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ON (f, g, u, v, )-STRUCTURES

By KENTARO YANO AND MasaFuMi OKUMURA

§0. Introduction.

Tashiro [10] has shown that hypersurfaces of an almost complex manifold carry
almost contact structures. In particular, an odd-dimensional hypersphere in an even-
dimensional Euclidean space carries an almost contact structure.

Blair, Ludden and one of the present authors [3] (see also, Ako [1], Blair and
Ludden [2], Goldberg and Yano [4, 5], Okumura [7], Yano and Ishihara [13]) have
studied submanifolds of codimension 2 of almost complex manifolds. These sub-
manifolds admit, under certain conditions, what we call an (f, U, V, %, v, 2)-structure
and, if the ambient space is an almost Hermitian manifold, the submanifolds admit
what we call an (f, g, %, v, A)-structure. In particular, an even-dimensional sphere
of codimension 2 of an even-dimensional Euclidean space carries an (f, g, %, v, 2)-
structure.

They also studied hypersurfaces of almost contact manifolds and found that
the hypersurfaces also admit the same kind of structure (see also Okumura [8],
Watanabe [11], Yamaguchi [12]).

The main purpose of the present paper is to study the (f, g, #, v, 2)-structure
and to give characterizations of even-dimensional spheres.

In §1, we define and discuss (f, U, V, %, v, A)-structure and (f, g, %, v, 2)-structure.

In §2, we prove that a totally umbilical submanifold of codimension 2 of a
Kihlerian manifold whose connection induced in the normal bundle is flat admits
a normal (f,g, %, v, 2)-structure and that the vector fields U and V define infini-
tesimal conformal transformations of the submanifold.

In §3, we prove that a hypersurface of a Sasakian manifold for which the
tensor f and the second fundamental tensor Z commute admits a normal (f, g, %, v, 2)-
structure and that if the hypersurface is totally umbilical, then the vectors U and
V define infinitesimal conformal transformations.

§4 is devoted to prove some identities valid in M with normal (f, g, #, v, 2)-structure
for later use.

In §5, we prove that if a manifold M with normal (f, g, %, v, A)-structure satisfies
du=¢f and dv=f and if (1 —2?) is an almost everywhere non-zero function, then the
vector fields U and V define infinitesimal conformal transformations.

In §6, we prove a formula which gives the covariant derivative of f.

The last §7 is devoted to prove two theorems which characterize even-dimen-
sional spheres.
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402 KENTARO YANO AND MASAFUMI OKUMURA
§1. (f, UV, u v, 2)-structure.

Let M be an m-dimensional differentiable manifold of class C*. We assume
that there exist on M a tensor field of type (1, 1), vector fields U and V, 1-forms
# and v, and a function 1 satisfying the conditions:

1.1 FiX==X+uX)U+v(X)V
for any vector field X,

1.2 uof=20, FU=--2V,
1.3) vof = —Au, V=20,

where 1-forms #of and vof are respectively defined by
(u-f)(X)=u(fX), @M X)=0(fX)

for any vector field X, and

1. 4 w(U)=1-2, w(V)=0,

1. 5) v(U)=0, w(V)=1-2.

In this case, we say that the manifold M has an (f, U, V, «, v, A)-structure.
Examples of manifolds with (f, U, V, #, v, 2)-structure will be given in §§2 and 3.
First of all, we prove

THEOREM 1. 1. A differentiable manifold with (f, U, V, u, v, 2)-structure is of
even dimension.

Proof. Let P be a point of M at which 22x1. Then, from (1.4) and (1. 5),
we see that

U=0, V=0

at P. The vectors U and V are linearly independent. For, if there are two numbers
a and b such that

aU+bV=0,
then evaluating # and » at aU+bV and using (1. 4) and (1. 5), we obtain

waU+bV)=au(U)=a(l—1%)=0,
and

aU+bV)=bv(V)=b(1—2%)=0.
Thus we have a=b=0.

Thus U and V being linearly independent at P, we can choose z linearly
independent vectors X;=U, X;=V, X, ---, Xn Which span the tangent space T#(M)
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of M at P and such that #(X,)=0, v(X,)=0, for a=3, ---, m. Consequently, we
have from (1. 1),

f:X.=-X,, a=3,4, -, m,

which shows that f is an almost complex structure in the subspace Ve of Te(M)
at P spanned by Xj, .-+, X, and that Vp is even dimensional. Thus T»(M) is also
even dimensional.

