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EXTREMAL PROPERTIES OF QUASIHARMONIC FORMS
AND FUNCTIONS

BY KAZUMITSU KAWAI AND LEO SARIO

The purpose of the present paper is to deduce extremal properties of differential
forms φ satisfying the differential equations

or

on a Riemannian space. For suitable choices of the operators T and S and the
nonnegative function P we obtain, in a unified manner, extremal properties of
harmonic, semiharmonic, cosemiharmonic, quasiharmonic, and coquasiharmonic
forms, and harmonic, P-harmonic, quasiharmonic, and P-quasiharmonic functions.

§ 1. Fundamentals.

1. Let F(u, v) be a bilinear form on a real linear space V, and set F(u)=F(u, u).
Consider a subset H of V such that for each heH, F(h)^0. For a fixed u£ V set
v=u+h for hzH. We characterize u by an extremal property.

The function u minimizes the functional {F(v)—F(h,u)—F(u,h)} and the minu-
mum is F(u):

(1) F(v)-F(h, u)-F(uy h)=F(u)+F(K).

If F is an inner product, set

The function u minimizes the functional { | |MH 2 —2[h, u]} among all v$V with
h=v—u, and the minimum is

(3) |||0

We specialize further.
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The function u minimizes \\\v\\\ among all v=u-\-h with [h, u]=Q:

(4) IIMIMNII'+I

We shall make use of these simple formulas in our unifying treatment of
certain minimum problems for functions and forms.

2. Let R be a Riemannian space of dimension n. If d is the exterior differential
operator, and * the Hodge star operator on the algebra of differential forms on R,
then the codifferential operator δ is defined by δφ=(— l)np+n+1* d*φ where ψ is a p-
form. These operations satisfy

(5)

(6) *δdφ = dδ*φ,

We consider a compact subregion Ω with smooth boundary surface dΩ and
assume that all forms are sufficiently smooth on dΩ. An inner product and norm
on the space of ^-forms are given by

JO

We shall make use of Stokes' formula for ^-forms φ:

\ dφ = \ φ,
Jc JdC

where c is a chain of dimension p+l and dc its boundary. From this follows
Green's formula

(7) (dφ,ψ)-(φ,δψ) = \ φ/\*ψ
JdΩ

for (p— l)-forms φ and p-forms ψ.
We denote by tφ and nφ the tangential and normal components of φ on dΩ and

recall that

(8) *t=n*, *n=t*.

We shall be dealing with a linear operator T which maps the exterior algebra
of differential forms into itself. The operators d, *, and δ are examples of such a
T. In the sequel we mainly consider as T various combinations of these three
operators.

Let P be a C°°-f unction defined on Ω with P^O, and consider the differential
equation for ^-forms:

(9)
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Our result will be valid under much less stringent conditions on P, but this aspect
of the problem is not a topic of this paper. We associate with (9) a generalized
Dirichlet integral

(10) [φ, ψ]=(dTφ, dTφ) + (PTφ, Tφ\

which is an inner product for ^-forms φ, φ. Our aim is to show that a solution of
(9) is extremal in the minimum problem concerning the norm | | |^III 2 = [̂ ]̂ induced
by the above integral, and that the basic formulas in 1 serve as a simple unifying
device in the study of extremal properties of various forms and functions.

3. We begin with the following preliminary result.

PROPOSITION 1. If a p-form φ satisfies (9), then among p- forms ψ with tTψ=tTφ
on dΩ, φ minimizes the functional \\\φ\\\* = \\dTψ\\*+(PTφ, Tφ). Explicitly,

'+IIMII 2, where η=φ-φ.

Proof. By (7) and (9),

[η, ψ]=(dTη< dTφ) + (PTη, Tφ)

η, dTψ)-(Tη, δdTφ)

= Tη/\*dTψ.
dO

The condition tTη=tTφ—tTφ=Q on dΩ leads to [η, ^]=0, and formula (4) gives the
result.

Let E be the space of ^-forms φ on Ω with ||MH<oo. Denote by EP,T the
subspace of E consisting of solutions of (9), and by EQ the subspace consisting of
those φ for which tTφ=Q. If T and P are so chosen that equation (9) has a unique
solution φ, with given boundary values tTφ. Then we have:

PROPOSITION 2. The following orthogonal decomposition is valid:

4. We illustrate the above statement by discussing special cases of the
operator T.

We consider the Laplace-Beltrami operator

Δ=dd+dδ

and the simpler operators

Λ'=δd, Δ"=dd.

