ON THE INFLUENCE OF A CONFORMAL KILLING TENSOR ON THE REDUCIBILITY OF COMPACT RIEMANNIAN SPACES

By Shizuko Sato

$\S 0$. Let M be an n-dimensional Riemannian space whose metric tensor is given by $g_{a b}{ }^{1)}$ A contravariant vector field v^{a} is called an infinitesimal conformal transformation or a conformal Killing vector if there exists a scalar function ρ such that

$$
\nabla_{a} v_{b}+\nabla_{b} v_{a}=2 \rho g_{a b},
$$

where $v_{a}=g_{a b} v^{b}$ and ∇_{a} means the covariant derivation with respect to the Riemannian connection. Especially, a conformal Killing vector v^{a} is called an infinitesimal isometry or a Killing vector if $\rho=0$. In a compact reducible Riemannian space, the following theorem is well known.

Theorem (Tachibana [1]²). In a compact reducible Riemannian space, an infinitesimal conformal transformation is an infinitesimal isometry.

On the other hand, as a generalization of a conformal Killing vector, Kashiwada [3] has defined a conformal Killing tensor, that is, a skew-symmetric tensor $u_{a_{1} \cdots a_{r}}$ is called a conformal Killing tensor of degree r if there exists a skew-symmetric tensor $\rho_{a_{1} \cdots a_{r-1}}$ such that

$$
\begin{equation*}
\nabla_{c} u_{a_{1} \cdots a_{r}}+\nabla_{a_{1}} u_{c a_{2} \cdots a_{r}}=2 \rho_{a_{2} \cdots a_{r}} g_{c a_{1}}-\sum_{\imath=2}^{r}(-1)^{i}\left(\rho_{a_{1} \cdots \hat{a}_{\imath} \cdots a_{r}} g_{c a_{i}}+\rho_{c a_{2} \cdots \hat{a}_{i} \cdots a_{r}} g_{a_{1} a_{i}}\right), \tag{0.1}
\end{equation*}
$$

where \hat{a}_{\imath} means that a_{i} is omitted. This $\rho_{a_{1} \cdots a_{r-1}}$ is called the associated tensor of $u_{a_{1} \cdots a_{r}}$. Especially, $u_{a_{1} \cdots a_{r}}$ is called a Killing tensor if $\rho_{a_{1} \cdots a_{r-1}}=0$.

The purpose of the paper is to discuss the relation between the existence of a conformal Killing tensor and the reducibility of compact Riemannian spaces as a generalization of the above theorem.

The author expresses her hearty thanks to Prof. S. Tachibana for his kind suggestions.

[^0]§ 1. Preliminaries. Let M^{n} be an $n(\geqq 2)$ dimensional connected ${ }^{3}$ reducible Riemannian space. Then there exists a system of coordinate neighborhoods $\left\{U_{\alpha}\right\}$ such that in each U_{α} the line element is given by the form
$$
d s^{2}=g_{\lambda_{\mu}}\left(x^{\nu}\right) d x^{\lambda} d x^{\mu}+g_{i j}\left(x^{k}\right) d x^{2} d x^{J .4}
$$

If we define $\varphi_{a}{ }^{b}$ by

$$
\left(\varphi_{a}{ }^{b}\right)=\left(\begin{array}{cc}
\delta_{\mu}{ }^{2} & 0 \\
0 & -\delta_{i}{ }{ }^{2}
\end{array}\right)
$$

in each U_{α}, then they define a tensor field of type $(1,1)$ over M^{n}. The metric tensor $g_{a b}$ and the tensor $\varphi_{a}{ }^{b}$ satisfy

$$
\begin{align*}
& \varphi_{a}{ }^{b} \varphi_{b}{ }^{c}=\delta_{a}{ }^{c}, \tag{1.1}\\
& g_{a b} \varphi_{c}^{b}=g_{c b} \varphi_{a}{ }^{b}, \\
& \nabla_{a} \varphi_{c}{ }^{b}=0 .
\end{align*}
$$

If we put $g_{a b} \varphi_{c}{ }^{b}=\varphi_{a c}$ and $g^{a b} \varphi_{b}{ }^{c}=\varphi^{a c}$, then they are symmetric tensors and it holds that $\varphi_{a}{ }^{a}=p-q$.