Next, let P be a point of M at which 22=1. In this case, we see, from (1.4)
and (1. 5), that

w(U)=0, w(V)=0,
o(U)=0, o(V)=0.
We also see, from (1. 2) and (1. 3), that
if u=0, then =0,
if u=0, then v=0.

We first consider the case in which #=0, »=0. In this case, #» and » are
linearly independent. Because, if there are two numbers ¢ and b such that

au+bv=0,
then, from (1. 2), (1.3) and
(au+bv)of=0,
we have
A(bu—av)=0,
from which
bu—av=0,
2 being different from zero. Thus from ex+bv=0 and bu—av=0 we have
(@®+b®)u=0,

from which =0, 5=0.

Thus, # and v being linearly independent at P, we can choose # linearly in-
dependent covectors w,=u, w,=v, ws, -+, wn Which span the cotangent space ¢7Te(M)
of M at P. We denote the dual basis by (Xi, X, -+, Xn-1, Xm)-

If U and V are linearly independent at P, we can assume that

Xm—1 = l]; Xm= V.
Then we have

fiX,=—X A uX)U+o(X)V=—X,, a=3,4,-,m
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which shows that f is an almost complex structure in the subspace Vy of Te(M) at P
spanned by X, -+, X, and that Ve is even-dimensional and consequently T»(M) is also
even- dimensional.

If U and V are linearly dependent, there exist two numbers ¢ and b such that

aU+bV=0

and a?+b%x0. Applying f to the equation above and using (1.2) and (1.3), we
find

A—aV+bU)=0,
from which
bU—-aV=0.
Thus, we must have
U=V=0.
Thus, from (1. 1), we have
fiX=-X

for any vector X in Te(M). Thus Te(M) is even dimensional.

The case left to examine is the case in which #=0, »=0. But in this case also
we have, from (1. 1), f2X=—X for any vector X in Te(M) and consequently T»(M)
is even dimensional. Thus we have completed the proof of Theorem 1. 1.

DerINITION. The structure (f, U, V, u, v, 2) is said to be normal if the Nijen-
huis tensor N of f satisfies

1. 6) SX, Y)=NX, Y)+dulX, Y)U+dv(X, Y)V=0

for any vector field X and Y of M.

We consider a product manifold Mx R?, where R? is a 2-dimensional Euclidean
space. Then, (f, U, V, u, v, A)-structure gives rise to an almost complex structure
J on MX R

f U 14
a7 N=| —u 0 -2
—v 2 0

as we can easily check using (1. 1)~(1. 5).
Computing the Nijenhuis tensor of J, we can easily prove

ProrosiTioN 1. 2. If J is integrable, then (f, U, V, u, v, A)-structure is normal.

We assume that, in M with (f, U, V, u, v, )-structure, there exists a positive
definite Riemannian metric ¢ such that
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1.8 9(U, X)=u(X),

1.9 g(V, X)=v(X),

and

(1. 10) 9(f X, fY)=9(X, ¥)—u(X)u(Y)—o(X)(Y)

for any vector fields X, Y of M. We call such a structure a metric (f, U, V, «, v, 2)-
structure and denote it sometimes by (f, g, #, v, ).
We prove

ProposiTiON 1. 3. Let o be a tensor field of type (0.2) of M defined by

(1.11) oX, V)=9(f X, Y)
for any vector fields X and Y of M, then we have
(1.2) o(X, YV)=—w(Y, X),

that is, w is a 2-form.
Proof. From the definition (1. 11) of w, we have
o(fX, fY)=9(f(fX), fY),
from which, using (1. 10),

o(fX, FY)=9(fX, ¥)—u(fX)u(Y)—v(fXu(Y),
or
o(fX, fY)=0(X, ¥)—w(X)u(Y )+ (X )(Y),

by virtue of (1.2) and (1. 3).
On the other hand, using (1. 1), we have

o(fX, fY)=9(f*X, fY)
=g(—X+uw(X)U+v(X)V, fY)
=—g(X, fY)+u(X)u(fY)+o(X)(fY),
by virtue of (1.8) and (1.9) and consequently
o(fX, fY)=—o(Y, X)+2u(X)0(Y)—20(X)u(Y ).
Thus we have

oX, Y)=—w(Y, X).
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§2. Submanifolds of codimension 2 of an almost Hermitian manifold.

In this section, we study submanifolds of codimension 2 of an almost Hermitian
manifold as examples of the manifold with (f, g, %, v, 2)-structure.

