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EXTREMAL PROPERTIES OF QUASIHARMONIC FORMS
AND FUNCTIONS

By Kazumitsu Kawal AND LEO SARIO

The purpose of the present paper is to deduce extremal properties of differential
forms ¢ satisfying the differential equations

0dTo+ PTp=0
or
0dTy+doSe=0

on a Riemannian space. For suitable choices of the operators 7' and S and the
nonnegative function P we obtain, in a unified manner, extremal properties of
harmonic, semiharmonic, cosemiharmonic, quasiharmonic, and coquasiharmonic
forms, and harmonic, P-harmonic, quasiharmonic, and P-quasiharmonic functions.

§1. Fundamentals.

1. Let F(u,v) be a bilinear form on a real linear space V, and set F(«)=F (u, u).
Consider a subset H of V such that for each ieH, F(h)=0. For a fixed ueV set
v=u+h for he H. We characterize # by an extremal property.

The function u minimizes the functional {F()—F(h, u)—F (u, h)} and the minu-
mum is F(u):

(1) F@)—F(h, u)—F(u, h)=F(u)+ F(h).
If F is an inner product, set
(2) F(u,v)=[u,v], [ll2e?||| = [et, 2].

The function u minimizes the functional {|||v|||>*—2[k, ]} among all veV with
h=v—u, and the minimum is |||ul|||*

(3) l[wl]*— 217, 2] =|[[2]]*+ |||

We specialize further.
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268 KAZUMITSU KAWAI AND LEO SARIO
The function uw minimizes |||v|l| among all v=u+h with [k, u]=0:
(4) 1112 =]112e]]1* 11|12

We shall make use of these simple formulas in our unifying treatment of
certain minimum problems for functions and forms.

2. Let R be a Riemannian space of dimension #. If d is the exterior differential
operator. and * the Hodge star operator on the algebra of differential forms on R,
then the codifferential operator ¢ is defined by dp=(—1)"?*"*1xd%¢ where ¢ is a p-
form. These operations satisfy

(5) dde=0, sk = (—1)"P+Pp, 00p=0,
(6) *8dp=do* ¢, dd* o=+ dogp.

We consider a compact subregion £ with smooth boundary surface 92 and
assume that all forms are sufficiently smooth on 2. An inner product and norm
on the space of p-forms are given by

(a,ﬁ)=gga/\*/% llall2=(a, ).

We shall make use of Stokes’ formula for p-forms ¢:

rag
c ac

where ¢ is a chain of dimension p+1 and dc its boundary. From this follows
Green’s formula

(7) (do, ) (o, agb):Smgo/\ *g

for (p—1)-forms ¢ and p-forms ¢.
We denote by o and n¢p the tangential and normal components of ¢ on ¢2 and
recall that

(8) *E=nx*, *n=Lx*.

We shall be dealing with a linear operator 7" which maps the exterior algebra
of differential forms into itself. The operators d, *, and § are examples of such a
T. In the sequel we mainly consider as 7T various combinations of these three

operators.
Let P be a C~-function defined on £ with P=0, and consider the differential

equation for p-forms:

(9) 0dTp+ PTp=0.
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Our result will be valid under much less stringent conditions on P, but this aspect
of the problem is not a topic of this paper. We associate with (9) a generalized
Dirichlet integral

(10) le, $1=(dTp, dTH)+(PTe, Tp),

which is an inner product for p-forms ¢, ¢. Our aim is to show that a solution of
(9) is extremal in the minimum problem concerning the norm [||¢|]|2=[¢, ¢] induced
by the above integral, and that the basic formulas in 1 serve as a simple unifying
device in the study of extremal properties of various forms and functions.

3. We begin with the following preliminary result.

ProrosiTiON 1. If a p-form ¢ satisfies (9), then among p-forms ¢ with tTop=tTe
on 3R, ¢ minimizes the functional |||¢||>=||dT¢||?+(PT¢, Tp). Explicitly,

llollE=1lelP+ I, where p=¢—g.
Proof. By (7) and (9),
(7, p1=(d Ty, dT)+(PTy, Tp)
=(d Ty, dTo)—(Ty, 6dTy)

=S TyA *dTp.
9
The condition ¢Ty=tTyp—tTp=0 on 32 leads to [y, ¢]=0, and formula (4) gives the

result.

