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ON THE ABSOLUTE SUMMABILITY OF THE SERIES
ASSOCIATED WITH A FOURIER SERIES
AND ITS ALLIED SERIES

By B. L. Gupra

1. Let S, be the partial sum of an infinite series X5-0 @, and let

n

(L. 1) t=2 (’: >(A"‘”ﬂu)3»-
Then the sequence {f,} is known as the Hausdroff means of sequence {S.}, where
{m} is a sequence of real or complex numbers and the sequence {47y} denotes the

differences of order 2.
The series Y.%-o @, is said to be summable by Hausdroff mean to the sum S, if

lim #,=S,

n—oo
whenever S,—S. The necessary and sufficient condition for the Hausdorff sum-
mability to be conservative is that the sequence {u.} should be a sequence of
moment constant, i.e.;

1
Un= S z"dX(x),
0

where X(x) is a real function of bounded variation in 0=z=<1. We may suppose
without loss of generality that x(0)=0. If also x(1)=1 and x(+0)=0, so that X(x)
is continuous at the origin, then u, is a regular moment constant and (H, p,) is a
regular method of summation [3].

If

(1. 2) Z—:l I(tn_tn—l)l < oo,

then the series X7.0a@, is said to be absolutely summable (H, y,) or summable
|H, pa|. It is also known that the Cesaro, Holder and Euler methods of summation
are the particular cases of the above method.

2. Let f(¢) be a periodic function with period 2z and integrable in the sense
of Lebesgue in (—r, ). Let its Fourier series be
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ABSOLUTE SUMMABILITY

—;—do + 23 (@n cos nt+b, sin nt) = i A
n=1 n=0

and its allied series is

Z (bs, cos nt—ay, sin nt) = Z,‘ Bu@).

n=1

We write

$O =5 O+ +/ 01,
$O =5 O+)~F (0-1)

Dy(t)= E—uy-'p(u)du,  B>0;

7’755

U(t)= t—wyp-'gu)du, — p>0;

T@ (.3) S
Do) =9(?)
and
Vo(H)=¢(@).
Further, let the function g(x) be Lebesgue integrable in (0, 1), then for ¢>0

ot @)=y | (o=t

and
0=y | (o= gtadu.
Again, let
Uty= 2, e,

y=1

Hm, z,t)=En, z, t)+iF (n, z,t)

=S (M)ea-oret @0y
v=1

Tt 2, £y =Ex(n, @, £)+iFs(n, 2, 2)

=3 w-ﬂﬂ( >x(1 —zyet (a—p>0);

v=1
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1 n
G, t)=S dxx) Y] C‘)x"a—x)ﬂ—v-ﬂﬂ cos vt
0 y=1
and
1 2 In
Gi(n, t)=S ao s, <y)x”(1 — )P gin ot
0 v=1

3. Concerning the absolute Hausdorff summability of a series associated with
a Fourier series and its allied series, recently Tripathy [9] has proved the following
theorems:

THEOREM A. If
(i) \[lap0l<es  (1>a>0)

(ii) (H, ) is conservative
and
either (a) X(x)=girars(@)+C  (0>0);
o {07 (B) (@) =g ars(x)+C (>0
for some g(x)€L(0,1),

then the series Y 51 n"An(t) is summable |H, p,| at t=0, where C is an absolute
constant.

THEOREM B. If

(i) G(+0)=0,

(i) S:t‘“|d¢(t)|<oo O0<a<l);

(iii) (H, p») is conservative
and

either (a) X(x)=gria+s(x)+C  (6>0);
iv) {

or (b) X(x)=gfars(x)+C (6>0);
for some g(x)eL(0,1),

then the series Y51 n*Ba(t) is summable |H, p,|, at t=0, where C is an absolute
constant.

4. The object of this paper is to generalize the theorems A and B. In what
follows, we shall prove the following theorems.
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TrHEOREM 1. If

(i) Dy(+0)=0,
(ii) \[t1d040] <oo,
0
(iii) H, pw) is conservative
and

either (a) (&) =grars(x)+C  (>0);
(iv) {

or  (b) Ux)=gfars(x)+C  (G>0);
for some g(x)eL(0, 1),

then the sevies 3,51 n*PAn() is summable |H, |, at =0, where C is an absolute
constant and 1>a>p=0 or also 1>a=>0.

TueoreMm II. If

(i) y(+0)=0,
(i) \[#la )| <o,
0
(iii) H, un) is conservative
and

either (@) X(x)=0ria+s(x)+C  (6>0);
(@iv) {

or  (B) Uz)=giress(@+C  (5>0);
for some g(x)eL(0,1),

then the series Yoy PBy(t) is summable |H, p.|, at t=0, where C is an absolute
constant and 1>a>p=0 or also 1>a=p>0.

It is clear that the theorems A and B follow as special cases for =0 of our
theorems.
It may also be remarked that if

Xx)=1—A-2z), >0

the method (H, ) reduces to the well known Cesaro method of order y. Further
if we choose a+4d such that y>a+4, >0, §>>0, then it can be proved that X(x)—1
is the (1+a+0)th backward integral of

I'dA+y)

- I'(y—a—0) (L—ayme=
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and for a>0, 6>0, a+d<1, y>a+4d, X(x) is also the (1 +a+d)th forward integral of

so the method of (C, ), for a>0, >0, y>a+9, satisfies the hypothesis of theorems
I and II [9].
Thus the following theorems become the corollaries of our theorems I and II.