Let M be a (2rn+2)-dimensional almost Hermitian manifold covered by a system
of coordinate neighborhoods {U; y*}, where here and in this section the indices , 4, Y,
.. run over the range {1,2, -+, 2242}, and let (Fy", G.) be the almost Hermitian
structure, that is, let F;* be the almost complex structure:

(2. 1) Fa‘Fla= _B;y
and G,; a Riemannian metric such that
(2. 2) G,ﬂFerz's=Gy1.

We denote by {,;} the Christoffel symbols formed with G,;.

Let M be a 2n-dimensional differentiable manifold which is covered by a system
of coordinate neighborhoods {U; z"}, where here and in the sequel the indices £, i, j,
.. run over the range {1, 2, ---, 2n} and which is differentiably immersed in M as a
submanifold of codimension 2 by the equations

2. 3) ¥ =y (a").
We put
2.4 Bf=0.", (0;=0/0x?)

then B;® is, for each fixed ¢, a local vector field of M tangent to M and vectors B;*
are linearly independent in each coordinate neighborhood. B;® is, for each fixed &,
a local 1-form of M.
We choose two mutually orthogonal unit vectors C* and D* of M normal to M
in such a way that 2#+2 vectors B;", C*, D* give the positive orientation of M.
The transforms F;*B;* of B;* by F)* can be expressed as linear combinations of
B, C* and D*, that is,

2. 5) Fy B =f"By +u,C"+v;D",

where f,* is a tensor field of type (1.1) and #;, v; are 1-forms of M. Similarly the
transform F;"C* of C* by F;" and the transform F,*D* by F;* can be written as
FfC*=—u'B+2D",
(2. 6)
FD*=—vBf—iC",
where

u'=u.g", vr=0,9",

g;; being the Riemannian metric on M induced from that of M.
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gji=G,anBi1,

and 2 is a function on M. The function 1 seems to depend on the choice of normals
C" and D*, but we can easily verify that 1is independent of the choise of normals
and consequently that 2 is a function globally defined on M.

Applying F.* again to (2.5) and taking account of (2. 5) itself and (2. 6), we find

2.7 fitfid=—0o}+uu+vt
(2. 8) Un S =av;, vnfit=—2u;.
Applying F.* again to (2. 6) and taking account of (2. 5) and (2. 6) itself, we find
2.9 fitwr=—a", wawr=1—22, uiv*=0,
2.10) fvr=2u", vt =0, vvi=1-—22
On the other hand, we have, from (2. 2),
G F/Fif B, B=GuB;" B,

from which

gin S+ uui+v;0:=9,
or
2.11) Guen S =g 50— w00 —030;.

Equations (2. 7), (2. 8), (2.9), (2. 10) and (2. 11) show that a submanifold of codi-
mension 2 of an almost Hermitian manifold admits a (f, g, #, v, A)-structure.

We denote by {;s} and F, the Christoffel symbols formed with ¢;; and the
operator of covariant differentiation with respect to {;%;} respectively.

The so-called van der Waerden-Bortolotti covariant derivative of B;" is given by

(2 11) VjB«,,‘=ajB1,‘+{,“1}B]FBz1_BhK{]hz}
and is orthogonal to M and consequently can be written as
2.12) ViB"=h;C"+ kD",

which are equations of Gauss, where /4; and kj; are the second fundamental tensors
of M with respect to the normals C* and D* respectively.

For the covariant derivatives of C° and D° along M, we have equations of
Weingarten

Vi C"'=—hiB"+1;D",
2.13)
V;D"=—kpBf—1,C",
where
V€ =0,C"+{,"} B,"C%, V;D*=0;D"+{, 3 B,"D*,
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hj1'=hjsg'%, kazkjsgsz

and [, is the so-called third fundamental tensor.
As we see from (2. 13), equations

"7 ,C*=1,D",
. 14) 17 ,Df = —1,CF

define the connexion induced in the normal bundle. If this induced connexion is
flat, then we can choose C* and D" in such a way that we have /,=0.

