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ON THE ABSOLUTE SUMMABILITY OF THE SERIES
ASSOCIATED WITH A FOURIER SERIES

AND ITS ALLIED SERIES

BY B. L. GUPTA

1. Let Sn be the partial sum of an infinite series Σn=o an and let

( l . i ) #»=
v

Then the sequence {tn} is known as the Hausdroff means of sequence {Sn}, where
{μv} is a sequence of real or complex numbers and the sequence {Δvμv} denotes the
differences of order p.

The series Σn=o an is said to be summable by Hausdroff mean to the sum S, if

lim tn=S,
n—>oo

whenever Sn—*S. The necessary and sufficient condition for the Hausdorff sum-
mability to be conservative is that the sequence {μn} should be a sequence of
moment constant, i.e.;

where X(x) is a real function of bounded variation in O^^^l . We may suppose
without loss of generality that X(0)=0. If also Z(l)=l and χ(+0)=0, so that X(x)
is continuous at the origin, then μn is a regular moment constant and (H, μn) is a
regular method of summation [3].

If

(1.2) Σ Kfn-fn-OKoo,
71 = 1

then the series Σ£= o

 an is said to be absolutely summable (H, μn) or summable
|H,μn | . It is also known that the Cesaro, Holder and Euler methods of summation
are the particular cases of the above method.

2. Let f(f) be a periodic function with period 2π and integrable in the sense
of Lebesgue in (—π, π). Let its Fourier series be

Received December 23, 1969.

424



ABSOLUTE SUMMABILITY 425

1 oo on

-K-cio + Σ {fln cos nt+bn sin nt) = Σ AJf)
6 n=l n=0

and its allied series is

We write

Σ φn cos nt—dn sin ^0 =
n=l

-uy-Wu)du, β>0;
O

and

Further, let the function g(x) be Lebesgue integrable in (0,1), then for ε>0

and

1 ri

Γ(e) )χ

Again, let

H(n, x, t)=E(n, x, t)+iF(n, x, t)

= Σ *-'(" )xva-x)*-eM (α-j3>0);

/(«, Λ?, f)^Ex{μ, x, t)+iF1(nJ x, t)
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G(n, 0 = Γ dX{x) f](n) x\l - x)n-vva~β+1 cos vt
Jθ p = l W

and

SI n I/yj \

ίft(0 2] ( \x\l — x)n~vva~β+ι smvt.
3. Concerning the absolute Hausdorff summability of a series associated with

a Fourier series and its allied series, recently Tripathy [9] has proved the following
theorems:

THEOREM A. / /

( i ) [X t~a\aφ(t)\ <oo ( l>α>0);
Jo

(i i) (H, μn) is conservative

and

[either (a) X(x)=gΓ+a+s(x)+C (δ>0);

(iϋ)
[or (b) X(x)=g}+a+i(χ)+C (β>0);

for some g(x)€L(0fl),

then the series Σ«=i ^ 4 ( ί ) is summable |H, μn\ at t—θ, where C is an absolute
constant.

THEOREM B. / /

( i )

(ϋ)
Jo

(iii) (H, μn) is conservative

and

[either (a) X(x)=gΓ+a+δ(x)+C (<5>0);
(iv)

[or (b) Z(j?)=flrί+β+ί(a0+C (β>0);

for some gr(a?)€L(O,l),

series Σ^=in<xBn(t) is summable |H, μn\f at t—θy where C is an absolute
constant.

4. The object of this paper is to generalize the theorems A and B. In what
follows, we shall prove the following theorems.
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THEOREM I. If

( i )

(π)

(iii)

and

(iv)

Jo

(R,μn) is

(either (a) X(x) = g

f-0)=0,

conservative

'ϊ+a+δ(χ)+C

[or (b) X(x)=gt+a+8(x)+C (<5>0);

for some g(x)eL(0,T),

then the series Σn=i^"^ΛW is summable |H, μn\, at t=θ, where C is an absolute
constant and

THEOREM

( i )

(ϋ)

(iii)

and

(iv)

l>a>β^0 or

II. //

(either

also l > α i

ψβ(-

Jo

(H,j«n) 25

(a) Z(a)=!

=^>°

conservative

gT+a+δ(x)+C (5>0);

for some g(#)eL(0,1),

then the series Σ°Z=ina~βBn(t) is summable |H,.μw|, αί ί=^, where C is an absolute
constant and l>α>/3^0 or also l>α

It is clear that the theorems A and B follow as special cases for /3=0 of our
theorems.

It may also be remarked that if

z(tf)=i-(i-*y, r>0;

the method (H, μn) reduces to the well known Cesaro method of order γ. Further
if we choose a+δ such that γ>a+δ, α>0, <5>0, then it can be proved that X(x)—1
is the (l+α+δ)th backward integral of

Γij-a-δ)
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and for α>0, 3>0, α+<5<l, γ>a+δ, X(x) is also the (l+α+δ)th forward integral of

ΓQ.-δ-a)

so the method of (C, γ)t for a>0, δ>0, γ>a+δ, satisfies the hypothesis of theorems
I and II [9].

Thus the following theorems become the corollaries of our theorems I and II.