Tuaeorem C [6]. If

(i) 04(+0)=0,

(ii) S:t‘“ld@ﬂ(t)|<oo,
then the series Y 5-1n"*Au), at the point t=0 is summable |C,y|, where 1>r>a
=p=0.

Tueorem D [7]. If

(i) Ty(+0)=0,

(i) S:t""ld%(t)l<oo,

then the series Y5-1n*"Bu(l), at the point t=0 is summable |C, y| where 1>7>a=p>0
or also 1>y>a>p=0.

Further, if =0, then the following theorems of Mohanty [8] also become the
corollaries of our theorems.

TueoreMm E. If
S:t'“ld¢(t)]<oo A>a>0);

then the series Yuo1n"Au(f) is summable |C,y|, for y>a, at the point t=0.
THEOREM F. If
(i) U(+0)=0,

and
(ii) S:t‘“ld¢<t)l<oo O<a<l);

then the series Y.u-1n*Bu(l) is summable |C,y| for y>a, at the point t=86.

It is known that the conditions
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S”t-ﬁ]d@p(t)|<oo and  g(+0)=0
0

are equivalent to the conditions, ¢,(¢) is B.V. in (0,7) and ¢4(+0)=0. Hence the
following theorems of Bosanquet [1] and Bosanquet and Hyslop [2] are the corollaries
of our theorems for f=a.

THEOREM G. If ¢4(t) is B.V. in (0,7), then the series Y 5-1Ax{), at t=0, is
summable |C, 1|, for y>8.

TueoreMm H. If 0<B<1 and
(i) Ts(+0)=0,

(ii) S:t-ﬂldwﬁu)l@o,

then the series Y, n-1Bn(t), at t=0, is summable |C,y|, for every y>p.

5. For the proof of the theorems, we require the following lemmas.

Lemma 1. Uniformly

K
6.1 |Un®)] =
This can be easily proved.

LemMA 2. If t, and u, denote the Hausdorff means of the series Y,5-1a, and
sequence {na,} respectively, then for n=1

(5 2) un=n(tn_tn—1)v
This is known [4].

LemMA 3. If g(x) and h(z) ave Lebesgue integrable in (0,1), then for ¢>0
1 1
5.3) Sat(x)h(x) dx=S o(@h=(2)da.
0 0

This is due to Kuttner [5].

Lemma 4. For a—p>0

5. 4) S:H(n 2, t)dv:O(”“_;_' )

5.5) S: T(n, 0, 8)dv= 0( ”;—ﬁ),
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5. 6) S:H(n 1-, t)dv=0< ”a;ﬁ_l )
and
G.7) S: Tn,1—0, t)dv=0< ”:’),

uniformly for x in (0,1).
The above estimates can be easily obtained from Tripathy [9] Lemma 4.

LEMMA 5. If a>0, >0 and let a,0 be fixed, then for a+5<1

5.8) S:(:c—u)"”“H(n, w, 8)du =0<’§—fj>,
5. 9) S:(Jc——u)”"“ T(n, u,t)du = o( ”t“ );
(5.10) S:(x—u)"+"’2H(n, “, t)du=0( A );
and

(5. 11) S: (x—2)"*"* ] (n, u, t)du = 0(%)

uniformly for 0=zx=1.

Proof of (5.8). We have

Sx(x—-u)“”" Hn,u, t)du
0

= <Sx_1/m+ Sz )(:c—u)“”“H(n, u, t)du

0 z-1/nt
=P+ P,, say.

By the aid of lemma 4 and by the second mean value theorem, we have

z-1/nt

P= S (2— ) (n, w,

0

xr-1/nt
=(n;)1—a~ss Hn, u, )du
0

po=b-1 n—p-
—_ —a=—3 — —_—
=0ty 0( : ) o( a8 )
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Since
Hn, 2, )=n" 2, (f )x”(l—x)”‘”:n“'ﬁ
y=1

then
x
P, =S (x—u)*** H(n, u, H)du

r—1/nt

=0(na-ﬂ)Sz (@ =) du

z—1/nt
—p—3
=0(n=*)(nt)= —0< ntm >

Similarly the other estimates can be proved.

Proof of Theorem 1. We shall prove this theorem for the case a>p.
In view of the lemma 2, the series X 5. #*?A,(¢) is summable |H, u,|, if

=3 1|5 (4 )

n=1 M |y=1

Since (H, p,) is conservative, we have

=3 %l S:dx(x) é (’z )x“(l-—x)”‘”u“"’“ A,(t)’

S e e

221
=23

T =17

_2el S Gn, t){ r(11 5 S (t—u)- ﬂd(l)ﬁ(u)]dt'

l S:qs(t)G(n, t)dtl

T n=1M
_ ﬂmz 5 nii.S d@ﬁ(u)g (t—u)*Gn, t)dtl

2
= - 8
s Va0 S | e o).