Differentiating (2. 5) covariantly along M, we have, taking account of equations
of Gauss and those of Weingarten,

 F5) By B+ Fi* (hyiC* + k. DY)
=, 1" By +[(huC*+kuD")

+ (7 ju5)C" + wi(— ki Br" +1;D")

+ (7 0;) D" +v(—k*By"—1,C"),

or
W 5By Bt — (hjsut 4k joo™) By — 2k jiC* 4 h ;. D
=, fi"—hi*u;— ki v) By
+Vsui+hjifid —1;0:)C°
+Vwit+kjft +1u) D"
Thus, if M is a Kihlerian manifold, that is, if V,F;"=0, then we have
(2. 15) v, fir=—hju+ hhu,— k0t 4+ ks,
(2. 16) Viss=—hjfit — kg +1vs,
2.17) Vivi=—Rkjufil+ Ak —Lu;.
Using (2. 15), (2.16) and (2. 17) to compute
Sji*= N+ (Vju;— Vi )u + (Vo — Vv j)o*,
we find

Sjit=(fy" " — by f i~ (f e — T ),
+(f) k=R — (R — RiTf )0,
+ %h(ljl)i —lz-vj) - v"(ljui - IL%J)

Thus we have
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ProrosiTiON 3.1. Let M be a submanifold of codimension 2 of a Kdéhlerian
manifold whose commection induced in the normal bundle is flat. If f commutes
with both of h and k, M admits a normal (f, g, u, v, 2)-structure.

COROLLARY 3.2 A totally umbilical submanifold of codimension 2 of a Kihler-
tan manifold whose connection induced in the normal bundle is flat admits a
normal (f, g, u, v, 2)-structure.

Corollary 3. 2. holds of course for a totally geodesic submanifold. A plane or
a sphere of codimension 2 in an even-dimensional Euclidean space are examples for
which the corollary holds.

For a totally umbilical submanifold whose connection induced in the normal
bundle is flat, we have, for suitably chosen unit normals C and D,

hji=hgj,  ku=kgp,  1,=0

and consequently (2. 16) and (2. 17) become

(2. 18) Viwi=hfs—kgji,
and
2. 19) Vivi=kfi+ihgs

respectively. These equations give

2. 20) Vi + Vi, = —22kg js
and
(2 21) Vﬂ)i‘l- Vw, =22hgﬁ

which show that #* and »* define infinitesimal conformal transformations in M.

§3. Hypersurfaces of an almost contact metric manifold.

In this section, we study hypersurfaces of an almost contact metric manifold as
examples of the manifold with (f, g, #, v, 2)-structure.

Let M be a (2n+1)-dimensional almost contact metric manifold covered by a
system of coordinate neighborhoods {U; v}, where here and in this section, the
indices &, 2, g, v, -+ run over the range {1, 2, ---, 22+1} and let (F}", G, v2) be the
almost contact metric structure, that is [9],

GE. 1 FfF#=—0+vaf,
3.2 vy =0, Ffv*=0,
3.3 vv*=1
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and
3. 4) GF/Ff=Gu—v,

Let M be a 2n-dimensional differentiable manifold which is covered by a system
of coordinate neighborhoods {U; z"}, and which is differentiably immersed in M as
a hypersurface by the equations

3.5) v =y ().

We put B,"=0, 4" and choose a unit vector C* of M normal to M in such a
way that 2z+1 vectors B;* and C* give the positive orientation of M.

The transforms F;"B;* of Bi* by F" can be expressed as linear combinations
of B and C*, that is

(3. 6) FiBi=f"By" +u",

where f,* is a tensor field of type (1, 1) and #; is a 1-form of M. Similarly, the
transform F;*C* of C* by F,* can be written as

3.7 FifC'=—u'B;,
where
ut= Uy gfi,

g;; being the Riemannian metric on M induced from that of M.
We put

3.8 v* =B+ C",

where »* is a vector field of M and 2 a function of M.
Applying F.* again to (3. 6) and taking account of (3. 6) itself, (3. 7) and (3. 8),
we find

3.9 Sitfit ==+ ua+v0",
(3. 10) utfi‘ =A0;.

Applying F* again to (3.7) and taking account of (3.6), (3.7) and (3. 8), we
obtain

(3.11) Sfi'ut=—2",
(3.12) wint=1-22.
Finally applying F.* to (3. 8), we find
(3.13) fivi=aut,
(3.19) vt =0.
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Since #* is a unit vector, we have, from (3. 8),
(3.15) vvi=1-22
On the other hand, we have, from (3. 4)

G,4F, F# BB =G ,.B," B —u,B,"u; B¢,

from which

Genf w0 =g4—00s
that is
(3. 16) gen i =g—ujm— 0, 0.

Equations (3. 9)~(3. 16) show that a hypersurface of an almost contact metric

manifold admits a (f, g, %, v, 2)-structure.
For the hypersurface M, the equations of Gauss and those of Weingarten are

3.17) VB =h;C",
and

(3.18) ViC*=—h;'B;*
respectively.