First we take the identity operator as Γ. Then equation (9) simplifies to
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δdφ+Pφ= 0, that is, Λ'φ+Pφ=Q. By Proposition 1, we have immediately:

THEOREM 1. // φ satisfies Δfφ+Pφ=Q, then among those ψ for which tψ=tφ
on 3Ω, φ gives the minimum of [\\dψ\\2jr(Pψ, ψ)}.

For Γ=*, (9) is dδφ+Pφ=Q, that is, Δ"φ+Pφ=Q. In fact,
reduces to *dδφ+*Pφ=Q by (6). Hence dδφ+Pφ=Q.

The condition t*ψ=t*φ on dΩ is equivalent to *nφ = *nφ, that is, nφ=nφ by
(8). Moreover, \\d*φ\\2 = \\δφ\\2. Thus we may state:

THEOREM 2. If φ satisfies Λ"φ+Pφ=0, then among those ψ for which nφ=nφ
on dΩ, φ gives the minimum of {||<5^||2 + (P ,̂ φ)}.

For T=*d, (9) is δd*dφ+P*dφ=Q. By (6), we have *dδdφ+*Pdφ=Q. Hence
dδdφ + Pdφ=Q. But d2=0 implies ddd=dΔ. Thus (9) is ddφ + Pdφ=Q.

The condition t*dψ=t*dφ on dΩ becomes *ndψ—*ndφ by (8), i.e. ndψ—ndφ.
Moreover, \\d*dψ\\2 is equal to \\δdψ\\2. Therefore we obtain:

THEOREM 3. If φ satisfies dΔφ-\-Pdφ—^, then among those φ for which
ndψ=ndφ on dΩ, φ gives the minimum of {\\δdφ\\2 + (Pdψ, dφ)}.

For T=δ, (9) is δdδφ+Pδφ=Q. Hence δdφ+Pδφ=0.

THEOREM 4. If φ satisfies δdφ+Pδφ=Q, then among those ψ for which tδφ=tδφ
on dΩ, φ gives the minimum of {\\ddφ\\*

The special case P=Q brings forth more interesting results. We shall study
this case in the next section.

§ 2. Extremal properties of harmonic and other forms.

1. Solutions of the Laplace-Beltrami equation dφ=δdφ + dδφ=Q are called
harmonic forms. We also consider the weaker equation A'φ=δdφ=Q and call its
solutions semiharmonic forms. In analogy, solutions of Δffφ=dδφ=Q will be referred
to as cosemiharmonic forms.

Other classes of forms to be considered are the solutions of dΔφ=dddφ—^ and
those of δdφ=δdδφ=Q. We call such forms quasiharmonic and coquasiharmonic
respectively. Note that harmonic forms are included in each of the latter two
classes of forms.

We remark that ψ is cosemiharmonic (resp. coquasiharmonic) if and only if * φ
is semiharmonic (resp. quasiharmonic).

In this section we unify the treatment of harmonic, semi-harmonic, cosemi-
harmonic, quasiharmonic, and coquasiharmonic forms in our minimum problem by
considering the equation

(11) δdTφ+dδSφ=Q,
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where T and S are linear operators of the exterior algebra of p-forms into itself,
and by associating with (11) an inner product

(12) [φ, φ] = (dTψy dTψ} + (δSφ, δSψ).

For ^>-forms η and φ, Green's formula yields

[η, φ] = (dTη, dTφ) + (dSη, dSφ)

)-\ dSφ/\*Sη
dΩ

*dTφ-δSφ/\*Sη.

For forms satisfying (11) we shall make use of the following immediate consequence
of (4):

PROPOSITION 3. Among p-forms ψ with ψ=φ+η and [η, φ]=Q, φ minimizes
{\\dTψ\\*+\\δSψ\\*}.