Since tensor equations are independent to choice of coordinate systems, these equations hold good in any allowable coordinates and equations appeared hereafter will be considered there too.

Throughout the paper we shall assume that M^{n} is an n-dimensional reducible Riemannian space.

Let $\xi_{(a)}{ }^{(b)}=\xi_{a_{1} \cdots a_{p}}{ }^{b_{1} \cdots b_{q}}$ be a tensor of type (q, p). If it commutes with $\varphi_{a}{ }^{b}$ at a pair of indices remaining other indices fixed, then it is called pure with respect to the two indices. For example, it is pure with respect to a_{k} and b_{h}, if

$$
\xi_{a_{1} \cdots \cdots a_{p}}{ }^{(b)} \varphi_{a_{k}}{ }^{c}=\varphi_{c}{ }^{b_{h} \hat{\xi}(a)^{b_{1} \cdots \cdots w_{q}}}
$$

and pure with respect to a_{k} and a_{h}, if

$$
\xi_{a_{1} \cdots \cdots a_{h} \cdots a_{p}}{ }^{(b)} \varphi_{a_{k}}{ }^{c}=\varphi_{a_{h}}{ }^{c} \xi_{a_{1} \cdots a_{k} \cdots c \cdots a_{p}}{ }^{(b)} .
$$

$\xi_{(a)^{(b)}}$ is called pure if it is pure with respect to any pair of indices. The equation (1.2) means that metric tensor $g_{a b}$ is pure. The purity of tensors is invariant under rising (resp. lowering) of their indices by $g^{a b}$ (resp. $g_{a b}$). Let $R_{a b c}{ }^{d}$ be the Riemannian curvature, then $R_{a b c}{ }^{d}$ and Ricci tensor $R_{a b}=R_{c a b}{ }^{c}$ are pure by virtue of Tachibana's lemma [2].

[^1]§ 2. An integral formula. In this section we shall assume our M^{n} to be orientable.

Let $u_{a_{1} \cdots a_{r}}$ be any tensor field and we define

$$
\begin{aligned}
& \stackrel{*}{u}(a)=\ddot{u}_{a_{1} \cdots a_{r}}=\varphi_{a_{1}}{ }^{b} u_{b a_{2} \ldots a_{r}}, \\
& A_{b(a)}(u)=\nabla_{b} u_{c a)}-\varphi_{b}{ }^{c} \nabla_{c} \ddot{u}^{*}(a) .
\end{aligned}
$$

Denoting the square of $A_{b(a)}(u)$ by $A^{2}(u)$, we can obtain

$$
\nabla^{b}\left(A_{b(a)}(u) u^{(a)}\right)=\left(\nabla^{b} A_{b(a)}(u)\right) u^{(a)}+\frac{1}{2} A^{2}(u)
$$

from which and Green's theorem it follows
Theorem 1 (Tachibana [1]). In a compact orientable space M^{n}, the integral formula

$$
\int_{M}\left[\left(\nabla^{b} \nabla_{b} u_{(a)}-\varphi^{b c} \nabla_{b} \nabla_{c} \stackrel{\ddot{u}}{(a)}\right) u^{(a)}+\frac{1}{2} A^{2}(u)\right] d \sigma=0
$$

is valid for any tensor $u_{(a)}$, where do means the volume element of M.
§ 3. Non-existence of a conformal Killing tensor. We consider a conformal Killing tensor $u_{a_{1} \cdots a_{r}}$ of degree r, then from (0.1) the associated tensor $\rho_{a_{1} \cdots a_{r-1}}$ satisfies

$$
\begin{equation*}
\nabla^{b} u_{b a_{2} \cdots a_{r}}=(n-r+1) \rho_{a_{2} \cdots a_{r}} . \tag{3.1}
\end{equation*}
$$

