
& =-\tilde{G}\left(\tilde{f} i_{*} \xi, i_{*} X\right)=-\tilde{G}\left(i_{*} f \tilde{\xi}, i_{*} X\right)=0, \\
i_{*} f^{2} X & =\tilde{f}^{2} i_{*} X=-i_{*} X+\sum_{x=1}^{2} \tilde{\eta}\left(i_{*} X\right) \underset{x}{\tilde{\xi}}=-i_{*} X+\underset{1}{2}\left(i_{*} X\right) \underset{2}{\tilde{\xi}}+\tilde{\eta}\left(i_{*} X\right) \underset{2}{\tilde{\xi}} \\
& =-i_{*} X-\beta \eta(X)(\alpha C-\beta \tilde{\xi})+\alpha \eta(X)(\beta C+\alpha \tilde{\xi}) \\
& =-i_{*} X-\alpha \beta \eta(X) C+\beta^{2} \eta(X) \tilde{\xi}+\alpha \beta \eta(X) C+\alpha^{2} \eta(X) \tilde{\xi} \\
& =-i_{*} X+\eta(X) \tilde{\xi}=i_{*}[-X+\eta(X) \xi] .
\end{aligned}
$$

We have also

$$
\begin{aligned}
g(f X, f Y) & =\tilde{G}\left(i_{*} f X, i_{*} f Y\right)=\tilde{G}\left(\tilde{f} i_{*} X, \tilde{f} i_{*} Y\right)=G\left(i_{*} X, i_{*} Y\right)-\sum_{x=1}^{2} \tilde{\eta}\left(i_{*} X\right) \tilde{\eta}\left(i_{*} Y\right) \\
& =g(X, Y)-\tilde{\eta}\left(i_{*} X\right) \tilde{1}\left(i_{*} Y\right)-\tilde{\eta}\left(i_{*} X\right) \tilde{\eta}\left(i_{*} Y\right)
\end{aligned}
$$

$$
\begin{aligned}
& =g(X, Y)-\beta^{2} \eta(X) \eta(Y)-\alpha^{2} \eta(X) \eta(Y) \\
& =g(X, Y)-\eta(X) \eta(Y)
\end{aligned}
$$

Thus, (f, ξ, η, g) is an almost contact metric structure on M.
Remark. If we define \tilde{f}^{\prime} by $\tilde{f}^{\prime} \tilde{X}=\tilde{f} \tilde{X}$ for $\tilde{X} \in \tilde{\mathcal{L}}$. $\tilde{f}^{\prime} \tilde{1}=\tilde{\xi}=\tilde{2}$ and $\tilde{f}^{\prime} \tilde{\tilde{\xi}}=-\tilde{\xi}_{1}$, then \tilde{f}^{\prime} is an almost complex structure on $\tilde{M}^{2 n+2}$ so that the existence of an almost contact structure on an orientable hypersurface of $\tilde{M}^{2 n+2}$ is clear (See [6]).

Next, since M is of codimension 1, we may put

$$
\begin{gather*}
\tilde{V}_{i * X} i_{*} Y=i_{*} \nabla_{X} Y+H(X, Y) C \tag{3.9}\\
\tilde{V}_{i * X} C=-i_{*} h X, \tag{3.10}
\end{gather*}
$$

where h is a symmetric tensor field of type $(1,1)$ in M satisfying $H(X, Y)=g(h X, Y)$.
Theorem 3.2. An orientable \tilde{f}-invariant hypersurface of an \mathcal{S}-manifold $\tilde{M}^{2 n+2}$ is a normal contact manifold and totally geodesic in $\tilde{M}^{2 n+2}$.

