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FUNCTIONAL CENTRAL LIMIT THEOREMS FOR
STRICTLY STATIONARY PROCESSES SATISFYINC
THE STRONG MIXING CONDITION

By HirosH1 O0oDAIRA AND KEN-ICHI YOSHIHARA

1. Summary.

The object of this paper is to prove the functional central limit theorems for
strictly stationary processes satisfying the strong mixing condition under the same
assumptions in Ibragimov [3]. The results generalize those of Davydov [2].

2. Main results.

Let {&,; =0, £1, +£2, ..} be a strictly stationary process with E%,=0, satisfy-
ing the strong mixing (s. m.) condition, i.e.,

(1) sup  |P(AB)-PAPDB)|=a(s)>0  (s—>c0),

4em?  BemD,

where M5, denotes the s-algebra generated by {&,; j=a, -, b}. Write S,=& +--++&,
and ¢*=FE&+2 35, ESE,. Let D=DI0,1] be the space of functions x on {0,1] that
are right-continuous and have left-hand limits, and let ¢ be the o-field of Borel
sets for the Skorokhod topology (cf. [1]). When 0<o<oco, we define random ele-
ments X,(&) of D by

1
(2) Xn(ty w)zmsmﬂ(w): O§t§1; nzl; 2) o

The following theorems imply that functional central limit theorems hold
under the same conditions of theorems 1.6 and 1.7 in [3] which assure the
validity of central limit theorems.

TueoreM 1. If &'s are bounded, i.e., |&;)<C<oo with probability one and if

(3) ni ai)<oo  and a(n)gnTMgn

b

then o*<co. If 6>0 and if X, is defined by (2), thenm the distribution of X, con-
verges weakly to Wiener measure W on (D, D).

Received May 20, 1971.

259



260 HIROSHI OODAIRA AND KEN-ICHI YOSHIHARA

THEOREM 2. If EJ&;|** <o for some 6>0 and if

Ms

(4)

{a(n)}5/2+6 <OO,

=1

fl

then o®<co. If ¢>0, then the distribution of X, converges weakly to Wiener mea-
sure W on (D, D).

3. Proof of theorem 1.

The first half of theorem 1 is theorem 1.6 in [3]. To prove the latter half,
it suffices to show that the finite dimensional distributions of X, converges weakly
to those of W and that the sequence {X,} is tight. The convergence of the finite
dimensional distributions is easily obtained by the method in [1] or [2].

To prove tightness, it is enough to show (cf. [1]) that for any ¢>0 there exist
a 2>1 and an integer », such that
(5) Pimax |S;|=3%8 7 é% (n=n0).

=0

For any integer » (=2), put p=|n'? log=**n] and k=[n/p). Since &,/s are

bounded, so for all sufficiently large =

(6) P&+ + |&p| = d0n/ 7} =0.
Given ¢>0, choose 1 (>1) so that

e
32

(7) PS>0 1)= for all i,

which is possible because of uniform integrability of {S%/x} (cf. theorem 5.4, [1]).
If E,={max,, |S;| <3~/ 7 =|Sjl}, then

P(max |5,230v7 )
=P(|S,] 220M7)+P< L:J1 1E;0{1S,—S;yl ;220\/7}]>
=P(ISu =20/ %)

+ Li': P < 6 (Evpes N {1Sa—Sip+ 5| =20 \/m])

+ 3 PS,—S; 2203/ 7)

J=k-p+

(8)
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gP(lSn| %10'\/7)

k—2 ¥4 -
+ ;} {P<]91[Ezp+jn{|Sn_S(i+2)p|3/20‘\/%}]>
P _
+ ]; P(!S(Hz)p_ ip+j|§/zo'\/n)

+ Zn P&+ +[&ns| 2200V )

1=(k—1)p+1
=P(S,| =6V 1)
k-2 D —_—
+ ZP([ ulEW]n{rsn—swm SSINGT })
1= 7=

421 P(J&] 4+ F|Eap) =0V 7).

As UZ E,p ;€ MED? and {|S,—Sauinp =0y % )€MG .00, S0 We have, using (7),

k-2 P B
ZO P<|: U1 EZPF]:l n “Sn_s(z 0-2)p| Ela\/ n })
1= =
k—2 P B
§ L P< !1 E”"L])P(IS"‘_S(M»Z)M ;RO-,\/ n )+/€a(ﬁ)
(9)
k—~2 D
=4 P< = E”’“>P(|S”-“+2>v| = 20V n—(+2)p)+ka(p)
&
= 332 +ka(p)
Furthermore
. . " )
(10) }LI—I.?O ka(p)§Mil_,rg [;/;1/2 log—S/Sn]Z log [n1/2 log_3/8n] =0.