Differentiating (3. 6) covariantly along M, we have, taking account of (3. 17)
and (3. 18),

(P F35)By* B+ Fi*hjiC?
= (V]fih)B}L' +fz”hth‘ + (V]uI)C" - ui/’lthh‘

or
(V#Fz‘)BJ"B@Z —_ hjiuhBh,‘

=, fi*—hi*u:) Ba" + Vi +hj fHC".
Thus, if M is a Sasakian manifold, that is, if
V. F{ = —g,0"+050;,
then we have
—3i(Bu 0"+ 2C*)+ B,*vs— Rt By
=(;fi*—hiu) By* + (Vs + R f:1CF,
from which

(3. 19) V]fin= —hﬁu’b+hj”u¢—g,-iv"+5§‘vi,
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(8. 20) Vits=—hjfit— 29 .

On the other hand, differentiating (3. 8) covariantly along M and taking account
of (3.17), (3.18), and

14 ﬂ)‘ =F ,1‘,

we find

FiBpA=h;p'C*+ B V' +(F;2)C + A(— b By"),
or

Fi*Bn" +u;C- =V p"— k") B + (V24 h;iv*)C",
from which
(3.21) Vivh=fi"+h",
or
(3.22) Vivi=Fj+ahy
and
(3. 23) le =uj‘—hjivi.

Thus, computing S;* we obtain
3. 24) it =l — Ryt fiY s — (F " — Rt fi)u,.
Now we prove

ProrosiTION 4. 1. In order that the induced (f, g, u, v, A)-structure on a hyper-
surface of a Sasakian manifold be normal it is necessary and sufficient that f
commutes with h.

Proof. The sufficiency of the condition is trivially seen from (3.24). So we

prove the necessity of the condition.
Suppose that the (f, g, %, v, A)-structure be normal, then we have, from S;"*=0,

(3. 25) (fith— Rt fiwy=(Fithe" — i fi)u;.
Thus, for some vector field w”, we have
(3. 26) [ — Rt =whu,.

Since the covariant components of the tensor defined by the left hand members of
the above equation are symmetric, it follows that w is proportional to #, that is,

It bn+fotbsy = jun,

a being a function, from which, by transvection of ¢’*, a=0 or #,=0. This, together
with (3. 26), shows that f commutes with 4.
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It is known [12] that if f commutes with % and 2221 almost everywhere, the
hypersurface is totally umbilical. So we get

ProposITION 4. 2. If the (f, g, u, v, A)-structure induced on a hypersurface of
@ Sasakian manifold is normal, the hypersurface is totally umbilical.

For a hypersurface with the induced normal (f, g, %, v, A)-structure, we have
from (3. 20),

(3. 27) Vjui+ Viu] = —22gﬂ
and from (3. 22)
(3. 28) Vivi+ Vv, =22hg i,

which show that #" and o" define infinitesimal conformal transformations in M.

§4. Identities in manifolds with normal (f, g, u, v, 2)-structure.

In this section we shall prove some identities in manifolds with normal
(f, 9, u, v, 2)-structure for later use.

Let M be a manifold with normal (f, g, #, v, 2)-structure. The structure being
normal, we have

FAVft =iV f =V fiE =P f ) f
@.1)
+(Vjui— Vi g)u" + (Vi — Vi )o" =0.

We first prove

LemmA 4. 1. In a manifold M with normal (f, g, u, v, 2)-structure, we have

A S St —F v s) 5 fS0is— 05

4. 2)
+(f S ui—frup)Vd— H(Vid)v— (Fid)v;} =0,
and
A vu—tvg) —F s+ ui+ (Ffvi— o)
4.3
+2{(V;u;— (Vi2)us} =0,
where

uji=l7jui—l7iu,, Z)j,;=Vj1)1;—Vq;i)j.

Proof. Transvecting (4.1) with v, we find
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IV fion =V f Myon+ 20, 1 = Vif Hue
+(A—=2)(Vpi—Fw;)=0
by virtue of (1. 3) and (1. 5), or
TP fiton)—Fi*Veon} —fHP(f0n) — S *Vevn}
+ MV (flu)) =1V = Vil f f ) +F Ve + (L= 22)(V o — Vi) =0,
from which
FH= P Ryui— Vi —f MV} +F P+ Vi +f 1 Vion}
+ 1)+ AVj0s — .27 sy — (Vi d)v— AV s+ f 1 Vsae}
+(1—=2)(Vvi—Fiws)=0,
by virtue of (1.2) and (L. 3), from which
M P — Vi) —fEVios— Vyuny +1 £ (Pevs — Vsve) — (Vjvs— Vivg)
+(f St —fiug)Va— 4V, — (FiA)w;} =0,

which proves (4. 2)
Similarly, transvecting (4. 1) with #,, we can prove (4. 3).

