KÖDAI MATH. SEM. REP. 22 (1970), 424–435

ON THE ABSOLUTE SUMMABILITY OF THE SERIES ASSOCIATED WITH A FOURIER SERIES AND ITS ALLIED SERIES

By B. L. Gupta

1. Let S_n be the partial sum of an infinite series $\sum_{n=0}^{\infty} a_n$ and let

(1.1)
$$t_n = \sum_{\nu=0}^n \binom{n}{\nu} (\mathcal{A}^{n-\nu} \mu_{\nu}) S_{\nu}.$$

Then the sequence $\{t_n\}$ is known as the Hausdroff means of sequence $\{S_n\}$, where $\{\mu_{\nu}\}$ is a sequence of real or complex numbers and the sequence $\{\Delta^p \mu_{\nu}\}$ denotes the differences of order p.

The series $\sum_{n=0}^{\infty} a_n$ is said to be summable by Hausdroff mean to the sum S, if

$$\lim_{n\to\infty}t_n=S,$$

whenever $S_n \rightarrow S$. The necessary and sufficient condition for the Hausdorff summability to be conservative is that the sequence $\{\mu_n\}$ should be a sequence of moment constant, i.e.;

$$\mu_n = \int_0^1 x^n d\chi(x),$$

where $\chi(x)$ is a real function of bounded variation in $0 \le x \le 1$. We may suppose without loss of generality that $\chi(0)=0$. If also $\chi(1)=1$ and $\chi(+0)=0$, so that $\chi(x)$ is continuous at the origin, then μ_n is a regular moment constant and (H, μ_n) is a regular method of summation [3].

 \mathbf{If}

(1.2)
$$\sum_{n=1}^{\infty} |(t_n - t_{n-1})| < \infty,$$

then the series $\sum_{n=0}^{\infty} a_n$ is said to be absolutely summable (H, μ_n) or summable |H, μ_n |. It is also known that the Cesàro, Hölder and Euler methods of summation are the particular cases of the above method.

2. Let f(t) be a periodic function with period 2π and integrable in the sense of Lebesgue in $(-\pi, \pi)$. Let its Fourier series be

Received December 23, 1969.

ABSOLUTE SUMMABILITY

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=0}^{\infty} A_n(t)$$

and its allied series is

$$\sum_{n=1}^{\infty} (b_n \cos nt - a_n \sin nt) = \sum_{n=1}^{\infty} B_n(t).$$

We write

$$\begin{split} \phi(t) &= \frac{1}{2} \left\{ f(\theta+t) + f(\theta-t) \right\}, \\ \phi(t) &= \frac{1}{2} \left\{ f(\theta+t) - f(\theta-t) \right\}, \\ \Phi_{\beta}(t) &= \frac{1}{\Gamma(\beta)} \int_{0}^{t} (t-u)^{\beta-1} \phi(u) du, \qquad \beta > 0; \\ \Psi_{\beta}(t) &= \frac{1}{\Gamma(\beta)} \int_{0}^{t} (t-u)^{\beta-1} \phi(u) du, \qquad \beta > 0; \\ \Phi_{0}(t) &= \phi(t) \end{split}$$

and

 $\Psi_0(t) = \psi(t).$

Further, let the function g(x) be Lebesgue integrable in (0,1), then for $\varepsilon > 0$

$$g_{\epsilon}^{+}(x) = \frac{1}{\Gamma(\epsilon)} \int_{0}^{x} (x-u)^{\epsilon-1} g(u) du$$

and

$$g_{\bullet}^{-}(x) = \frac{1}{\Gamma(\varepsilon)} \int_{x}^{1} (x-u)^{\varepsilon-1} g(u) du \, .$$