Hence, combining (6) and (7), we have (5). Thus the proof is completed.

4. Proof of theorem 2.

The first half is theorem 1.7 in [3]. We proceed as the proof of theorem 1.
Since the convergence of the finite dimensional distributions is easily proved (cf.
[2]), we need only to verify the tightness of {X,}.

If fau(x)=x for |z|=N and =0 for |z|>N, then the process {fy(§,)} satisfies
the s.m. condition (1) at least with the same function a(x). Put N=#!2@+» and
&= E[D, (feE)—Efa(E)]% It is obvious that di—e® (n—>co). Let fu(x)
=x—fn(x). Then
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P(nllsax 1Si| =240 \/7>

élax/%)

§P<max
1=n

]gl (fwEN—Efw(§s))

(11) +P<max

1=n

Z (e —EfN(sj»{ SNG

1

=P (max =204/ 7)

isn

1 (€ —Efn(€))

+P<J‘Z:1 | Fv(E)—Ef w(€) zzg\/7>,

Since a(n) is monotone decreasing, it follows from (4) that a(n)=o0(**#’%). Thus
if we put p=[n®2@+®] and k=[n/p], then

ka(p)~ko(p=*+27%)

(12) B A (= BN/ CI )Y
-0 (n—c0).

Now, for all sufficiently large 2

13) B 17e)~ Efv(&)] SN o/

with probability one, and so

(14 P( % 1rve)-Brwte)|2tov 7 ) =0

for all sufficiently large 2. Thus, applying the method of the proof of theorem 1
to this case, we obtain that for any ¢>0 there exists a 4, such that

= \/7> == =)

(15) P <nLl§a:< =50

],; (fwE)—Efn(&))

Next, we shall estimate P(57.,|fvE)—Efx(€))|=20v n). Using the inequality
in the corollary to lemma 2.1 in [2] and Minkowsky’s inequality,

E\Fx(€)—Ef (&)l - | F (&) — Ef w(&p)]
SE|fuE)—Efn(€)|-Elf (&) —Ef 5(&))]

F12{E| Fu(§0) = Ef n(Eo)| 0} @ {a( )} @+
(16)
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=4HE Fr)lP
HAB(E| F (o) [P 0 fa( )} 0
SAIN2COYE] f ()12
+4B{E| f n(Eo) P 10 {a( )} ¢+
=(4/n)p% + 4854 {a(f)) @ o

for j=1,2, -, n, where yy=FE|fx(&0)|>**. Therefore

- B3 17xe)— BT nel)

Q],_.

(E|fN<so> EFa(@)l?
an
23T ENF w(eo) = EFw(en)|- | F (e — EF w(E) }

< _l_ lTN/NzS _;’_87,N+96ri/(2+5) y‘ {a(j)}ﬁ/(z”) .
1

2

<

As Y5 {a(f))Y @D oo, so the last part of the above inequality tends to zero
when n—oo. Consequently, for all # sufficiently large

as) P(E17xe) B vei 20y 7 )=
From (15) and (18) we deduce that for any ¢>0, there exist a 2 and an #, such that
(19) P<r%1ax [Si| =240 \/7[> = ;—Z (n=mn,),

=n

which implies the tightness of {X,}. Thus we have the theorem.

5. Randomly selected partial sums.

For each #, let v, be a positive integer-valued random variable defined on the
same probability space as the &,. As in [1] define Y, by

@0) Volt o) =", 7y oy Senon@) = Xeplls o), (O,

THEOREM 3. Suppose that the hypotheses of theorem 1 (or 2) are satisfied
and that
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Vn P
where 0 is a positive random varviable and a,—co. If ¢>0, then the distribution of
Y, converges weakly to the distribution of W.

Proof. The proof of theorem 17.2 in [1] can be carried over to this case in
exactly the same way.