2. EXAMPLES, I. We consider harmonic forms. Take the identity operator as
T and S. Then (11) is Δφ=Q and we obtain from (12),

= \ η/\*dψ—δφ/\*η.
dΩ

The integral vanishes if tη=Q and t*η=Q or n η^Q on dΩ.
In view of this and Proposition 3:

THEOREM 5. If φ is a harmonic form, then among p-forms ψ with ψ^
such that tη=nη=Q on dΩ, φ gives the minimum of

Duff [1], [2] proved that there exists a harmonic form φ with given boundary
values of tφ and nφ. It is known that the solution is unique if the metric tensor
Qij of the Riemannian space is analytic or if the Dirichlet problem of the equation
dφ=δφ=Q has a unique solution. We call either of these the " uniqueness condition."

Using this result of Duff, we can give the above theorem the following inter-
pretation, which can be considered as a generalization of the Dirichlet principle to
forms.

COROLLARY 1. Among p-forms ψ with given boundary values of tψ and nψ,
there exists a minimizing form φ of the functional {||^||2+||<50||2}, and φ is a
harmonic form.

If the uniqueness condition holds on R, then φ is unique.

Let E denote the space of forms ψ with ||̂ ||2 + ||^||2<oo, H the subspace of
consisting of harmonic forms, and E0 the subspace consisting of those ψ with



272 KAZUMITSU KAWAI AND LEO SARIO

vanishing tψ and nψ. By Proposition 2 we have another consequence of Theorem 5:

COROLLARY 2. Under the uniqueness condition the following orthogonal
decomposition is valid:

E=H+Eo,

that is, for any ψsE there exist unique φξH and η£EQ such that ψ=φ+η and

where

3. EXAMPLES, II. Here we consider semiharmonic forms. Take the identity
operator as T, and set S=0. Then from Proposition 3 we have:

THEOREM 6. Let φ be a semiharmonic form, i.e. Λ'φ=δdφ=Q. Among those ψ
for which tφ—tφ on dΩ, φ gives the minimum of \\dφ\\*.

Proof. In Proposition 3, T=l and S=0 yield the equation δdφ=Q. The form
η=φ—φ satisfies the condition [η, φ]=SdΩηS\*dφ=Q. since tη=ΰ on dΩ.

An anologous result is obtained for cosemiharmonic forms:

THEOREM 7. Let φ be a cosemiharmonic form, i.e. Δ"φ=dδψ=ΰ. Among those
φ for which nφ—nφ on dΩ, φ gives the minimum of

Proof. Take T=0 and S=l, and replace φ by *^> in Theorem 6. The result
follows immediately.

A coclosed harmonic form ψ satisfies Λφ=Q and δφ=Q. Since the two equations
lead to δdφ=Λφ—dδφ=Q, a coclosed harmonic form is semiharmonic. Duff [3]
showed that there exists a coclosed harmonic form φ having assigned boundary
values to ίφ. Theorem 6 together with Duff's result gives us an interesting property
of coclosed forms:

COROLLARY 3. Among p-forms φ with given boundary values tφ, there is a
form φ minimizing the norm \\dψ\\, and ψ is a coclosed harmonic form.

We remark that ψ is not unique.
Concerning the decomposition, we can state:

COROLLARY 4. Any form ψ with \\dφ\\<oo can be decomposed as φ—
where φ is a coclosed harmonic form with tφ=tφ on dΩ and

Observe that the above decomposition is not unique, but φ is uniquely deter-
mined up to additive harmonic fields p with tp=Q', we recall that harmonic fields
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are solutions of dp=δp=Q. Let ψ=φι+ηι and ψ=η2+φ2 be two decompositions.
Then φ1—φ2=η2—η1=;p is coclosed harmonic with tp=Q. This means d/>—0 (see
Duff-Spencer [4, p. 132]). Hence p is a harmonic field.

Clearly among all jί>-forms ψ, the functional {||d^||2 + ||<^||2} is minimized by
harmonic fields and the minimum is zero. From an extremal viewpoint, the re-
lation between forms and harmonic fields is analogous to that between C1-functions
and constant functions, which make the Dirichlet integral D(f) vanish.

4. EXAMPLES, III. We proceed to discuss certain forms weaker than harmonic
forms, viz., quasiharmonic and coquasiharmonic forms.

THEOREM 8. Let φ be quasiharmonic, i.e., dΔφ=ΰ. Among p-forms ψ with
ndφ=ndφ on dΩ, φ gives the minimum of \\Δ'φ\\ = \\ddψ\\.