Again, let

$$U_{n}(t) = \sum_{\nu=1}^{n} e^{i\nu t},$$

$$H(n, x, t) = E(n, x, t) + iF(n, x, t)$$

$$= \sum_{\nu=1}^{n} \nu^{\alpha-\beta} \binom{n}{\nu} x^{\nu} (1-x)^{n-\nu} e^{i\nu t} \qquad (\alpha-\beta>0);$$

$$J(n, x, t) = E_{1}(n, x, t) + iF_{1}(n, x, t)$$

$$= \sum_{\nu=1}^{n} \nu^{\alpha-\beta+1} \binom{n}{\nu} x^{\nu} (1-x)^{n-\nu} e^{i\nu t} \qquad (\alpha-\beta>0);$$

B. L. GUPTA

$$G(n,t) = \int_0^1 d\chi(x) \sum_{\nu=1}^n \binom{n}{\nu} x^{\nu} (1-x)^{n-\nu} \nu^{\alpha-\beta+1} \cos \nu t$$

and

$$G_1(n,t) = \int_0^1 d\chi(t) \sum_{\nu=1}^n \binom{n}{\nu} x^{\nu} (1-x)^{n-\nu} \nu^{\alpha-\beta+1} \sin \nu t.$$

3. Concerning the absolute Hausdorff summability of a series associated with a Fourier series and its allied series, recently Tripathy [9] has proved the following theorems:

THEOREM A. If

(i)
$$\int_0^{\pi} t^{-\alpha} |\alpha \phi(t)| < \infty \qquad (1 > \alpha > 0);$$

(ii) (H,
$$\mu_n$$
) is conservative

and

(iii)
$$\begin{cases} either (a) \ \chi(x) = g_{1+\alpha+\delta}(x) + C & (\delta > 0); \\ or & (b) \ \chi(x) = g_{1+\alpha+\delta}(x) + C & (\delta > 0); \end{cases}$$

for some $g(x) \in L(0,1)$,

then the series $\sum_{n=1}^{\infty} n^{\alpha} A_n(t)$ is summable $|H, \mu_n|$ at $t=\theta$, where C is an absolute constant.

THEOREM B. If

(i) $\psi(+0)=0,$

(ii)
$$\int_0^{\pi} t^{-\alpha} |d\psi(t)| < \infty \qquad (0 < \alpha < 1);$$

(iii)
$$(H, \mu_n)$$
 is conservative

and

(iv)
$$\begin{cases} either (a) \ \chi(x) = g_{1+\alpha+\delta}^{-}(x) + C \quad (\delta > 0); \\ or \quad (b) \ \chi(x) = g_{1+\alpha+\delta}^{+}(x) + C \quad (\delta > 0); \\ for some \ g(x) \in L(0, 1), \end{cases}$$

then the series $\sum_{n=1}^{\infty} n^{\alpha} B_n(t)$ is summable $|H, \mu_n|$, at $t=\theta$, where C is an absolute constant.

4. The object of this paper is to generalize the theorems A and B. In what follows, we shall prove the following theorems.

THEOREM I. If

(ii)
$$\int_0^{\pi} t^{-\alpha} |d\Phi_{\beta}(t)| < \infty,$$

(iii) (H, μ_n) is conservative

and

(iv)
$$\begin{cases} either (a) \ \chi(x) = g_{1+\alpha+\delta}(x) + C & (\delta > 0); \\ or & (b) \ \chi(x) = g_{1+\alpha+\delta}(x) + C & (\delta > 0); \end{cases}$$

for some $g(x) \in L(0, 1)$,

then the series $\sum_{n=1}^{\infty} n^{\alpha-\beta}A_n(t)$ is summable $|H, \mu_n|$, at $t=\theta$, where C is an absolute constant and $1>\alpha>\beta\geq 0$ or also $1>\alpha\geq\beta>0$.

THEOREM II. If

(ii)
$$\int_0^{\pi} t^{-\alpha} |d\Psi_{\beta}(t)| < \infty,$$

(iii)
$$(H, \mu_n)$$
 is conservative

and

(iv)
$$\begin{cases} either (a) \ \chi(x) = g_{1+\alpha+\delta}^{-}(x) + C & (\delta > 0); \\ or & (b) \ \chi(x) = g_{1+\alpha+\delta}^{+}(x) + C & (\delta > 0); \end{cases}$$

for some $g(x) \in L(0, 1)$,

then the series $\sum_{n=1}^{\infty} n^{\alpha-\beta} B_n(t)$ is summable $|H, \mu_n|$, at $t=\theta$, where C is an absolute constant and $1 > \alpha > \beta \ge 0$ or also $1 > \alpha \ge \beta > 0$.