Proof. We have here

$$
\begin{aligned}
& \tilde{V}_{2 * X} C=(X \alpha) \tilde{\xi}_{1}+\alpha \tilde{\bar{V}}_{i * X} \tilde{1}_{1}^{\tilde{\xi}}+(X \beta) \tilde{\xi}+\beta \tilde{V}_{2 * X} \tilde{\xi}_{2} \quad \text { (by } \quad \text { (3.3)) } \\
& =(X \alpha) \underset{1}{\tilde{\xi}}-\frac{1}{2} \alpha \tilde{f} i_{*} X+(X \beta) \underset{2}{\tilde{\xi}}-\frac{1}{2} \beta \tilde{f} i_{*} X \quad \text { (by (1.6)) } \\
& =(X \alpha)(\alpha C-\beta \tilde{\xi})-\frac{1}{2} \alpha i_{*} f X+(X \beta)(\beta C+\alpha \tilde{\xi})-\frac{1}{2} \beta i_{*} f X \quad \text { (by (3.7) and (3. 8)) } \\
& =\{(X \alpha) \alpha+(X \beta) \beta\} C-i_{*}\left[\frac{1}{2}(\alpha+\beta) f X+((X \alpha) \beta-(X \beta) \alpha) \xi\right] \\
& =-i_{*}\left[\frac{1}{2}(\alpha+\beta) f X+((X \alpha) \beta-(X \beta) \alpha) \xi\right] . \\
& \text { (by (3.7) and (3. 8)) }
\end{aligned}
$$

Thus, comparing this with (3.10), we have

$$
\begin{equation*}
h X=\frac{1}{2}(\alpha+\beta) f X+((X \alpha) \beta-(X \beta) \alpha) \xi . \tag{3.11}
\end{equation*}
$$

Putting $X=\xi$ here, we have

$$
h \xi=\gamma \xi,
$$

where we have put $\gamma=(\xi \alpha) \beta-(\xi \beta) \alpha$. Thus for $Y^{\prime} \in L$ we have

$$
g\left(h Y^{\prime}, \xi\right)=g\left(Y^{\prime}, h \xi\right)=\gamma g\left(Y^{\prime}, \xi\right)=0
$$

Hence we have by (3.11)

$$
h Y^{\prime}=\frac{1}{2}(\alpha+\beta) f Y^{\prime}
$$

But, since h is symmetric and f is skew-symetric with respect to g, we must have

$$
\frac{1}{2}(\alpha+\beta) f Y^{\prime}=0
$$

which implies $\alpha+\beta=0$ and consequently (3.11) becomes $h X=0$, since $\alpha=-\beta=1 / \sqrt{2}$ or $\alpha=-\beta=-1 / \sqrt{2}$. Thus, M is totally geodesic. We also have

$$
[\tilde{f}, \tilde{f}]\left(i_{*} X, i_{*} Y\right)=i_{*}[f, f](X, Y)
$$

and

$$
\begin{aligned}
& \sum_{x=1}^{2} d \underset{x}{\tilde{\eta}}\left(i_{*} X, i_{*} Y\right) \underset{x}{\tilde{\xi}}=\left\{\tilde{V}_{i * X}\left(\underset{1}{\tilde{\eta}}\left(i_{*} Y\right)\right)-\tilde{\eta}_{i * Y}\left(\underset{1}{\tilde{\eta}}\left(i_{*} X\right)\right)-\underset{1}{\tilde{\eta}}\left(i_{*}[X, Y]\right)\right) \underset{1}{\tilde{\xi}} \\
& +\left\{\tilde{\tilde{V}}_{2 * X}\left(\tilde{\eta}\left(i_{*} Y\right)\right)-\tilde{V}_{i * Y}\left(\tilde{\eta}\left(i_{*} X\right)\right)-\tilde{\eta}\left(i_{*}[X, Y]\right)\right\} \underset{2}{\tilde{\xi}} \\
& =\left\{\tilde{V}_{i * X}\left(-\beta_{\eta}(Y)\right)-\tilde{V}_{i * Y}\left(-\beta_{\eta}(X)\right)+\beta \eta([X, Y])\right\} \tilde{\xi} \\
& +\left\{\tilde{V}_{i * X}(\alpha \eta(Y))-\tilde{V}_{i * Y}(\alpha \eta(X))-\alpha \eta([X, Y])\right\} \tilde{\xi}_{2} \\
& =-\beta d \eta(X, Y) \underset{1}{\tilde{\xi}}+\alpha d \eta(X, Y) \tilde{\xi_{2}} \\
& =d \eta(X, Y) i_{*} \xi .
\end{aligned}
$$