In order to get further results on manifolds with normal (f, g, %, v, A)-structure,
we put the condition

4. 4) V5:=2f sz

As we have seen in the preceding section, for a hypersurface of Sasakian
manifold, we have

14 jv¢=fﬁ+2h]~i
and consequently the condition (4. 4) is always satisfied.

LEMMA 4. 2. Let M be a manifold with normal (f, g, u, v, 2)-structure satisfying
4. 4). If the function A(1—2a%) is almost everywhere non-zero, then we have

4.5) wtVa=1-22.
Proof. Transvecting (4. 2) with #/»* and using (1. 2) (1. 5), we find
A= 2050708 — Ant st ue?) + A205080° — 0yl 0t
=21 =2uVa— 21— 2%)u'V;2=0,

or, using vi=2fs,
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22(1—22)2—22(1— 22)utl,2=0,
which proves (4. 5)

LemMA 4. 3. Let M be a manifold with normal (f, g, u, v, 2)-structure satisfying
(4. 4), then we have

4.6) TS i—=FdVnfog =0 i(Vinn) — (V1) +0(Vivn) — v:(Vj0n).

Proof. Since fj; is given by

fi= ‘%‘ (Vivi—Viwy),
we have
“.7 Vyfin+Vofng+Vafs=0.
On the other hand, (4.1) can be written as
ItV fin=Lt Ve f i+ Py fae—Vif ) frl
+(Vjus— Vi gyun+V0:— Viv )0, =0,

and consequently

—SfVfnet+Vafe) + 1P fnet Vafes)

+ Wy fu— VS 1)t + (s — Vit )un+ (Vj0s— Vi )on =0,

that is,
=Vi(f fr) =T P fut Vi S fue) + i Pnfes
+(Vjos— Vi g)un + (Vjvi— Viv;)on=0.
Substituting
I ne=0jn—ujtn,—00n,
we obtain

wi(Vinun) +0(Vion) —f Vi oo — w0e(Vthr) — 0:(V 00) + 15V £, =0,
which gives (4. 6).

§5. Vector fields U and V.

In §3, we have seen that a totally umbilical submanifold of codimension 2 of
a Kihlerian manifold whose connection induced on the normal bundle is flat admits
a normal (f, g, #, v, A)-structure and that the vector fields U and V define
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infinitesimal conformal transformations.

Also in §4, we have seen that a totally umbilical hypersurface of a Sasakian
manifold admits a normal (f, g, %, v, 2)-structure and that the vector fields U and
V define infinitesimal conformal transformations.

In this section, we prove that, under certain conditions, the vector fields U and
V of a normal (f,g, %, v, A)-structure both define infinitesimal conformal trans-
formations.

In the sequel, we assume that

6.1) Vitts—Vire; =241 i
and
(5.2 Vivi—Viv,=2f s,

where ¢ is a differentiable function on M.

LEMMA 5.1. Let M be a manifold with normal (f, g, u, v, A)-structure satisfying
(5.1) and (5. 2). If the function 2(1—2%) is almost everywhere mon-zevo, them we
have

(5.3) VA= —¢(1—22).

Proof. Transvecting (4. 3) with #?»* and using (1. 2)~(1. 5), we find

A — 2050708+ A0 s 0u?) — 2204y 50°0° + 04 5000
— 21— 2 — 21— 22iF;2=0,
or, using #;;=2¢ fis,
=221 - 22)*¢ — 241 — 22)v*F;:2=0,

which proves (5. 3).

LEMMA 5. 2. Under the same assumptions as those in Lemma 5.1, we have
(5.4 Via=u;—¢v;.

Proof. From (4.2), (5.1) and (5. 2), we have

210 fes—2F s+ (ffus—Flu )Vl — (V00— (Fa2)v 3 =0,
or
20 vi—uiw;)+ (fy'ui—fbug)Ved— AV v — (Fid)w} =0.