Proof. We use Proposition 3. Take Γ=0, S=d. Then equation (11) reduces
to dδdφ=Q, that is, dΛφ=Q. The form -η=ψ—φ satisfies

[η, φ] = — \ δdφ Λ * dη.
JdΩ

This vanishes since t*dγ=*ndη=Q. The conclusion follows by Proposition 3.

Next we take T=δ, S=0, and obtain:

THEOREM 9. Let φ be coquasiharmonic, i.e., δΛφ=Q. Among p-forms φ with
tδφ=tδφ on dΩ, φ gives the minimum of \\Δ"φ\\.

We omit the proof since it is analogous to that of Theorem 8.

§3. Extremal properties of harmonic, P-harmonic, quasiharmonic and P-
quasiharmonic functions.

1. Since functions are forms of degree 0, the previous discussion is applicable
to functions as a special case.

In this section we include several results for functions, some of which are
classical, in order to stress that the underlying idea in the minimum problem of
both forms and functions comes from the simple basic formulas in § 1.1.

2. We state Proposition 1 in terms of functions:

PROPOSITION 4. Let T and P be as in § 1. 2. If a function u satisfies

(13) δdTu+PTu=Q,

then among functions v with tTv=tTu on dΩ, u gives the minimum of {\\dTv\\2

+(PTv, TV)}. Here v is assumed to be sufficiently smooth so that dTv is well-defined.

We apply this to special cases of T and P, First we take Γ=l. Then equation
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(13) reduces to du+Pu=Q, where

Here (g^) is the inverse of the metric tensor (go )> and g is the determinant of
A solution of Δu + Pu = 0 is a P-harmonic function, and the functional

\\dv\\2 + (Pv, v) is the energy integral E(v).
From Proposition 4, we have immediately:

THEOREM 10. A P-harmonic function u minimizes the energy integral E(v)
among v^C1 with v=u on dΩ.

Since the Dirichlet problem for du+Pu=Q is known to have a unique solution
we obtain the following orthogonal decomposition (cf., e.g., Garabedian [5, p. 276]):

COROLLARY 5. Any v^C\Q)r[C(^) has the decomposition v=u+h, where u is
P-harmonic with u=v on dΩ, h is in C\Ω\ and E(v)=E(u)+E(h).

In the case P=Q we have a classical theorem on harmonic functions:

COROLLARY 6. A harmonic function u minimizes D(v) among v€C1(Ω) with
v—u on dΩ. Explicitly, D(v)=D(u)-\-D(h\ where h—v—u.

Furthermore:

COROLLARY 7. Any v£C\Ω)nC(Ω) has the orthogonal decomposition v=u+h,
where u is harmonic with v=u on dΩ.

3. Next we take T=*d. Then equation (11) is δd*du+P*du=Q, that is,
dδdu+Pdu=Q. Therefore dΔu+Pdu=Q\ we call a solution u P-quasiharmonic.

THEOREM 11. A P-quasiharmonic function u minimizes the functional
{Sa(/lv)2dV+SoP\gradv2dV} among vsC\Ω) with dv/dn^du/dn on dΩ.

Proof. Proposition 4 shows that u minimizes \\d*dv\\2+(Pdv,dv) among v with
t*dv = t*du on dΩ. But

= \\δdv\\2 = \\Λvl\2=( (ΔvfdV,

(Pdv,dv) = { PdvΛ*dv=(
JΩ JΩ

Here |gradt;|2 = ΣgtyW3Λ?<)W9^)> and dV is the volume element.
Finally, note that the boundary condition leads to dv/dn=du/dn. This completes

the proof.

In the case P=0, equation (11) is J^=const. We call its solutions quasiharmonic
functions,
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COROLLARY 8. A quasiharmonic function u minimizes the integral fΩ(Λv)2dV
among vsC2 with dvjdn=dnldn on dΩ.

We can show that the Neumann problem for dΔu=Q has a solution, unique up
to additive constants. From this the quasiharmonic decomposition follows.

COROLLARY 9. Any O'-function v has the decomposition v = u+h, where u is
quasiharmonic with duldn=dv/dn on dΩ, and \\Δv\\2 = \\Δu\\2+\\Δh\\2.
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