Let E be the space of p-forms ¢ on £ with |||¢|[|<co. Denote by Ep,r the
subspace of E consisting of solutions of (9), and by E, the subspace consisting of
those ¢ for which ¢Tp=0. If T and P are so chosen that equation (9) has a unique
solution ¢, with given boundary values ¢Tp. Then we have:

ProrosiTION 2. The following orthogonal decomposition is valid:
E =EP,T+E0.

4. We illustrate the above statement by discussing special cases of the

operator T.
We consider the Laplace-Beltrami operator

Ad=oéd+do
and the simpler operators
4'=4d, 4" =ds.

First we take the identity operator as 7. Then equation (9) simplifies to
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ddo+Pp=0, that is, 4’9+ Pp=0. By Proposition 1, we have immediately:

TuroreM 1. If ¢ satisfies 4'o+Pp=0, then among those ¢ for which thp=tp
on 082, ¢ gives the minimum of {||d¢||>+ (P, ¢)}.

For T==x, (9) is dop+Pp=0, that is, 4”7¢o+Pp=0. In fact, dd*xp+P*p=0
reduces to *ddp+ % Pp=0 by (6). Hence dop+ Pp=0.

The condition ¢x¢=£¢+¢p on 02 is equivalent to xug=x*ngp, that is, ng=np by
(8). Moreover, ||dx¢|?=]|6¢}|%2. Thus we may state:

TuEOREM 2. If ¢ satisfies 4''p+Pp=0, then among those ¢ for which ngp=nep
on 88, ¢ gives the minimum of {||6¢||*+ (P, P)}.

For T==xd, (9) is dd*dp+ P+dp=0. By (6), we have *dddp+ *x Pdp=0. Hence
dédo+ Pdp=0. But d*=0 implies dod=d4. Thus (9) is ddo+ Pdp=0.

The condition ¢xd¢p=txdp on 82 becomes *ndgp=xndp by (8), i.e. ndp=ndep.
Moreover, ||dxd¢||?* is equal to |[ddg|[>. Therefore we obtain:

TueoREM 3. If ¢ satisfies ddo+Pdp=0, then among those ¢ for which
ndp=ndp on 382, ¢ gives the minimum of {||dde||*+(Pd¢p, dp)}.

For T=0, (9) is adép+ Pop=0. Hence 4o+ Pop=0.

THEOREM 4. If ¢ satisfies ddo+Pop=0, then among those ¢ for which to¢=1tép
on 02, ¢ gives the minimum of {||dép||®+(Pdy, dp)}.

The special case P=0 brings forth more interesting results. We shall study
this case in the next section.

§2. Extremal properties of harmonic and other forms.

1. Solutions of the Laplace-Beltrami equation 4¢ =dde + dop=0 are called
haymonic forms. We also consider the weaker equation 4’p=0ddp=0 and call its
solutions semiharmonic forms. In analogy, solutions of 4’¢p=ddép=0 will be referred
to as cosemiharmonic forms.

Other classes of forms to be considered are the solutions of ddp=dodp=0 and
those of ddp=ddop=0. We call such forms guasiharmonic and coquasiharmonic
respectively. Note that harmonic forms are included in each of the latter two
classes of forms.

We remark that ¢ is cosemiharmonic (resp. coquasiharmonic) if and only if *¢
is semiharmonic (resp. quasiharmonic).

In this section we unify the treatment of harmonic, semi-harmonic, cosemi-
harmonic, quasiharmonic, and coquasiharmonic forms in our minimum problem by
considering the equation

11 0dTp+doSp=0,
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where T and S are linear operators of the exterior algebra of p-forms into itself,
and by associating with (11) an inner product

12) le: 1=(dTp, dT$)+(0Sp, 5¢).

For p-forms 7 and ¢, Green’s formula yields
[y, gl =(d Ty, dTp)+(3Sy, 0Sp)

=(T7, 5dTgo)+S gT;y/\ xdTo+(Sy, dBSgo)—S 3Sp N * Sy
a a0

=(Ty—Sn, 5dT(p)+S Ty A %dTy—3Sp A + 5.
2

For forms satisfying (11) we shall make use of the following immediate consequence
of (4):

ProrosiTiON 3. Among p-forms ¢ with =¢+n and [y, ¢]=0, ¢ minimizes
{1ldTP|*+110Sg|[%}.