It is clear that the theorems A and B follow as special cases for $\beta=0$ of our theorems.

It may also be remarked that if

$$\chi(x) = 1 - (1 - x)^{\gamma}, \qquad \gamma > 0;$$

the method (H, μ_n) reduces to the well known Cesàro method of order γ . Further if we choose $\alpha + \delta$ such that $\gamma > \alpha + \delta$, $\alpha > 0$, $\delta > 0$, then it can be proved that $\chi(x) - 1$ is the $(1 + \alpha + \delta)$ th backward integral of

$$-\frac{\Gamma(1+\gamma)}{\Gamma(\gamma-\alpha-\delta)}(1-x)^{r-\alpha-\delta-1}$$

and for $\alpha > 0$, $\delta > 0$, $\alpha + \delta < 1$, $\gamma > \alpha + \delta$, $\chi(x)$ is also the $(1 + \alpha + \delta)$ th forward integral of

$$\frac{\gamma}{\Gamma(1-\delta-\alpha)}\left\{x^{-(\alpha+\delta)}+(1-\gamma)\int_0^x(1-v)^{\gamma-2}(x-v)^{-(\alpha+\delta)}dv\right\},\,$$

so the method of (C, γ) , for $\alpha > 0$, $\delta > 0$, $\gamma > \alpha + \delta$, satisfies the hypothesis of theorems I and II [9].

Thus the following theorems become the corollaries of our theorems I and II.

THEOREM C [6]. If

(i)
$$\Phi_{\beta}(+0)=0,$$

(ii)
$$\int_0^{\pi} t^{-\alpha} |d\Phi_{\beta}(t)| < \infty,$$

then the series $\sum_{n=1}^{\infty} n^{\alpha-\beta}A_n(t)$, at the point $t=\theta$ is summable $|C, \gamma|$, where $1 > \gamma > \alpha \ge \beta \ge 0$.

THEOREM D [7]. If

(ii)
$$\int_0^{\pi} t^{-\alpha} |d\Psi_{\beta}(t)| < \infty,$$

then the series $\sum_{n=1}^{\infty} n^{\alpha-\beta}B_n(t)$, at the point $t=\theta$ is summable $|C, \gamma|$ where $1>\gamma>\alpha \ge \beta>0$ or also $1>\gamma>\alpha>\beta\ge 0$.

Further, if $\beta = 0$, then the following theorems of Mohanty [8] also become the corollaries of our theorems.

THEOREM E. If

$$\int_0^{\pi} t^{-\alpha} |d\phi(t)| < \infty \qquad (1 > \alpha > 0);$$

then the series $\sum_{n=1}^{\infty} n^{\alpha} A_n(t)$ is summable $|C, \gamma|$, for $\gamma > \alpha$, at the point $t = \theta$.

THEOREM F. If

(i)
$$\Psi(+0)=0,$$

and

(ii)
$$\int_0^{\pi} t^{-\alpha} |d\psi(t)| < \infty \qquad (0 < \alpha < 1);$$

then the series $\sum_{n=1}^{\infty} n^{\alpha} B_n(t)$ is summable $|C, \gamma|$ for $\gamma > \alpha$, at the point $t = \theta$.

It is known that the conditions

$$\int_0^{\pi} t^{-\beta} |d\Phi_{\beta}(t)| < \infty \quad \text{and} \quad \varphi_{\beta}(+0) = 0$$

are equivalent to the conditions, $\phi_{\beta}(t)$ is B.V. in $(0, \pi)$ and $\phi_{\beta}(+0)=0$. Hence the following theorems of Bosanquet [1] and Bosanquet and Hyslop [2] are the corollaries of our theorems for $\beta = \alpha$.