Thus, we have $[f, f](X, Y)+d \eta(X, Y) \xi=0$, that is, M is an almost normal contact manifold. Finally, we have

$$
\begin{aligned}
F(X, Y) & \equiv g(X, f Y)=\tilde{G}\left(i_{*} X, i_{*} f Y\right)=\tilde{G}\left(i_{*} X, \tilde{f} i_{*} Y\right)=\tilde{F}\left(i_{*} X, i_{*} Y\right) \\
& =d \tilde{\eta}\left(i_{*} X, i_{*} Y\right)=\alpha d \eta(X, Y) .
\end{aligned}
$$

Thus, to show that M is normal, it is sufficient to prove the following Lemma 3.3:
Lemma 3.3. Let M be an almost normal contact manifold with an (ϕ, ξ, η, g) structure and fundamental 2-form F. If $F(X, Y)=k d \eta(X, Y)$, where k is a nonzero contant, then M is a normal contact manifold.

Proof. We now put

$$
\begin{aligned}
& \hat{\xi}=k \xi \\
& \hat{\eta}=\frac{1}{k} \eta,
\end{aligned}
$$

$$
\begin{gather*}
\hat{\phi}=\phi, \tag{3.13}\\
\hat{g}(X, Y)=\frac{1}{k^{2}} g(X, Y) .
\end{gather*}
$$

Then, (3.13) gives a normal contact metric structure on M. Indeed, we have

$$
\begin{aligned}
\hat{\eta}(\hat{\xi})=\hat{g}(\hat{\xi}, \hat{\xi}) & =\frac{1}{k^{2}} g(k \xi, k \xi)=1, \\
\hat{\eta} \circ \hat{\phi} & =\frac{1}{k} \eta \circ \phi=0, \quad \hat{\phi} \hat{\xi}=k \phi \xi=0, \\
\hat{\phi}^{2} X=\phi^{2} X & =-X+\eta(X) \xi=-X+\hat{\eta}(X) \hat{\xi}, \\
\hat{g}(X, Y) & =\frac{1}{k^{2}} g(X, Y)=\frac{1}{k^{2}} g(\phi X, \phi Y)+\frac{1}{k} \eta(X) \frac{1}{k} \eta(Y) \\
& =\hat{g}(\hat{\phi} X, \hat{\phi} Y)+\hat{\eta}(X) \hat{\eta}(Y), \\
{[\hat{\phi}, \hat{\phi}](X, Y)+d \hat{\eta}(X, Y) \hat{\xi} } & =[\phi, \phi](X, Y)+\{X(\hat{\eta}(Y))-Y(\hat{\eta}(X))-\hat{\eta}([X, Y])\} \hat{\xi} \\
& =[\phi, \phi](X, Y)+\{X(\eta(Y))-Y(\eta(X))-\eta([X, Y])\} \\
& =[\phi, \phi](X, Y)+d \eta(X, Y) \xi=0,
\end{aligned}
$$

and, if we denote by \hat{F} the fundamental 2 -form corresponding to $\hat{\phi}$, we have

$$
\hat{F}(X, Y)=\hat{g}(X, \hat{\phi} Y)=\frac{1}{k^{2}} g(X, \phi Y)=\frac{1}{k^{2}} F(X, Y)=\frac{1}{k} d \eta(X, Y)=d \hat{\eta}(X, Y)
$$

which shows that M is a normal contact manifold.
Next, we shall prove
Theorem 3.4. If M is an \tilde{f}-invariant hypersurface of an \mathcal{S}-manifold $\tilde{M}^{2 n+2}$ of constant \tilde{f}-sectional curvature $\tilde{\tilde{c}}$, then M is η-Einstein.