2. ExamprrLEs, I. We consider harmonic forms. Take the identity operator as
T and S. Then (11) is 49p=0 and we obtain from (12),

b7 ¢]=Smr//\ *kdp—0p N *1).

The integral vanishes if #=0 and £x5=0 or nyp=0 on 2.
In view of this and Proposition 3:

THEOREM 5. If ¢ is a harmonic form, then among p-forms ¢ with ¢=¢+y
such that tn=nn=0 on 02, ¢ gives the minimum of {||d¢|*+|/6¢|*}.

Duff [1], [2] proved that there exists a harmonic form ¢ with given boundary
values of #p and znp. It is known that the solution is unique if the metric tensor
gs; of the Riemannian space is analytic or if the Dirichlet problem of the equation
dp=0dp=0 has a unique solution. We call either of these the “uniqueness condition.”

Using this result of Duff, we can give the above theorem the following inter-
pretation, which can be considered as a generalization of the Dirichlet principle to
forms.

CorOLLARY 1. Among p-forms ¢ with given boundary values of td and ng,
there exists a minimizing form ¢ of the functional {||dp||*+10¢|%), and ¢ is a
harmonic form.

If the uniqueness condition holds on R, then ¢ is unique.

Let E denote the space of forms ¢ with ||d¢||2+]|6¢||2<co, H the subspace of
E consisting of harmonic forms, and £, the subspace consisting of those ¢ with
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vanishing #¢ and n¢. By Proposition 2 we have another consequence of Theorem 5:

COROLLARY 2. Under the wuniqueness condition the following orthogonal
decomposition is valid:

E=H+E,,
that is, for any Qe there exist unique € H and neE, such that $=¢+n and
12111 171

where
HlIE=Ildelf*+16g[>

3. Exawmpriis, II. Here we consider semiharmonic forms. Take the identity
operator as 7, and set S=0. Then from Proposition 3 we have:

THEOREM 6. Let ¢ be a semiharmonic form, ie. 4'o=8dp=0. Among those ¢
Jor which tp=tp on 32, ¢ gives the minimum of ||d¢||>

Proof. In Proposition 3, T=1 and S=0 yield the equation ddp=0. The form
n=¢—¢ satisfies the condition [y, ¢]=fs0 9 *xdp=0. since ty=0 on 92.

An anologous result is obtained for cosemiharmonic forms:

THEOREM 7. Let ¢ be a cosemiharmonic form, ie. 4" p=dop=0. Among those
¢ for which np=nep on 32, ¢ gives the minimum of ||d¢||

Proof. Take T=0 and S=1, and replace ¢ by *¢ in Theorem 6. The result
follows immediately.

A coclosed harmonic form ¢ satisfies 4p=0 and dp=0. Since the two equations
lead to ddp=4¢p—ddp=0, a coclosed harmonic form is semiharmonic. Duff [3]
showed that there exists a coclosed harmonic form ¢ having assigned boundary
values to Zp. Theorem 6 together with Duff’s result gives us an interesting property
of coclosed forms:

COROLLARY 3. Among p-forms ¢ with given boundary values tp, there is a
Jorm ¢ minimizing the norm ||d||, and ¢ is a coclosed harmonic form.

We remark that ¢ is not unique.
Concerning the decomposition, we can state:

CoroLLARY 4. Any form ¢ with ||dp||<co can be decomposed as ¢=¢+y,
where ¢ is a coclosed harmonic form with to=ty on 02 and

lldgl[*=1ldel[*+|ldn][*.

Observe that the above decomposition is not unique, but ¢ is uniquely deter-
mined up to additive harmonic fields p with #p=0; we recall that harmonic fields
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are solutions of dp=0d0=0. Let ¢=¢:+n and ¢=y+¢, be two decompositions.
Then ¢;—¢:=n.—y=p is coclosed harmonic with #p=0. This means dp=0 (see
Duff-Spencer [4, p. 132]). Hence p is a harmonic field.

Clearly among all p-forms ¢, the functional {||dg||*+]|d¢||?} is minimized by
harmonic fields and the minimum is zero. From an extremal viewpoint, the re-
lation between forms and harmonic fields is analogous to that between C'-functions
and constant functions, which make the Dirichlet integral D(f) vanish.

4. Exawmpiris, III. We proceed to discuss certain forms weaker than harmonic
forms, viz., quasiharmonic and coquasiharmonic forms.