THEOREM C [6]. / /

( i ) <fy(+0)=0,

(ϋ) [*t-a\dΦβ(t)\<oo,
Jo

then the series Σ«=i ^ " ^ ( O J at the point t=θ is summable \C,γ\, where l>γ>a

THEOREM D [7]. / /

( i )

(ϋ)

then the series 2 n-i na~βBn(t)} at the point t—θ is summable |C, γ\ where
or also

Further, if /3=0, then the following theorems of Mohanty [8] also become the
corollaries of our theorems.

THEOREM E. / /

[π t~a\dφ(t)\ <oo
oJo

then the series ΣxZ=i naAn(f) is summable \C9γ\, for γ>a} at the point t=θ.

THEOREM F. / /

( i ) y(+0)=0,

and

(ϋ) *\ t-a\dψ(f)\<oo (0<α<l);

Jo

then the series Σ « = i ^ W is summable \C,γ\ for γ>a, at the point t=θ.

It is known that the conditions
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[*t-fi\dΦβ(t)\<oo and ^ ( + 0 ) = 0
Jo

are equivalent to the conditions, ψβ(t) is B.V. in (0,7r) and ^ ( + 0 ) = 0 . Hence the
following theorems of Bosanquet [1] and Bosanquet and Hyslop [2] are the corollaries
of our theorems for β=a.

THEOREM G. // φβ(f) is B.V. in (0,π), then the series Σ t i Λ W , at t-θ, is
summάble |C, γ\, for γ>β.

THEOREM H. / / 0 < β < l and

( i )

(ii)

then the seήes Σ~-i Bn(t), at t—θy is summάble |C,p|, for every γ>β.

5. For the proof of the theorems, we require the following lemmas.

LEMMA 1. Uniformly

(5.1) \Un{t)\^~.

This can be easily proved.

LEMMA 2. // tn and un denote the Hausdorff means of the series Σ «=i an and
sequence {nan} respectively, then for n^l

(5.2) un=n(tn-tn-i).

This is known [4].

LEMMA 3. // g(x) and h(x) are Lebesgue integrάble in (0,1), then for ε>0

(5. 3) [gt(x)h(x)dx = [g{x)h:{x)dx.
Jo J

This is due to Kuttner [5].

LEMMA 4. For a—β>0

(5.5)
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(5. 6)

and

(5.7)

uniformly for x in (0,1).

The above estimates can be easily obtained from Tripathy [9] Lemma 4.

LEMMA 5. // a>0, δ>0 and let a,δ be fixed, then for a+δ<l

(5.8)

(5.9)

(5.10)

(5.11) ^(x-uY+'-iJin, u, t)du =

uniformly for 0^#^l .

Proof of (5. 8). We have

[*(x-uY+δ-1H(n9u9f)du
Jo

G
x-l/nt rx \

+ \ ) (x—uY*8'1 H(n, uy t)du
0 jx-i/nt/

=Pi+P2, say.

By the aid of lemma 4 and by the second mean value theorem, we have

P 1 = Γ U (x-u)δ+a-Ή(n, uy t)du
Jo

S
x-i/nt

H(n, u, t)du
0
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v=l \ V /

then

=O(na~β)[ (x-u)a+δ~ιdu
Jx-l/nt

Similarly the other estimates can be proved.

Proof of Theorem I. We shall prove this theorem for the case a>β.
In view of the lemma 2, the series Σ w=i wβ"Λ4n(0 is summable |H, μn\, if

1

Since (H, μn) is conservative, we have

<oo.

O co 1 l ί l n /f?\ Cπ

= — Σ — \ <&(#) Σ ( )^(i -^r-^-^+i \
7Γ w=i ^ I Jo v=i \ y / Jo
9 oo 1 I r»π

= - Σ ~ \ Φ(f)G(n,t)dt
π n=i n I Jo

2 °° 1 I ft If* 1

= - Σ ^ \ G(n,t) \ (t-u)-tdΦβ(u)\dt
π n=i n I Jo i (1 — p) Jo J

πi (1 — β) n=i ^ I Jo

π i (1 — p ; Jo w=i

To prove the theorem, we have to prove that

Sin— \\ (t-u)-?G(n,t)dt =O(u-°).

Now
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= Σ -\[\t-u)-f\[1dX(x)Ref(n,x,t)\dt\
n=l M \Ju I J o J I

Σ + Σ =Mi+M2, say.
<.Vu n>l/u

Since

we have

(

1 \ V

Σ -\[\t-u)-f\[1dX(x)ReJ(n,x,t)\dt
^l/u fl\Ju I Jo j

- \ (ί-«)"' \ dX(x)ReJ(n,x,t) \dt
u M\Ju I J o J

Σ
/
Σ 1

/ n
1 Ipw+l/n fpl 1

= Σ - \ (t-u)~PO(.n°-^)\\dX(x)\
n^l/u M>\ju I Jo J

n I Jo

=θ( dX(x) \)+ Σ (*)

If (a) X(x)=g;+M(χ)+C, then

M2= Σ -\[\t-u)-^\[1dX(x)Renn,x,t)\dt
n>l/u M> I Ju [ J o J

1 Iftt+l/n ffl 1

^ Σ — \ tf-«)"^|\ Λ(a?)£i(«,j?,0|d
n>l/u fl I Jw [ J o J

1 I Γ ί <i Γ1 1
+ Σ — \ (t-u)-P\—\dX(x)F(n,x,t)\dt

n>l/u ft I Ju+l/n [ dt Jo ]

=M2.i+M2.2, say.