6. Functions of processes satisfying the s. m. condition.

As in [3], let {&,;; /=0, £1, 2, .-} be strictly stationary and strong mixing.
Let f be a measurable mapping from the space of doubly infinite sequences
(-, @y, aoy @1, --+) Of real numbers into the real line. Define random variables

(22) f] =f(: E]—l’ E]) E]+l! );

where &, occupies the O-th place in the argument of f. It is obvious that {fj} is
strictly stationary but need not be strong mixing. We shall obtain limit theorems
for {f;} under the analogous assumptions in [3].

Write Sp,=fi+ - +fn *=Ef3+2 35, Efof;. When 0<o*<co, define Z, by

1
(23) Zn(t, )= —a—ﬁSW](w), 0=t=1

THrROREM 4. Let the stationary process {&;} satisfy the s. m. condition (1), let
the random variable f be measurable with vespect to M., and let the process {f;}
be obtained from {&;} as described above. Suppose that the following conditions are
satisfied.

1. Ef=0 and |f|<C<co with probability one,

8

2. {ELf — E{f1IRE}]"} 72 oo,

1

o
1

M
1(X(k)<00 and a(k)é m.

w
Ms

k

1

Then o*<co. If ¢>0 and Z, is defined by (23), then the distribution of Z, con-
verges weakly to Wiener measure W on (D, 9).

Proof. The first part is a result in [3]. Since the convergence of finite
dimensional distributions can be proved by the method used in the proof of
theorem 21.1 in [1], it is enough to prove the tightness.

The proof is in the same line as that of theorem 21.1 in [1]. Let p=[n*1log~*®x]
and k=[n/p]l. Define U;=FE{S;—s»|M?P} and V,=FE(S,—Sii2p|M7p}. In these defini-
tions we adopt the conventions that S;—,,=0 if i<2p and S,—S;12,=0 if i+2p>n.
If we put
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(24) HD)= 2 ELfo—E{fo IMEG PP,

k=p

then for all 2 and i

(25) L)Sp— E{S[IMELY* = p*(P),

(26) LU, — S|P =2ES3+-2p7( )

and

@70 E\Vi—(Sa—S)IP=2ES5p+2p%(p).

Since |fy|<C with probability one, so
1 -
28) P(IAl 4+l = 4o/ ) =0

for all sufficiently large »#. Thus, for all ¢
1 o
§P(|si_2p—E{si,2p|9m;ﬂ}1 RN )

(29) X
+P(|f1|+---+1fzp|z§zm/ﬁ>

- 4 (p)
= A%tn
and similarly for all ¢
30) PUVim(Se=S0l 20/ )= ).

Since {S%/n} is uniformly integrable (cf. the proof of theorem 21.1, [1]), there is a
2>1 such that

GD) P(Silziov/ B)= 55
for all £ By (29)
2
32 P 1912620/ ) =P (s ) 2520/ )+ 402
1<n 1=n

Let E,={max,., |[U;|<bio~/n <|Ujl}. As E;eIZ? and Vs, is measurable with
respect to Mg, so using (30) and (31),
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P(U B0 1viz20 7))
k-2 [ o
= z§) P<]L;JI [Ezp+jn{] V(i+2)p]§20' \/ n }J>

+0P (| fi] 4+ +| faplZ20 vV 7)

k

2

33)

P([U Ew] N Varngl =0 x/%)

1=0

il

lIA

k—2
% P( 0 By, )PQ Vissssl 200 v i) +ha(p)
= J

ol )
=2 P(0 EW){Pusn_Mpyzzo Va=@T 95+ LD ¢ ki
1=0 J=1 o°N
€ 445(p)
= 3 +_2202n +ka(p).

Accordingly, from (29), (30) and (33),
P (max [T =5 /7 )
= P(S)2i v i)+ P(U (BN (S, Uizt v 0 )
= P(ISu|Z20 v/ 7))+ j;_llP(ls,,—s,-~ Vizie )

34 +P(UIB0 V)220 v )+ 5 PUS— U220 /)

€ 44%(p)
=3p T

+< e | 4

44%(p)

A%g?