THEOREM 8. Let ¢ be quasiharmonic, ie., ddp=0. Among p-forms ¢ with
ndg=ndp on 02, ¢ gives the minimum of ||4'¢||=|l6d¢||.

Proof. We use Proposition 3. Take 7=0, S=d. Then equation (11) reduces
to dodp=0, that is, ddp=0. The form yp=¢—¢ satisfies

73 go]=—8 adp N *dy.
22

This vanishes since ¢#dy=*ndp=0. The conclusion follows by Proposition 3.
Next we take T'=0, S=0, and obtain:

THEOREM 9. Let ¢ be coquasiharmonic, ie., ddp=0. Among p-forms ¢ with
tdp=tdp on 02, ¢ gives the minimum of ||4"'¢||.

We omit the proof since it is analogous to that of Theorem 8.

§3. Extremal properties of harmonic, P-harmonic, quasiharmonic and P-
quasiharmonic functions.

1. Since functions are forms of degree 0, the previous discussion is applicable
to functions as a special case.

In this section we include several results for functions, some of which are
classical, in order to stress that the underlying idea in the minimum problem of
both forms and functions comes from the simple basic formulas in §1. 1.

2. We state Proposition 1 in terms of functions:
ProrosiTiON 4. Let T and P be as in §1.2. If a function u satisfies
13) 0dTu+PTu=0,

then among functions v with tTv=tTu on 02, u gives the minimum of {||dTv||?
+(PTv, Tv)}. Here v is assumed to be sufficiently smooth so that dTv is well-defined.

We apply this to special cases of T"and P. First we take 7'=1. Then equation
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(13) reduces to du+ Pu=0, where

d=- 5B (B ver o)

2 0

Here (¢*) is the inverse of the metric tensor (g;;), and ¢ is the determinant of (g;;).
A solution of du+ Pu=0 is a P-harmonic function, and the functional
||dv||2+ (P, v) is the energy integral E(v).
From Proposition 4, we have immediately:

TurorEM 10. A P-harmonic function u wminimizes the emergy integral E(v)
among veC' with v=u on 9.

Since the Dirichlet problem for 4+ Pu=0 is known to have a unique solution
we obtain the following orthogonal decomposition (cf., e.g., Garabedian [5, p. 276]):

COROLLARY 5. Any veC2)NC(D) has the decomposition v=wu-+h, where u is
P-harmonic with u=v on 02, h is in C(Q), and E@)=Eu)+ E).

In the case P=0 we have a classical theorem on harmonic functions:

COROLLARY 6. A harmonic function w minimizes D(v) among veC Q) with
v=u on 0Q. Explicitly, D@)=D(u)+ D(h), where h=v—u.

Furthermore:

COROLLARY 7. Any veCQ)NC(2) has the orthogonal decomposition v=wu-+h,
where u is harmonic with v=u on 05.

3. Next we take T=xd. Then equation (11) is dd*du+ Pxdu=0, that is,
dodu+ Pdu=0. Therefore ddu+ Pdu=0; we call a solution # P-quasiharmonic.

TaeoreM 11. A P-quasiharmonic function wu wminimizes the functional
{Jo(4v)?*dV+ o Plgrad v|?.dV} among veC¥ Q) with ov/on=0oulon on 02.

Proof. Proposition 4 shows that # minimizes |[d*dv||?+ (Pdv, dv) among v with
txdv=txdu on 0Q. But

lld* dv|[*=||*d*dv||*=||odv|[* =||dv||*= Sg(dv)de,

(Pdv, dv):S Pdv/\*dvzs Plgrad o*dV.
Q2 2

Here |grad v|?= 3 g*¥(dv/ox?)(0v/ox?), and dV is the volume element.
Finally, note that the boundary condition leads to dv/on=0u/on. This completes
the proof.

In the case P=0, equation (11) is du=const. We call its solutions quasiharmonic
Junctions,
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CorOLLARY 8. A quasiharmonic function w minimizes the integral [o(4v)dV
among veC? with ov[on=on/on on 02.

We can show that the Neumann problem for d4#=0 has a solution, unique up
to additive constants. From this the quasiharmonic decomposition follows.

CorOLLARY 9. Any C*function v has the decomposition v=u-+h, where u is
quasiharmonic with oulon=0ov/on on 02, and ||4v||*=||du|>*+||4%|%.
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