THEOREM G. If $\phi_{\beta}(t)$ is B.V. in $(0, \pi)$, then the series $\sum_{n=1}^{\infty} A_n(t)$, at $t=\theta$, is summable $|C, \gamma|$, for $\gamma > \beta$.

Theorem H. If $0 < \beta < 1$ and

$$(i) \qquad \qquad \Psi_{\beta}(+0)=0,$$

(ii)
$$\int_0^{\pi} t^{-\beta} |d\Psi_{\beta}(t)| < \infty,$$

then the series $\sum_{n=1}^{\infty} B_n(t)$, at $t=\theta$, is summable $|C, \gamma|$, for every $\gamma > \beta$.

5. For the proof of the theorems, we require the following lemmas.

LEMMA 1. Uniformly

$$(5.1) |U_n(t)| \leq \frac{K}{t}.$$

This can be easily proved.

LEMMA 2. If t_n and u_n denote the Hausdorff means of the series $\sum_{n=1}^{\infty} a_n$ and sequence $\{na_n\}$ respectively, then for $n \ge 1$

(5.2)
$$u_n = n(t_n - t_{n-1}).$$

This is known [4].

LEMMA 3. If g(x) and h(x) are Lebesgue integrable in (0,1), then for $\varepsilon > 0$

(5.3)
$$\int_0^1 g_{\epsilon}^+(x) h(x) dx = \int_0^1 g(x) h_{\epsilon}^-(x) dx.$$

This is due to Kuttner [5].

LEMMA 4. For $\alpha - \beta > 0$

(5.4)
$$\int_0^x H(n,v,t) dv = O\left(\frac{n^{\alpha-\beta-1}}{t}\right),$$

(5.5)
$$\int_0^x J(n,v,t) \, dv = O\left(\frac{n^{\alpha-\beta}}{t}\right),$$

B. L. GUPTA

(5.6)
$$\int_0^x H(n,1-v,t)dv = O\left(\frac{n^{\alpha-\beta-1}}{t}\right),$$

and

(5.7)
$$\int_0^x J(n, 1-v, t) dv = O\left(\frac{n^{\alpha-\beta}}{t}\right),$$

uniformly for x in (0, 1).

The above estimates can be easily obtained from Tripathy [9] Lemma 4.

Lemma 5. If $\alpha > 0$, $\delta > 0$ and let α, δ be fixed, then for $\alpha + \delta < 1$

(5.8)
$$\int_0^x (x-u)^{\delta+\alpha-1} H(n, u, t) \, du = O\left(\frac{n^{-\beta-\delta}}{t^{\alpha+\delta}}\right),$$

(5.9)
$$\int_{0}^{x} (x-u)^{a+\delta-1} J(n, u, t) \, du = O\left(\frac{n^{1-\beta-\delta}}{t^{a+\delta}}\right);$$

(5.10)
$$\int_{x}^{1} (x-u)^{\alpha+\delta-2} H(n,u,t) du = O\left(\frac{n^{-\beta-\delta}}{t^{\alpha+\delta}}\right);$$

and

(5. 11)
$$\int_x^1 (x-u)^{\alpha+\delta-1} J(n,u,t) du = O\left(\frac{n^{1-\beta-\delta}}{t^{\alpha+\delta}}\right)$$

uniformly for $0 \leq x \leq 1$.

Proof of (5.8). We have

$$\int_{0}^{x} (x-u)^{\alpha+\delta-1} H(n, u, t) du$$

= $\left(\int_{0}^{x-1/nt} + \int_{x-1/nt}^{x} \right) (x-u)^{\alpha+\delta-1} H(n, u, t) du$
= $P_{1} + P_{2}$, say.