32 T Zotn

+ka<z>>) +

- AW
=3 +4<2+ n) go +ka(p)

and so from (32) and (34)

(35) P(msax 1S:/= 61 \/7>§ 32; +4<3+%) ﬂxz(f,‘)-—i-ka(p).

Since 4@B+#n")(p)/A%6*—0 and ka(p)—0 as n—co, we have
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(36) P<max 1S, = 620 \/7) <5

1=n
for all sufficiently large n. This completes the proof.
Using the methods of proofs of theorems 2 and 4, we have the following
THEOREM 5. Suppose that the following conditions are satisfied:

1. Ef=0 and E|f|?**<co for some 6>0,

N
Ms

{E1f — E{f ML} 17" <o,

o
il

1

8

3. {a(B)} @+ < co.

k=1

I

Then o*<co. If 6>0, then the distribution of Z,, defined by (23), converges weakly
to Wiener measure W on (D, D).

Proof. As before, it suffices to prove the tightness of {Z,}. Define gx(fo)=\o
(|fo)=N), =0 (| fo]>N), and gn(fo)=Fo—gn(fo). Then

P(max 1S;]=240 \/7>

= P<msax > (v ()~ Eunl 1) | 20 \/75)
37 +P<msax é(m(ﬁ)—E@N(ﬁ» > «7)
= P(msax % @)~ Ean(f)| 20 ¢7)

+P (3 l0v()~ Bax() | zio V17 )

Let p=[n#20], k=[njp] and N=n2¢+o. Define &= Elga(f;)—Ean(f)ITMR,)
and 79 =gn(f;)—Ein(f;)—EP. Then, for j>2s, £ is measurable with respect to
IMits, and £® is measurable with respect to 9%*,. Hence

EIE)-150]
= {BIEP |+ 8BIEP |2} @ O a(j =28/ 1o

4
N2(1+6)

(38)

{Elgn(fo)*)

FB2ABIIA(F] E 1O ¢ fali =29 .



268 HIROSHI OODAIRA AND KEN-ICHI YOSHIHARA

Moreover
E[é:ﬁ[ . 177_(13)1 §{El77§‘s)l (2+6)/(1+5)}(1+6)/(2+a> . {E!E;s)]”"}”(z’“‘”
(39)
g{E[ég”{2+6}1/<2+5>{Elﬁ§s>f2}1/z
and
E1721- 157
(40) S{E|p®|@ro/ )/ G (F|70|2+0)1/ @0

1A

{E] %s>12+5}1/(2+6){E] 77‘()3)12}1/2.

Using (38), (39) and (40), we obtain

3 Blaw ()= Ban(7l- |05~ Baa £

3

il

EISS[]‘/S]) +7_]<;[j/3])l . [6;[.7'/3]) + ﬁ_(j[jﬁ])[
1

[
Il

IIA
s

{EI Eé”’w] . fé}”"”)] —*—E]{Eé[jm’[ . Iy—];[j/al)l

1

Il

J

+E17_]5m3]>l . iéﬁmml +E|%rj/sz>‘ . m;ﬁj/a})”

IIA

5| e Blaatrpr

+32U BN Gu(fo)|PHopr et {a<[_é_:l) }Mz K2

2 EJEUID 20y @10 [ LD 7)1

1)

+{E17]é[j/33>}2+5}1/<2+") . {Elﬁé[jlsblz}uz]
=AE|Ga{fo)|210)?

BN T M[ A ]) }

—!-S{EIQN(fo)P”}l“ZM) i {Elﬁé[j/al)'2}1/z
=1
=4y Cf ' +Cari®'”,

where yx=FElgn(fo)|?**—0 (#—c0). Hence we have
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?( L lan(7)~Ban(£1 220 V)

B| % lonts)— Ban(7| "

| Blasto - Eancror
(42)
+2 5 Blan(£0~ Baa(f)1- 10~ Baw(£) }

H/\

1 { N‘s +87N+26172/(2+6) +2C 7,1/(2<I~6)}

€

22

fiA

for all sufficiently large ». By the same argument as in the proof of theorem 4,
we have

(43) <max

FES)

% @)= Ean Pl 2l 7 ) = 5

1=1

for all sufficiently large ». Thus it follows from (37), (42) and (43) that

(44) P<max ISiz226 1 >_ Yo

1=n

which implies the tightness of {Z,}. The proof is completed.
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