Transvecting this equation with v, we find

— 221 — 2®u;+ Augd Ve d— 207V ;)0 + 21— 25)2=0,

from which, substituting (4. 5) and (5. 3),
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— 221 — 2%+ AL — 220+ 21— 22)pv; + 21— 22)V;2=0,
which proves (5. 4).
LemMMA 5. 3. Under the same assumptions as those in Lemma 5. 1, ¢ is constant.
Proof. Differentiating (5. 4) covariantly, we have
ViVid=Vu;—Vv;— vV,
from which, using (5.1) and (5. 2),
viVig=viVp
which implies that
Vig=av;

for some scalar function a.
Differentiating the equation above covariantly, we get

VjV,;ng =1)1;Vja+a"7jl)i,
from which, using (5. 1)
20(fj1;=1)j’71;0(—01;7ja.

Thus, if #>2, we have a=0, because the rank of f;; is almost everywhere maximum.
This shows that ¢ is constant.

LEMMA 5. 4. Under the same assumptions as those in Lemma 5.1, we have

(5. 6) Vo + Vit j)ut = — 22u,
and
k.7 (le)i + Vq;l)j)l)i = 223251)].

Proof. Differentiating
unut=1—2
covariantly and using (5. 4), we find
2V ju)ut = —22(u;— ¢v;).
Substituting this into
2(7 syt ={(Vjse+ Vit ) + (Vjses— Vi yd?,

or
Z(Vj%i)%i = (Vju; + V,;uj)ui + 2;(5251)3,
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we find
— 24— ¢pv;) = (Vjus+ Vit jyu* + 2240,

which proves (5. 6).
Similarly, we can prove (5. 7).

THEOREM 5. 1. Under the same assumptions as those in Lemma 5.1, both of
the vector fields u* and v" define infinitesimal conformal transformations.

Proof. Transvecting (4. 6) with v* and using (1. 3), we find
£ Prfryvr— 2utVn o,
=u (v Viun) + 0,0 V0n) — (1= 22V j0n,
from which
FMP(fevd) = FiVnvst + AP f ') — F 3 Pree}
=0 Vstn) + ;0 Vi0n) — (L= 2V jon,
or, again using (1. 2) and (1. 3),
—F M2+ 2+ £ Vpvs}
F A (Ta )0+ AP0 —f 1 Vne}
=u (0 Vi) +0 (0 Viwr) — (1L — 2208,

that is,
— Zlf]thM; + (59 — uju‘ — l)j?)i) thi + lehv]
= uj(vi%un) + vj(viVivh) - (1 - 22) vahr
or
—22f " Vntte+ (Vnv;+ Vjon) + 22(Vpv— Vjor)
=u v (Vitr,— Vit 5) + v 04(Vivn + Vhvy),
or
— 21_}"‘/ Vhue+ (thj + Vjvh) + 222fh]
=22¢u jun+0 0" (Vivn+ Vrvs).
Substituting

20wy =Prats+ Viten) + (Pntes— Vioer)

= th;'l‘ Vtuh+2¢fht

and (5. 7) into the equation above, we find
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— S (Pnths+ Verwn) — 226(g jn — 2 540, — 001

+ (P04 Vivn) + 242 fn,
=220 jtbn+ 224V j0p,

or
(5. 8) V0 i+ Vion =21 (Pntes+ Viten) + 22 gn; — 222 Fn;

Similarly, we have
(5.9) Vi +Viun=—Af ' Tnvs+ Vivn) — 2295 ;— 222¢ f 1.

Substituting (5. 8) into (5. 9), we obtain, using (5. 6),
(5. 10) A=22Pnej+ Viun) = — 22(L — 22)gn;— 22°0,0 1 — 220 (Prots + Viats)v,.

Transvecting (5. 10) with v?, we find

A =22)(Pate 4V jun)v? = — 22(1L — 220, — 22°(1 — A2)0p — 22(L — 220" (Prtte + Vittn),
or
(14221 —22)(Proe;+ V juanyv? = — 22(L+ 22 (L — 220y,

from which
(5.11) (ntt;+Viup)v? = — 2205,

Substituting (5. 11) into (5. 10), we obtain
(5.12) Viws+ Vi, = —22g .

Substituting (5. 12) into (5. 8), we find
(5.13) Viv;+ Vv, =224g .

Equations (5.12) and (5.13) show that both of the vector fields #* and o*
define infinitesimal conformal transformations.
Using (5. 12), (5. 3) and

Vi — Vi, =24 f iz, Vivi—Viv, =21 ji,
we have
(5. 14) Viwi=—295i+ @ jis
(5. 15) Vivi=24gi+fjs.
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§6. Covariant derivative of 2-form fj;.