Operating ∇_{b} to (0.1), we have

$$
\begin{align*}
& \nabla_{b} \nabla_{c} u_{a_{1} \cdots a_{r}}+\nabla_{b} \nabla_{a_{1}} u_{c a_{2} \cdots a_{r}} \tag{3.2}\\
= & 2 \tau_{b a_{2} \cdots a_{r}} g_{c a_{1}}-\sum_{i=2}^{r}(-1)^{i}\left(\tau_{b a_{1} \cdots \hat{a}_{r} \cdots a_{r}} g_{c a_{i}}+\tau_{b c a_{2} \cdots \hat{a}_{i} \cdots a_{r}} g_{a_{1} a_{i}}\right),
\end{align*}
$$

where $\tau_{b a_{2} \cdots a_{r}}=\nabla_{b} \rho_{a_{2} \cdots a_{r}}$. By interchanging indices b, c, a_{1}, as $b \rightarrow c \rightarrow a_{1} \rightarrow b$ and $b \rightarrow a_{1} \rightarrow c \rightarrow b$ in the equation (3.2) and substracting the latter equation from the sum of (3.2) and the former, we have

$$
\begin{align*}
& 2 \nabla_{b} \nabla_{c} u_{a_{1} \cdots a_{r}}+\sum_{\imath=1}^{r} R_{b c a_{i}} e_{a_{1} \cdots \cdots a_{r}}-\left(R_{b a_{1}{ }^{e}}+R_{c a_{1}{ }^{e}}{ }^{e}\right) u_{e a_{2} \cdots a_{r}} \\
& -\sum_{\imath=2}^{r}\left(R_{b a_{1} a_{i}}{ }^{e} u_{c a_{2} \cdots \cdots a_{r}}+R_{c a_{1} a_{i}}{ }^{e} u_{b a_{2} \cdots \cdots \cdots a_{r}}\right) \\
= & 2 \tau_{b a_{2} \cdots a_{r}} g_{c a_{1}}+2 \tau_{c a_{2} \cdots a_{r}} g_{b a_{1}}-2 \tau_{a_{1} \cdots a_{r}} g_{b c} \\
& -\sum_{\imath=2}^{r}(-1)^{i}\left(\tau_{b c a_{2} \cdots \hat{a}_{i} \cdots a_{r}}+\tau_{c b a_{2} \cdots \hat{\alpha}_{i} \cdots a_{r}}\right) g_{a_{1} a_{i}} \tag{3.3}
\end{align*}
$$

$$
\begin{aligned}
& -\sum_{\imath=2}^{r}(-1)^{i}\left(\tau_{b a_{1} \cdots \hat{a}_{i} \cdots a_{r}}-\tau_{a_{1} b a_{2} \cdots \hat{a}_{i} \cdots a_{r}}\right) g_{c a_{i}} \\
& -\sum_{i=2}^{r}(-1)^{i}\left(\tau_{c a_{1} \cdots \hat{a}_{i} \cdots a_{r}}-\tau_{a_{1} a_{1} a_{2 \cdots} \cdots \hat{a}_{i} \cdots a_{r}}\right) g_{b a_{i} .}
\end{aligned}
$$

Transvecting (3.3) with $g^{b c}$, we have

$$
\begin{align*}
& \nabla^{b} \nabla_{b} u_{a_{1} \cdots a_{r}}+R_{a_{1}}{ }^{e} u_{e a_{2} \cdots a_{r}}-\sum_{\imath=2}^{r} R^{b}{ }_{a_{1} a_{i}}{ }^{e} u_{b a_{2} \cdots e \ldots a_{r}} \\
= & -(n-r-1) \tau_{a_{1} \cdots a_{r}}-\sum_{i=2}^{r}(-1)^{i} \tau_{a_{i} a_{1} \cdots \hat{a}_{i} \cdots a_{r}} . \tag{3.4}
\end{align*}
$$