By the aid of lemma 4 and by the second mean value theorem, we have

$$P_1 = \int_0^{x^{-1/nt}} (x - u)^{\delta + \alpha - 1} H(n, u, t) du$$
$$= (nt)^{1 - \alpha - \delta} \int_0^{x^{-1/nt}} H(n, u, t) du$$
$$= O(nt)^{1 - \alpha - \delta} O\left(\frac{n^{\alpha - \beta - 1}}{t}\right) = O\left(\frac{n^{-\beta - \delta}}{t^{\alpha + \delta}}\right).$$

Since

$$H(n, x, t) \leq n^{\alpha-\beta} \sum_{\nu=1}^{n} \binom{n}{\nu} x^{\nu} (1-x)^{n-\nu} = n^{\alpha-\beta}$$

then

$$P_{2} = \int_{x-1/nt}^{x} (x-u)^{\alpha+\delta-1} H(n, u, t) du$$
$$= O(n^{\alpha-\beta}) \int_{x-1/nt}^{x} (x-u)^{\alpha+\delta-1} du$$
$$= O(n^{\alpha-\beta}) (nt)^{-\alpha-\delta} = O\left(\frac{n^{-\beta-\delta}}{t^{\alpha+\delta}}\right).$$

Similarly the other estimates can be proved.

Proof of Theorem I. We shall prove this theorem for the case $\alpha > \beta$. In view of the lemma 2, the series $\sum_{n=1}^{\infty} n^{\alpha-\beta} A_n(t)$ is summable $|\mathbf{H}, \mu_n|$, if

$$I = \sum_{n=1}^{\infty} \frac{1}{n} \left| \sum_{\nu=1}^{n} \binom{n}{\nu} (\mathcal{A}^{n-\nu} \mu_{\nu}) \nu^{\alpha-\beta+1} A_{\nu}(t) \right| < \infty.$$

Since (H, μ_n) is conservative, we have

$$\begin{split} I &= \sum_{n=1}^{\infty} \frac{1}{n} \left| \int_{0}^{1} d\mathcal{X}(x) \sum_{\nu=1}^{n} \binom{n}{\nu} x^{\nu} (1-x)^{n-\nu} v^{\alpha-\beta+1} A_{\nu}(t) \right| \\ &= \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left| \int_{0}^{1} d\mathcal{X}(x) \sum_{\nu=1}^{n} \binom{n}{\nu} x^{\nu} (1-x)^{n-\nu} v^{\alpha-\beta+1} \int_{0}^{\pi} \phi(t) \cos \nu t dt \right| \\ &= \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left| \int_{0}^{\pi} \phi(t) G(n, t) dt \right| \\ &= \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left| \int_{0}^{\pi} G(n, t) \left\{ \frac{1}{\Gamma(1-\beta)} \int_{0}^{t} (t-u)^{-\beta} d\Phi_{\beta}(u) \right\} dt \right| \\ &= \frac{2}{\pi \Gamma(1-\beta)} \sum_{n=1}^{\infty} \frac{1}{n} \left| \int_{0}^{\pi} d\Phi_{\beta}(u) \int_{u}^{\pi} (t-u)^{-\beta} G(n, t) dt \right| \\ &= \frac{2}{\pi \Gamma(1-\beta)} \int_{0}^{\pi} |d\Phi_{\beta}(u)| \sum_{n=1}^{\infty} \frac{1}{n} \left| \int_{u}^{\pi} (t-u)^{-\beta} G(n, t) dt \right|. \end{split}$$

To prove the theorem, we have to prove that

$$\sum_{n=1}^{\infty} \frac{1}{n} \left| \int_{u}^{\pi} (t-u)^{-\beta} G(n,t) dt \right| = O(u^{-\alpha}).$$

Now

B. L. GUPTA

$$\sum_{n=1}^{\infty} \frac{1}{n} \left| \int_{u}^{\pi} (t-u)^{-\beta} G(n,t) dt \right|$$

= $\sum_{n=1}^{\infty} \frac{1}{n} \left| \int_{u}^{\pi} (t-u)^{-\beta} \left\{ \int_{0}^{1} d\chi(x) \operatorname{Re} J(n,x,t) \right\} dt \right|$
= $\sum_{n \leq 1/u} + \sum_{n>1/u} = M_{1} + M_{2}, \text{ say.}$