Proof. Since M is totally geodesic, by Theorem 3.2, we have

$$
\tilde{R}\left(i_{*} X, i_{*} Y\right) i_{*} Z=i_{*} R(X, Y) Z
$$

Thus, by the formula of Proposition 1.5 with $s=2$, noticing that

$$
\begin{aligned}
\tilde{\Phi}\left(i_{*} X, i_{*} Y\right) & =\underset{1}{\tilde{\eta}}\left(i_{*} X\right) \underset{1}{\tilde{\eta}}\left(i_{*} Y\right)+\underset{2}{\tilde{\eta}}\left(i_{*} X \underset{2}{\tilde{\eta}}\left(i_{*} Y\right)\right. \\
& =\beta^{2} \eta(X) \eta(Y)+\alpha^{2} \eta(X) \eta(Y) \\
& =\eta(X) \eta(Y)
\end{aligned}
$$

and

$$
\begin{aligned}
\underset{1}{\tilde{\eta}}\left(i_{*} X\right) \underset{2}{\tilde{\eta}}\left(i_{*} Y\right)+\underset{2}{\tilde{\eta}}\left(i_{*} X\right) \underset{1}{\tilde{\eta}}\left(i_{*} Y\right) & =-\alpha \beta \eta(X) \eta(Y)-\alpha \beta \eta(X) \eta(Y) \\
& =\eta(X) \eta(Y),
\end{aligned}
$$

we then have

$$
\begin{aligned}
g(R(X, Y) Z, W)= & \left(\frac{\tilde{c}}{4}+\frac{3}{8}\right)\{g(X, Z) g(W, Y)-g(X, W) g(Y, Z)\} \\
& +\left(\frac{\tilde{c}}{4}-\frac{1}{8}\right)\{-g(X, Z) \eta(W) \eta(Y)-g(W, Y) \eta(Z) \eta(X)+g(X, W) \eta(Z) \eta(Y) \\
& +g(Y, Z) \eta(X) \eta(W)+F(W, X) F(Y, Z)+F(Y, W) F(X, Z) \\
& -2 F(X, Y) F(W, Z)\} .
\end{aligned}
$$

Thus, taking the trace with respect to Y and W, we have

$$
S(X, Z)=\left\{\left(\frac{\tilde{c}}{4}+\frac{3}{8}\right) 2 n+2\left(\frac{\tilde{c}}{4}-\frac{1}{8}\right)\right\} g(X, Z)-\left(\frac{\tilde{c}}{4}-\frac{1}{8}\right)(2 n+2) \eta(X) \eta(Z)
$$

which shows that M is η-Einstein.
Corollary 3.5. If M is an \tilde{f}-invariant hypersurface of an \mathcal{S}-manifold $M^{2 n+2}$ of constant \tilde{f}-sectional curvature $1 / 2$, then M is of constant curvature 2 .

In the last step, we consider the case where $\tilde{M}^{2 n+2}$ is a \mathscr{I}-manifold. We shall now prove

Theorem 3.6. An orientable \tilde{f}-invariant hypersurface of a I-manifold is a cosympletic manifold.

Proof. Putting $Y=\xi$ in (3.9), we have

$$
\tilde{V}_{i * x} i_{*} \xi=i_{*} \nabla_{x} \xi+H(X, \xi) C
$$

On the other hand, using (3.4) and (1.7), we have

$$
\begin{aligned}
\tilde{V}_{i * x} i_{*} \xi & =\tilde{V}_{i * X} \tilde{\xi}=-(X \beta) \tilde{1} \\
& =-(X \beta)(\alpha C-\beta \tilde{\xi})+(X \alpha)(\beta C+\alpha \tilde{\xi}) \\
& =\{-\alpha(X \beta)+\beta(X \alpha)\} C .
\end{aligned}
$$

Hence we have $\nabla_{x} \xi=0$. Thus, we have here

$$
\begin{aligned}
d \eta(X, Y) & =X(\eta(Y))-Y(\eta(X))-\eta([X, Y]) \\
& =g\left(\nabla_{X} Y, \xi\right)-g\left(\nabla_{Y} X, \xi\right)-g([X, Y], \xi) \\
& =0,
\end{aligned}
$$

which shows that M is a cosymplectic manifold.
Theorem 3.7. If M is an orientable \tilde{f}-invariant hypersurface of a \mathfrak{T}-manifold $\tilde{M}^{2 n+2}$ of constant \tilde{f}-sectional curvature \tilde{c}, then M is η-Einstein.