By virtue of equations (0.1), (3.3) and the purity of curvature, we have

$$
\begin{align*}
& \varphi^{b c} \nabla_{b} \nabla_{c} \vec{u}_{a_{1} \cdots a_{r}}=\varphi^{b c}\left(\nabla_{b} \nabla_{c} u_{f a_{2} \cdots a_{r}}\right) \varphi_{a_{1}}{ }^{f} \\
= & -R_{a_{1}}{ }^{e} u_{e a_{2} \cdots a_{r}}+\sum_{i=2}^{r} R^{b}{ }_{a_{1} a_{i}}{ }^{e} u_{b a_{2} \cdots \cdots a_{r}}+2 \tau_{a_{1} \cdots a_{r}} \\
& -(p-q) \tau_{f a_{2} \cdots a_{r}} \varphi_{a_{1}}{ }^{f}-\sum_{i=2}^{r}(-1)^{i} \tau_{b c a_{2} \cdots \hat{a}_{i} \cdots a_{r}} \varphi_{a_{i} a_{1}} \varphi^{b c} \tag{3.5}\\
& -\sum_{i=2}^{r}(-1)^{i}\left(\tau_{b c a_{1} \cdots \hat{a}_{i} \cdots a_{r}}-\tau_{c b a_{2} \cdots \hat{a}_{i} \cdots a_{r}}\right) \varphi_{a_{i}}{ }^{b} \varphi_{a_{1}}{ }^{c} .
\end{align*}
$$

Substracting (3.5) from (3.4), we have

$$
\begin{aligned}
& \nabla^{b} \nabla_{b} u_{a_{1} \cdots a_{r}}-\varphi^{b c} \nabla_{b} \nabla_{c} \stackrel{\rightharpoonup}{u}_{a_{1} \cdots a_{r}} \\
= & -(n-r+1) \tau a_{a_{1} \cdots a_{r}}-\sum_{i=2}^{r}(-1)^{\imath} \tau a_{a_{i} a_{1} \cdots \hat{a}_{i} \cdots a_{r}}^{r}
\end{aligned}
$$

$$
\begin{align*}
& +(p-q) \tau_{f a_{2} \cdots a_{r}} \varphi_{a_{1}}{ }^{f}+\sum_{i=2}^{r} \tau_{b c a_{2} \cdots \hat{a}_{\cdots \cdots a_{r}}} \varphi_{a_{i} a_{1} \varphi^{b c}} \tag{3.6}\\
& +\sum_{i=2}^{r}(-1)^{i}\left(\tau_{b c a_{2} \cdots \hat{a}_{i \cdots \cdots}}-\tau_{c b a_{2} \cdots \hat{a}_{i} \cdots a_{r}}\right) \varphi_{a_{i}}{ }^{b} \varphi_{a_{1}}{ }^{c} .
\end{align*}
$$

In the equation getting by transvection (3.6) with $u^{a_{1} \cdots a_{r}}$, its right hand side is the sum of the following five terms c_{1}, \cdots, c_{5}.

$$
\begin{aligned}
c_{1} & =-(n-r+1) \tau_{a_{1} \cdots a_{r}} u^{a_{1} \cdots a_{r}}=-(n-r+1) \nabla_{a_{1}} \rho_{a_{2} \cdots a_{r}} u^{a_{1} \cdots a_{r}} \\
& =-(n-r+1) \nabla_{a_{1}}\left(\rho_{a_{2} \cdots a_{r}} u^{a_{1} \cdots a_{r}}\right)+(n-r+1) \rho_{a_{2} \cdots a_{r}} \nabla_{a_{1}} u^{a_{1} \cdots a_{r}},
\end{aligned}
$$

where the first term of the right hand side vanishes by applying Green's theorem when it is integrated. Hereafter we substitute $\stackrel{*}{=}$ for $=$ when we abbrieviate the terms which vanish by integrations. Taking account of (0.1) and (3.1), we have