Since

$$|J(n,x,t)| \leq n^{\alpha-\beta+1} \sum_{\nu=1}^{n} \binom{n}{\nu} x^{\nu} (1-x)^{n-\nu} = n^{\alpha-\beta+1},$$

we have

$$\begin{split} M_{1} &= \sum_{n \leq 1/u} \frac{1}{n} \left| \int_{u}^{\pi} (t-u)^{-\beta} \left\{ \int_{0}^{1} d\chi(x) \operatorname{Re} J(n, x, t) \right\} dt \right| \\ &\leq \sum_{n \leq 1/u} \frac{1}{n} \left| \int_{u}^{n+1/n} (t-u)^{-\beta} \left\{ \int_{0}^{1} d\chi(x) \operatorname{Re} J(n, x, t) \right\} dt \right| \\ &+ \sum_{n \leq 1/u} \frac{1}{n} \left| \int_{u+1/n}^{\pi} (t-u)^{-\beta} \left\{ \frac{d}{dt} \int_{0}^{0} d\chi(x) \operatorname{Im} H(n, x, t) \right\} dt \right| \\ &= \sum_{n \leq 1/u} \frac{1}{n} \left| \int_{u}^{u+1/n} (t-u)^{-\beta} O(n^{\alpha-\beta+1}) \left\{ \int_{0}^{1} d\chi(x) \right\} dt \right| \\ &+ \sum_{n \leq 1/u} \frac{1}{n} n^{\beta} \left| \int_{0}^{1} d\chi(x) \operatorname{Im} H(n, x, t) \right| \\ &= O\left(\sum_{n \leq 1/u} n^{-1} n^{\alpha-\beta+1} n^{\beta-1} \left| \int_{0}^{1} d\chi(x) \right| \right) + \sum_{n \leq 1/u} n^{\beta-1} \cdot O(n^{\alpha-\beta}) \left| \int_{0}^{1} d\chi(x) \right| \\ &= O\left(\sum_{n \leq 1/u} n^{\alpha-1} \right) = O\left(\int_{0}^{1/u} y^{\alpha-1} dy \right) = O(u^{-\alpha}). \end{split}$$

If (a) $\chi(x) = g_{\alpha+\delta+1}(x) + C$, then

$$\begin{split} M_{2} &= \sum_{n>1/u} \frac{1}{n} \left| \int_{u}^{\pi} (t-u)^{-\beta} \left\{ \int_{0}^{1} d\chi(x) \operatorname{Re} J(n, x, t) \right\} dt \right| \\ &\leq \sum_{n>1/u} \frac{1}{n} \left| \int_{u}^{u+1/n} (t-u)^{-\beta} \left\{ \int_{0}^{1} d\chi(x) E_{1}(n, x, t) \right\} dt \right| \\ &+ \sum_{n>1/u} \frac{1}{n} \left| \int_{u+1/n}^{\pi} (t-u)^{-\beta} \left\{ \frac{d}{dt} \int_{0}^{1} d\chi(x) F(n, x, t) \right\} dt \right| \\ &= M_{2.1} + M_{2.2}, \quad \text{say.} \end{split}$$

By using the lemma 3, we have

ABSOLUTE SUMMABILITY

$$M_{2.1} = \sum_{n>1/u} \frac{1}{n} \left| \int_{u}^{u+1/n} (t-u)^{-\beta} \left\{ \int_{0}^{1} g_{a+\delta}^{-}(x) E_{1}(n, x, t) dx \right\} dt \right|$$
$$= \sum_{n>1/u} \frac{1}{n} \left| \int_{u}^{u+1/n} (t-u)^{-\beta} \left\{ \int_{0}^{1} g(x) E_{1a+\delta}^{+}(n, x, t) dx \right\} dt \right|.$$