Proof. Using (1.7), we have

$$
\begin{aligned}
\tilde{V}_{\imath * X} C & =\tilde{V}_{\imath * X}(\alpha \underset{1}{\tilde{\xi}}+\beta \underset{2}{2})=(X \alpha) \underset{1}{\tilde{\xi}}+(X \beta) \underset{2}{\tilde{\xi}} \\
& =(X \alpha)(\alpha C-\beta \tilde{\xi})+(X \beta)(\beta C+\alpha \tilde{\xi}) \\
& =-i_{*}[(X \alpha) \beta-(X \beta) \alpha] \xi .
\end{aligned}
$$

Thus we have, by (3.10),

$$
h X=\{(X \alpha) \beta-(X \beta) \alpha\} \xi,
$$

from which we have

$$
\begin{align*}
h X^{\prime} & =0 \quad\left(\text { for } \quad X^{\prime} \in L\right) \tag{3.14}\\
h \xi & =r \xi . \tag{3.15}
\end{align*}
$$

On the other hand, we have the equation of Gauss

$$
\tilde{G}\left(\tilde{R}\left(i_{*} X, i_{*} Y\right) i_{*} Z, i_{*} W\right)=g(R(X, Y) Z, W)+g(h Y, Z) g(h X, W)-g(h X, Z) g(h Y, W)
$$

Thus, by the formula of Proposition 1.5 with $s=2$, we have

$$
\begin{aligned}
g(R(X, Y) Z, W)= & \frac{\tilde{c}}{4}\{g(X, Z) g(W, Y)-g(X, W) g(Y, Z)-g(X, Z) \eta(W) \eta(Y) \\
& -g(W, Y) \eta(Z) \eta(X)+g(X, W) \eta(Z) \eta(Y)+g(Y, Z) \eta(X) \eta(W) \\
& +F(W, X) F(Y, Z)+F(Y, W) F(X, Z)-2 F(X, Y) F(W, Z)\} \\
& -g(h Y, Z) g(h X, W)+g(h X, Z) g(h Y, W)
\end{aligned}
$$

Therefore, taking account of (3.14) and (3.15), we have

$$
\begin{aligned}
S(X, Y) & =\frac{n \tilde{c}}{2}\{g(X, Z)-\eta(X) \eta(Z)\}-g(h X, h Z)+g(h X, Z) \text { trace } h \\
& =\frac{n \tilde{c}}{2}\{g(X, Z)-\eta(X) \eta(Z)\}-g(h X, \xi) g(h Z, \xi)+g(h X, \xi) g(Z, \xi) \\
& =\frac{n \tilde{c}}{2}\{g(X, Z)-\eta(X) \eta(Z)\}-\gamma^{2} \eta(X) \eta(Z)+\gamma^{2} \eta(X) \eta(Z) \\
& =\frac{n \tilde{c}}{2}\{g(X, Z)-\eta(X) \eta(Z)\} .
\end{aligned}
$$

Thus M is η-Einstein.

Refeences

[1] Blair, D. E., Geometry of manifolds with structural group $U(n) \times O(s)$. J.D.G. 4 (1970), 155-167.
[2] Ludden, G. D., Submanifolds of cosymplectic manifolds. J.D.G. 4 (1970), 237-244.
[3] Kenmotsu, K., Local classification of invariant η-Einstein submanifolds of codimension 2 in a Sasakian manifold with constant ϕ-sectional curvature. Tōhoku Math. J. 22 (1970), 270-272.
[4] Nakagawa, H., f-structure induced on submanifold in spaces, almost Hermitian or almost Kaehlerian. Kōdai Math. Sem. Rep. 18 (1966), 161-183.
[5] Smyth, B., Differential geometry of complex hypersurfaces. Ann. of Math, 85 (1967), 246-266.

16] TAShiro, Y., On contact structure of hypersurfaces in complex manifolds I . Tōhoku Math. J. 15 (1962), 62-78.
[7] Yano, K., and S. Ishihara, On a problem of Nomizu-Smyth for a normal contact Riemannian manifold. J.D.G. 3 (1969), 45-58.
[8] - Invariant submanifolds of an almost contact manifold. Kōdai Math. Sem. Rep. 21 (1969), 350-364.