$$
\begin{aligned}
& c_{1} \stackrel{*}{=}(n-r+1)^{2} \rho_{a_{2} \cdots a_{r}} \rho^{a_{2} \cdots a_{r}}, \\
& c_{2}=-\sum_{\imath=2}^{r}(-1)^{2} \tau_{a_{i} a_{1} \cdots \hat{a}_{\imath} \cdots a_{r}} u^{a_{1} \cdots a_{r}} \\
& \stackrel{*}{=}-(n-r+1)(r-1) \rho_{a_{2} \cdots a_{r}} \rho^{a_{2} \cdots a_{r}}, \\
& c_{3}=(p-q) \tau_{f a_{2} \cdots a_{r}} \varphi_{a_{1}}{ }^{f} u^{a_{1} \cdots a_{r}} \\
& \stackrel{*}{=}-(p-q) \rho_{a_{2} \cdots a_{r}} \rho^{a_{2} \cdots a_{r}}+(p-q)(r-1) \rho_{b a_{3} \cdots a_{r}} \rho^{c a_{3} \cdots a_{r}} \varphi_{c}{ }^{b}, \\
& c_{4}=\sum_{\imath=2}^{r}(-1)^{i} \tau b c a_{2} \cdots \hat{a}_{\imath} \cdots a_{r} \varphi_{a_{i}} a_{1} \varphi^{b c} u^{a_{1} \cdots a_{r}}=0, \\
& c_{5}=\sum_{i=2}^{r}(-1)^{i}\left(\tau_{b c a_{2} \cdots \hat{a}_{i} \cdots d_{r}}-\tau_{c b a_{2} \cdots \hat{a}_{\imath} \cdots a_{r}}\right) \varphi_{a_{i}}{ }^{b} \varphi_{a_{1}}{ }^{c} u^{a_{1} \cdots a_{r}} \\
& \stackrel{*}{=}-2(r-1)\left[\rho_{a_{2} \cdots a_{r}} \rho^{a_{2} \cdots a_{r}}-(p-q) \rho_{b a_{3} \cdots d_{r}} \rho^{c a_{3} \cdots a_{r}} \varphi_{c}{ }^{b}\right. \\
& \left.+(r-2) \rho_{b e a_{4} \cdots a_{r}} \rho^{c f a_{4} \cdots a_{r}} \varphi_{c}{ }^{b} \varphi_{f}^{e}\right] .
\end{aligned}
$$

Thus we get

$$
\begin{align*}
& \left(\nabla^{b} \nabla_{b} u_{(a)}-\varphi^{b c} \nabla_{b} \nabla_{c} \stackrel{u}{u}_{(a)}\right) u^{(a)} \\
\stackrel{*}{=} & {\left[(n-r+1)^{2}-(n-r+3)(r-1)-(p-q)^{2}\right] \rho_{a_{2} \cdots a_{r}} \rho^{a_{2} \cdots a_{r}} } \\
& +3(p-q)(r-1) \rho_{b a_{3} \cdots a_{r}} \rho^{c a_{3} \cdots a_{r}} \varphi_{c}{ }^{b} \tag{3.7}\\
& -2(r-1)(r-2) \rho_{b a_{4} \cdots} \cdots a_{r} \rho^{c f} \rho_{a_{4} \cdots a_{r}} \varphi_{c}{ }^{b} \varphi_{f}{ }^{e} .
\end{align*}
$$

Substituting (3.7) into the integral formula of Theorem 1, we have

$$
\begin{equation*}
\int_{M}\left[B+\frac{1}{2} A^{2}(u)\right] d \sigma=0 \tag{**}
\end{equation*}
$$

where $B=$ the right hand side of (3.7).
From the hypothesis, M^{n} is locally isometric to the direct product of a p dimensional Riemannian space and a q-dimensional one and we can suitably choose a basis at any point such that

$$
\begin{gathered}
g_{a b}=\delta_{a b}, \\
\left(\varphi_{a b}\right)=\left(\begin{array}{cc}
\delta_{\alpha \mu} & 0 \\
0 & -\delta_{i j}
\end{array}\right)
\end{gathered}
$$