By using the lemma 3, we have
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1 I (*u+l/n ί (*i

Όi- V — \\ (t-iA-A\ a- (rϊFίt? T
2 . 1 — / i 1 \i/ l/lj I i ya^.S\JUJllfχ\fίrf Jby

n>l/u W> \ju [JO

= Σ i\\u

n>l/u fl \J u

433

1 \ru+l/n

Since Eta+δ(n> x, t) is the (α+<5)th forward fractional integral of £Ί(w, x, t)
regarded as function of x and

1 Cx

ta+i(n, x, t)= Γ,+δ) \ (x- , u, t)du

= O ί J by lemma 5.

Hence

M2Λ= Σ -\
n>l/u 1ϊ\Ju

( 1 \ IΛtt+l/n /Λl \

-TΓΓ Σ »-^-' \ (t-u)-*dt (since \ ^)rfar is finite)
U Ύ / n>l/u \Ju \ Jo /

Using the second mean value theorem and lemmas 3 and 5, we have

w+l/n
dt

= Σ n-^\[' -^-\[1g(x)Ft+s(n,x,t)dx\dt
n>l/u \Ju+l/n uΐ [ Jo J

= Σ n-1^\[1g(x)Fΐ+δ(nfx)u)dx
n>l/u I Jo

n>l/u

Σ
n>i/u

i/u
y~1-δdy=O(u-a).
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If (b) X(x)=gΐ+a+δ(x)+C, then using the similar arguments as used in the case
(a), we can prove with the help of (5.10) and (5.11) of lemma 5 that

M a=O(«-).

This completes the proof of the theorem I.

Proof of the theorem II. The series Σn=ina-βBn(t) is summable |H,μn | , if

ύn

μΓva-β+1Bv(t) <oo.

since the method (H, μn) is conservative, then

9 ββ 1 | ( l n ί ψ}\ Cπ

L= — Σ — \\ dX(x) Σ ( }Δn

μrva-^1 \ φ(t) sin vtdt
π n=i n I Jo v=i \v I Jo

= - Σ - \ ψ(t)G,{n,f)dt
π n=i n |Jo

2 °° 1 I Cπ \ 1 Cι 1
= ~ Σ v \ G '< n 'Ή Γ(Λ A ^~u)-'dΨ,{u) \dtπ τ!=i n I Jo [ / (1 — β) Jo )

n, t)dt

Σ -
n=i n Ju

r n J\\
πi U~pj I Jo

To prove the theorem, it is sufficient to prove that

=O(u-°).

Now

N= Σ —I ['(t~u)M ^dXix) lmj(n, x, t)\dt
iέιn\}u [ J o I

= Σ + Σ =N1+N2f say.
n^l/u n>l/u

Proceeding in a similar way as in the proof of Mi and M2, we can prove that

and

Hence

]Sf2=θ(u-a).
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2

=θa)['ur \dPβ(μ)\=O(X).
Jo

This completes the proof of the theorem II.

The author is highly grateful to Dr. P. L. Sharma for his kind advice and

suggestions during the preparation of this paper.

REFERENCES

[ 1 ] BOSANQUET, L. S., The absolute Cesaro summability of Fourier series. Proc.
Lond. Math. Soc. 41 (1936), 517-528.

[ 2 ] BOSANQUET, L. S., AND J. M. HYSLOP, On the absolute summability of the allied
series of a Fourier series. Math. Zeits. 42 (1937), 489-512.

[ 3 ] HARDY, G. H., Divergent series, Oxford (1949).
[ 4 ] KNOPP, K., AND G. G. LORENTZ, Beitrage zur absoluten Limiterung. Archiv der

Math. 2 (1949-50), 10-16.
[ 5 ] KUTTNER, B., On the * second theorem of consistency' for Riesz summability (II).

Jour. Lond. Math. Soc. 27 (1952), 207-217.
[ 6 ] MATSUMOTO, K., On the absolute Cesaro summability of a series related to a

Fourier series. Tόhoku Math. Jour. (2) 8 (1956), 205-222.
[ 7 ] MAZHAR, S. M., Absolut Cesaro summability of a series associated with a conju-

gate series of a Fourier series. Boletin Soc. Mat. Mexicana (1965), 17-21.
[ 8 ] MOHANTY, R., The absolute Cesaro summability of some series associated with a

Fourier series and its allied series. Jour. Lond. Math. Soc. 25 (1950), 63-67.
[ 9 ] TRIPATHY, N., On the absolute Hausdorff summability of some series associated

with a Fourier serier and its allied series. Jour. Indian Math. Soc. V. 32
(1968), 141-154.

DEPARTMENT OF MATHEMATICS,

GOVERNMENT ENGINEERING COLLEGE,

REWA (M.P.) INDIA.