THEOREM 6.1 If a manifold with normal metric (f, g, u, v, 2)-Structure satisfies
(5. 1) and (5. 2), and if 21 —22) is an almost everywhere non-zero function, then we
have

(6.1) V,fin=—0;i(ptn~+vn)+gjnpti+0s).
Proof. Substituting (5. 14) and (5. 15) into (4. 6), we find
It Vafa—1Vafs
=u(—2gin+ P fin) — 0 —2gin+ G fin)
+0;(Agin+Fin) —viApgn+Fin),

or
V(S fe) = Pnf ) =S Vn S
= —Au;— v )gin~+ Athi— v:)g jn.
+(Pu;+v5) 1 in— (Pt +0:) fin,
from which

Vil —ggit+wujuitvv)+ 21 Vo fis
= — At ;— v 5)gin+ A(t6s— Pv:)g jn
+(pu;+v;) fin—(pti+v:) fin,
or, using (5.14) and (5. 15),
(6. 2) TVt o= 21— ¢0)gin+ (Ppos +v:) fjn.
Transvecting (6. 2) by f%’ and using (1.1), we find
—VnSirtuxth Va for + 00 Vn fis

=8Pt +Vi)gin — (P2 +0:)(gnk — Unlhr— VnDk),
or

— U fir+ it Pn( fibsee) — i Vnttey + 0l Va(Fiv0) — i Vnve}
=2%(pur+vi)gin— (P2i+0:)(gnk — Unthp — Vnr),
from which, using (1. 2) and (1. 3),
—Vhfiet ur{(Pad)vi + A(Vpv:) — fu Pt}
— 0 (Pa2)ws+ A(Vnats) + 12 Vpvi}

=2 (putr+ Or)gin— (ots+vi)gnu+ (P +05) Unt+ Vr0%).
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Substituting (5. 4), (5.14) and (5. 15) into this equation, we find
— Vnfin+ il (n— don)0i+ 20Pgns +rs) =l — Agne+ G )}
— 0u{(tn— $n) s+ A(— Agni+ ¢ Sni) /1" (APgne+n)}
=2 ptur+0)gin— (Ptes + Vi) gnr + (Pt + 05) (Unttr +vnvi),
which proves (6. 1).
We have seen that if a manifold with normal (f, g, %, v, 2)-structure satisfies

Vis— Vi, =2 1 1, Vivi—Vw,=2f s,
then
V, fin=—0;(¢un~+vn)+g;in(du;+v;)

Conversely, we have

THEOREM 6. 2. If a (f, 9, u, v, A)-structure satisfies (5.1), (5.2) and (6.1) then
the structure is normal.

Proof. Substituting (6. 1) into
Sit=f Vi =tV f = fif =V f ) fi
-+ (V]M'L — Zuj)u” + (le),; - V;;Uj)vh',

we have
Sit =1 —gu(gu+v*) 0% pus+vs)}

—fH{—gu(pu™ + o) + 6 u;+v;)}
— {0t +v:) — 0¥ pu; +v )} fi + 24 f js™ + 2y
= O,

and consequently the structure is normal.

§7. Characterizations of even dimensional spheres.

We prove

THEOREM 7.1. Let M be a complete manifold with normal (f, g, u, v, 2)-Structure
satisfying (5.1) and (5.2). If 21—2%) is an almost everywhere nomn-zero function
and n>2 then M is isometric with an even dimensional sphere.

Proof. Differentiating (5. 4) covariantly, we have

VjViZ= Vjui'—gijviy
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¢ being a constant, from which, using (5.14) and (5. 15),
(7. 1) ViVid=—(1+¢*)2g;:.

Thus, 1 being not identically zero, by a famous theorem of Obata [6], M is
isometric with a sphere.
We next prove

THEOREM 7. 2. Let M be a complete manifold with normal (f, g, u, v, A)-structure
satisfying

(7.2 Vivi=F ji.

If 20—22) is an almost everywhere mnon-zero function, them M is isometric with an
even dimensional sphere.

Proof. Differentiating
v =1-2

covariantly and using (7. 2), we find

Suvr=—2aV;2
or
AVja—u;)=0,
from which
Vii=u,.
This shows that
Viw;— Viu,=0.

Equation (7. 2) shows that
V,-vi— Vﬂ)l =2fji.

Thus all the assumptions of Theorem 7.1 are satisfied, and consequently M is
isometric with an even dimensional sphere.
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