If we put $p-q=s$, then with respect to the basis, we have

$$
\begin{aligned}
B= & {\left[n^{2}-3(r-1) n-s^{2}+3 s(r-1)\right] \rho_{2 \mu a_{4} \cdots a_{r}} \rho^{2 \mu a_{4} \cdots a_{r}} } \\
& +\left[n^{2}-3(r-1) n-s^{2}-3 s(r-1)\right] \rho_{i J a_{4} \cdots a_{r}} \rho^{2 j a_{4} \cdots a_{r}} \\
& +2\left[n^{2}-3(r-1) n-s^{2}+4(r-1)(r-2)\right] \rho_{2 i a_{4} \cdots a_{r}} \rho^{22 a_{4} \cdots a_{r}} .
\end{aligned}
$$

Hence if the following (3.8) $\sim(3.10)$ is satisfied, $B \geqq 0$ holds good.

$$
\begin{align*}
& n^{2}-3(r-1) n-s^{2}+3 s(r-1)>0, \tag{3.8}\\
& n^{2}-3(r-1) n-s^{2}-3 s(r-1)>0, \tag{3.9}\\
& n^{2}-3(r-1) n-s^{2}+4(r-1)(r-2)>0 . \tag{3.10}
\end{align*}
$$

Taking account of $n-s=2 q>0$ and $n+s=2 p>0$, (3.8) and (3.9) are equivalent to

$$
\begin{equation*}
s+n-3(r-1)>0 \tag{3.11}
\end{equation*}
$$

$$
\begin{equation*}
n-s-3(r-1)>0 . \tag{3.12}
\end{equation*}
$$

Now we assume that r satisfies $3(r-1)<n$. Then from (3.11) and (3.12), we have

$$
\begin{equation*}
3(r-1)-n<s<n-3(r-1) . \tag{3.13}
\end{equation*}
$$

It is easily seen that (3.10) is a consequence of (3.13), and (3.13) is also written in the form

$$
\begin{equation*}
\frac{3}{2}(r-1)<p<n-\frac{3}{2}(r-1), \tag{3.14}
\end{equation*}
$$

taking account of $p+q=n$ and $p-q=s$.
The following (3.15) is equivalent to (3.14).

$$
\begin{equation*}
3(r-1)<2 p \quad\left(p \leqq \frac{n}{2}\right) \tag{3.15}
\end{equation*}
$$

Hence if (3.15) is satisfied, then (3.8) $\sim(3.10)$ are satisfied and we obtain $B \geqq 0$. Thus (3.15) and (${ }^{* *}$) imply $B=0$ and hence $\rho_{a_{2} \cdots a_{r}}=0$ holds good.

Consequently we get the following
Theorem 2. Let M^{n} be a Riemannian space which is compact and locally isometric to the direct product of a $p(\leqq n / 2)$-dimensional Riemannian space and a ($n-p$)-dimensional one. Then M^{n} can not admit a conformal Killing tensor of degree r satisfying $3(r-1)<2 p$ which is not a Killing tensor.

Theorem 3. If a compact Riemannian space admits a non-Killing conformal Killing tensor of degree r satisfying $3(r-1)<n$, then it is irreducible or locally isometric to $M^{i} \times M^{n-2}(0<i \leqq 3(r-1) / 2)$, where M^{j} means a j-dimensional Riemannian space.

Bibliography

[1] Tachibana, S., Some theorems on locally product Riemannian spaces. Tôhoku Math. J. 12 (1960), 281-292.
[2] Tachibana, S., Analytic tensor and its generalization. Tôhoku Math. J. 12 (1960), 208-221.
[3] Kashiwada, T., On conformal Killing tensor. Natural Sci. Rep. Ochanomizu Univ. 19 (1965), 67-74.
[4] Yano, K., and S, Bochner, Curvature and Betti numbers. Ann. of Math. Stud. 32 (1953).

Department of Mathematics,
Musashi Institute of Technology, Tokyo.

[^0]: Received April 9, 1970.

 1) Indices a, b, c, \cdots run over $1, \cdots, n$.
 2) See the bibliography at the end of the paper.
[^1]: 3) We shall always assume that M is connected.
 4) Indices λ, μ, ν (resp. i, j, k) run over $1, \cdots, p$ (resp. $p+1, \cdots, p+q=n$) and p is a constant positive integer over M^{n}.