To prove the theorem, we have to prove that

% S:(t—u)—ﬁG(n, t)dtl=0(u'“).

n=1

Now

431
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nj:;l%| Su (t—u)*G(n, t)dtl
_ 21_’11_ S:(t—u)‘ﬂ{g:dx(x) Re J(n, 2, £) }dtl

= + 2 =Mi+M, say.

ns1/u n>1/u

Since

L B () E e
v=1

we have

1
ns 1/ Z

1|(¢nt/n
SZ —

S (t— u)’/’{gzdx(x) Re J(n, 2, 1) }dtl
.

(t— u)-ﬁ{ S;dx(x) Re J(n, 3, 1) ]dt‘

n

+ 3=

ns1/u

[ ool ormtnnold

nSl/u n

n
S " ¢ = 1)y O(n-+1) {S:dx(x)}dt|

1
— P
+nsZ:1/u nn

S:dx(x) Tm Hn, , t),

1
o » n‘ln““’“nﬁ“llg dx(x)l)+ > 00ne)
ns1/u 0

ns1l/u

=O( h n“") = O(S:/uy"‘ldy> =0(u~*).

n=s1/u

o

If (@) 2Ax)=gzs+1(x)+C, then

M=

n>1/u n

S (t— u)"’{S:dX(x) Re J(n, 2, 1) }dtl
.

=% - u)"’{S:dx(x)El(n, 2, t)}dtl
1 S;lm(t—u) ﬂ‘ d S aUz) F(n, , t)}dtl

a>1/u B
=M,.1+M..., say.

By using the lemma 3, we have
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1
M2.1= Z —

n>1/u N

1

n>1/u N

S"“’" (t—u)* {S:giw(x)El(”’ © t)dx}dtl

u

S uti/n t—u)* S:g(x)E;:,M(n, z, )dx}dtl_

u

Since Ef+s(n, z,¢) is the (a+0)th forward fractional integral of Ei(n, x,t)
regarded as function of z and

* (w— )yt Eu(n, u, f)du

1
Eiun, 0= SD

1 Sx(x—u)““‘l Re J(n, u, H)du

= T(at0) Jo
Ji-6-3
=0(_t:‘+T‘) bY lemma 5.
Hence
utl/n 1-8-3 1
Mya= ), 1 S (t—u)“"’O(ﬁ—;‘W){S g(x)dx]’dtl
2>1u N |Ju ¢ 0

u+l/n 1
S (t—u)‘ﬂdt‘ (since S g(x)dz is ﬁnite)
0

u

1
=0(5r) B

n>1/u

=0@=%) 3 n~!

n>1/u

=0(n—a—6)g°° y3-1dy =0u-).
1/u
Using the second mean value theorem and lemmas 3 and 5, we have

S” t—u)* ?id? { S:g;a(:v)F (n, x, t)dx}dtl

u+1/n

M, .= Z n!

n>1/u

n-1+e
n>1/u

Sz 4 { S:g(x)FLﬁ(n, z, t)dx}dz“

u+1/m dt

1
S g(x)F:+5(n) x, u)d.’b’ l
0

ST it

n>1/u

5wl 2| o

n>1/u ute

=0t 3 wit=0w)| yi-ay=0u-)

n>1/u
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If (b) X(x)=gt.e+s(x)+C, then using the similar arguments as used in the case
(a), we can prove with the help of (5.10) and (5.11) of lemma 5 that

Mo=0(u"*).
This completes the proof of the theorem I.

Proof of the theorem II. The series Y 5-1n"*By(t) is summable |H, p,|, if

> (’: )A,’,',‘”v"“ﬁ“B,,(t)l<oo.

since the method (H, ) is conservative, then

2> 110 n fy .
= — _ n—y a-p 1 .
L g SodX(J/')v;l(y)A,uv Phinlas So¢(t) sin tht'
22 1]
=21 Sosb(t)Gl(n, t)dtl
_2a1

S:Gl(n, H l—l”(—ll—*ﬁT S:(t—u)‘f" 30 ) ]dt'

T pn=17

aﬁ §1%| S:dllf,;(u) S;(t-—u)‘ﬁ G, z)dt]

2
T ar1=p)

\[1a7,)| 3 %S”(t—u)-ﬁcl(n, t)dt|.
0 n=1 u
To prove the theorem, it is sufficient to prove that

N=3 %| SZ(t—u)“ﬁ Gi(n, ) dt|=0(u"').

n=1

Now

N=3 %l Su (t—u)—ﬁ{ S:dx(x) Im J(n, 2, t)}dtl

n=1

= 2 + 23 =N+N,, say.

ns1l/u a>1fu
Proceeding in a similar way as in the proof of M; and M,, we can prove that
Ni=0w")
and
No=0@w").

Hence
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2 - »
L= mgo | ()| O(es~)

=0(1)S:u'“ldl’fﬂ(u)l=0(1).

This completes the proof of the theorem II.

The author is highly grateful to Dr. P. L. Sharma for his kind advice and
suggestions during the preparation of this paper.
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