Since $E_{1\alpha+\delta}^+(n, x, t)$ is the $(\alpha+\delta)$ th forward fractional integral of $E_1(n, x, t)$ regarded as function of x and

$$\begin{split} E_{1\alpha+\delta}^{+}(n, x, t) &= \frac{1}{\Gamma(\alpha+\delta)} \int_{0}^{x} (x-u)^{\delta+\alpha-1} E_{1}(n, u, t) du \\ &= \frac{1}{\Gamma(\alpha+\delta)} \int_{0}^{x} (x-u)^{\delta+\alpha-1} \operatorname{Re} J(n, u, t) du \\ &= O\left(\frac{h^{1-\beta-\delta}}{t^{\alpha+\delta}}\right) \quad \text{by lemma 5.} \end{split}$$

Hence

$$\begin{split} M_{2.1} &= \sum_{n>1/u} \frac{1}{n} \left| \int_{u}^{u+1/n} (t-u)^{-\beta} O\left(\frac{n^{1-\beta-\delta}}{t^{\alpha+\delta}}\right) \left\{ \int_{0}^{1} g(x) dx \right\} dt \right| \\ &= O\left(\frac{1}{u^{\alpha+\delta}}\right) \sum_{n>1/u} n^{-\beta-\delta} \left| \int_{u}^{u+1/n} (t-u)^{-\beta} dt \right| \quad \left(\text{since } \int_{0}^{1} g(x) dx \text{ is finite} \right) \\ &= O(u^{-\alpha-\delta}) \sum_{n>1/u} n^{-\delta-1} \\ &= O(n^{-\alpha-\delta}) \int_{1/u}^{\infty} y^{-\delta-1} dy = O(u^{-\alpha}). \end{split}$$

Using the second mean value theorem and lemmas 3 and 5, we have

$$\begin{split} M_{2.2} &= \sum_{n>1/u} n^{-1} \left| \int_{u+1/n}^{\pi} (t-u)^{-\beta} \frac{d}{dt} \left\{ \int_{0}^{1} g_{a+\delta}^{-}(x) F(n, x, t) dx \right\} dt \right| \\ &= \sum_{n>1/u} n^{-1+\beta} \left| \int_{u+1/n}^{\pi} \frac{d}{dt} \left\{ \int_{0}^{1} g(x) F_{a+\delta}^{+}(n, x, t) dx \right\} dt \right| \\ &= \sum_{n>1/u} n^{-1+\beta} \left| \int_{0}^{1} g(x) F_{a+\delta}^{+}(n, x, u) dx \right| \\ &= \sum_{n>1/u} n^{-1+\beta} O\left\{ \frac{n^{-\beta-\delta}}{u^{a+\delta}} \right\} \left| \int_{0}^{1} g(x) dx \right| \\ &= O(u^{-\alpha-\delta}) \sum_{n>1/u} n^{-1-\delta} = O(u^{-\alpha-\delta}) \int_{1/u}^{\infty} y^{-1-\delta} dy = O(u^{-\alpha}). \end{split}$$

If (b) $\chi(x) = g_{1+\alpha+\delta}^+(x) + C$, then using the similar arguments as used in the case (a), we can prove with the help of (5.10) and (5.11) of lemma 5 that

$$M_2 = O(u^{-\alpha}).$$

This completes the proof of the theorem I.

Proof of the theorem II. The series $\sum_{n=1}^{\infty} n^{\alpha-\beta}B_n(t)$ is summable $|H, \mu_n|$, if

$$L = \sum_{n=1}^{\infty} \frac{1}{n} \left| \sum_{\nu=1}^{n} \binom{n}{\nu} \Delta_{\mu\nu}^{n-\nu} \nu^{\alpha-\beta+1} B_{\nu}(t) \right| < \infty.$$

since the method (H, μ_n) is conservative, then

$$\begin{split} L &= \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left| \int_{0}^{1} d\mathcal{X}(x) \sum_{\nu=1}^{n} \binom{n}{\nu} \mathcal{A}_{\mu\nu}^{n-\nu} \nu^{\alpha-\beta+1} \int_{0}^{\pi} \psi(t) \sin \nu t dt \right| \\ &= \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left| \int_{0}^{\pi} \psi(t) G_{1}(n,t) dt \right| \\ &= \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left| \int_{0}^{\pi} G_{1}(n,t) \left\{ \frac{1}{\Gamma(1-\beta)} \int_{0}^{t} (t-u)^{-\beta} d\Psi_{\beta}(u) \right\} dt \right| \\ &= \frac{2}{\pi \Gamma(1-\beta)} \sum_{n=1}^{\infty} \frac{1}{n} \left| \int_{0}^{\pi} d\Psi_{\beta}(u) \int_{u}^{\pi} (t-u)^{-\beta} G_{1}(n,t) dt \right| \\ &= \frac{2}{\pi \Gamma(1-\beta)} \left| \int_{0}^{\pi} |d\Psi_{\beta}(u)| \sum_{n=1}^{\infty} \frac{1}{n} \int_{u}^{\pi} (t-u)^{-\beta} G_{1}(n,t) dt \right|. \end{split}$$

To prove the theorem, it is sufficient to prove that

$$N = \sum_{n=1}^{\infty} \frac{1}{n} \left| \int_{u}^{\pi} (t-u)^{-\beta} G_{1}(n,t) dt \right| = O(u^{-\alpha}).$$

Now

$$N = \sum_{n=1}^{\infty} \frac{1}{n} \left| \int_{u}^{\pi} (t-u)^{-\beta} \left\{ \int_{0}^{1} d\chi(x) \operatorname{Im} J(n, x, t) \right\} dt \right|$$
$$= \sum_{n \le 1/u} + \sum_{n > 1/u} = N_{1} + N_{2}, \quad \text{say.}$$

Proceeding in a similar way as in the proof of M_1 and M_2 , we can prove that

 $N_1 = O(u^{-\alpha})$

and

 $N_2 = O(u^{-\alpha}).$

Hence

$$L = \frac{2}{\pi \Gamma(1-\beta)} \int_0^{\pi} |d\Psi_{\beta}(u)| O(u^{-\alpha})$$
$$= O(1) \int_0^{\pi} u^{-\alpha} |d\Psi_{\beta}(u)| = O(1).$$

This completes the proof of the theorem II.

The author is highly grateful to Dr. P. L. Sharma for his kind advice and suggestions during the preparation of this paper.

References

- BOSANQUET, L. S., The absolute Cesàro summability of Fourier series. Proc. Lond. Math. Soc. 41 (1936), 517-528.
- [2] BOSANQUET, L. S., AND J. M. HYSLOP, On the absolute summability of the allied series of a Fourier series. Math. Zeits. 42 (1937), 489-512.
- [3] HARDY, G. H., Divergent series, Oxford (1949).
- [4] KNOPP, K., AND G. G. LORENTZ, Beiträge zur absoluten Limiterung. Archiv der Math. 2 (1949-50), 10-16.
- [5] KUTTNER, B., On the 'second theorem of consistency' for Riesz summability (II). Jour. Lond. Math. Soc. 27 (1952), 207-217.
- [6] MATSUMOTO, K., On the absolute Cesàro summability of a series related to a Fourier series. Tôhoku Math. Jour. (2) 8 (1956), 205-222.
- [7] MAZHAR, S. M., Absolut Cesàro summability of a series associated with a conjugate series of a Fourier series. Boletin Soc. Mat. Mexicana (1965), 17-21.
- [8] MOHANTY, R., The absolute Cesàro summability of some series associated with a Fourier series and its allied series. Jour. Lond. Math. Soc. 25 (1950), 63-67.
- [9] TRIPATHY, N., On the absolute Hausdorff summability of some series associated with a Fourier serier and its allied series. Jour. Indian Math. Soc. V. 32 (1968), 141-154.

DEPARTMENT OF MATHEMATICS, GOVERNMENT ENGINEERING COLLEGE, REWA (M.P.) INDIA.