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ON (f, g, u, v, O-STRUCTURES

BY KENTARO YANO AND MASAFUMI OKUMURA

§ 0. Introduction.

Tashiro [10] has shown that hypersurfaces of an almost complex manifold carry
almost contact structures. In particular, an odd-dimensional hypersphere in an even-
dimensional Euclidean space carries an almost contact structure.

Blair, Ludden and one of the present authors [3] (see also, Ako [1], Blair and
Ludden [2], Goldberg and Yano [4, 5], Okumura [7], Yano and Ishihara [13]) have
studied submanifolds of codimension 2 of almost complex manifolds. These sub-
manifolds admit, under certain conditions, what we call an (/, U, V, u, υ, /Q-structure
and, if the ambient space is an almost Hermitian manifold, the submanifolds admit
what we call an (/, g, u, v, Λ)-structure. In particular, an even-dimensional sphere
of codimension 2 of an even-dimensional Euclidean space carries an (/, gy u, v, λ)-
structure.

They also studied hypersurfaces of almost contact manifolds and found that
the hypersurfaces also admit the same kind of structure (see also Okumura [8],
Watanabe [11], Yamaguchi [12]).

The main purpose of the present paper is to study the (/, g, u, v, Λ)-structure
and to give characterizations of even-dimensional spheres.

In § 1, we define and discuss (/, U, V, u> v, ^-structure and (/, g, u, v, ^-structure.
In § 2, we prove that a totally umbilical submanifold of codimension 2 of a

Kahlerian manifold whose connection induced in the normal bundle is flat admits
a normal (/, g, u, v, Λ)-structure and that the vector fields U and V define infini-
tesimal conformal transformations of the submanifold.

In §3, we prove that a hypersurface of a Sasakian manifold for which the
tensor / and the second fundamental tensor h commute admits a normal (/, g, u, v, λ)
structure and that if the hypersurface is totally umbilical, then the vectors U and
V define infinitesimal conformal transformations.

§ 4 is devoted to prove some identities valid in M with normal (/, g, uy v, ^-structure
for later use.

In § 5, we prove that if a manifold M with normal (/, g, u, v, X) -structure satisfies
du—φf and ^ = / a n d if λ(l—λ2) is an almost everywhere non-zero function, then the
vector fields U and V define infinitesimal conformal transformations.

In § 6, we prove a formula which gives the covariant derivative of /.
The last §7 is devoted to prove two theorems which characterize even-dimen-

sional spheres.
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§ 1. (/*, K F, u, v, ̂ -structure.

Let M be an m-dimensional differentiate manifold of class C°°. We assume
that there exist on M a tensor field of type (1,1), vector fields U and F, 1-forms
u and v, and a function Λ satisfying the conditions:

(1.1) f2X= -X+u(X)U+υ(X)V

for any vector field X,

(1.2) « o / = ^ , fU=~λV,

(1.3) Vof=-λu, fV=λU,

where 1-forms &°/ and #<>/ are respectively defined by

(uof){X)=u(fX), (vof)(X)=v(fX)

for any vector field X, and

(1.4) u(U)=l-λ\ u(V)=0,

(1.5) i<C7)=0,

In this case, we say that the manifold M has an (/, U9 V, u, v, ̂ -structure.
Examples of manifolds with (/, U, V, u, v> >ί)-structure will be given in §§ 2 and 3.

First of all, we prove

THEOREM 1.1. A differentiable manifold with (/, U, V, u, vy λ)-structure is of
even dimension.

Proof Let P be a point of M at which λ2*l. Then, from (1. 4) and (1. 5),
we see that

17*0, F^FO

at P. The vectors U and F are linearly independent. For, if there are two numbers
a and b such that

aU+bV=0,

then evaluating u and υ at aU+bV and using (1. 4) and (1. 5), we obtain

u(aU+bV)=au(U)=a(X-λ*)=0,

and

v(aU+bV)=bv(V)=ba-λ2)=0.

Thus we have a=b=0.
Thus U and F being linearly independent at P, we can choose m linearly

independent vectors Xλ— U, X2=V, X3> •••, Xm which span the tangent space 2p(M)
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of M at P and such that u(Xa)=0, v(Xa)=0, for a = 3 , •••, m. Consequently, we
have from (1.1),

which shows that / is an almost complex structure in the subspace Vp of TF(M)
at P spanned by Xz, •••, Xm and that V? is even dimensional. Thus Γp(M) is also
even dimensional.

Next, let P be a point of M at which λ2=l. In this case, we see, from (1. 4)
and (1. 5), that

«(E7)=0, u(V)=0,

v(U)=0, v(V)=0.

We also see, from (1. 2) and (1. 3), that

if u*0, then v*0,

if u=0, then v=0.

We first consider the case in which &^0, v^O. In this case, u and v are
linearly independent. Because, if there are two numbers a and b such that

au+bv=0,

then, from (1. 2), (1. 3) and

(au+bv)of=0,

we have

λ(bu-av)=0,

from which

bu—av=0y

λ being different from zero. Thus from au+bv=0 and bu—av=0 we have

(a2+b2)u=0,

from which a=0, b—0.
Thus, u and v being linearly independent at P, we can choose n linearly in-

dependent covectors W!=u, w2=VyWZy ~',wm which span the cotangent space C2V(M)
of M at P. We denote the dual basis by (Xu X2, •••, Xm-U Xm).

If U and V are linearly independent at P, we can assume that

Xm-l—U, Xm^V.

Then we have

f2Xα = -Xα+u(Xα)U+v(Xα)V=-Xα, α=3, 4, - , m
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which shows that / is an almost complex structure in the subspace Fp of Γp(M) at P
spanned by Xs, ••, Xm and that Fp is even-dimensional and consequently Tp(M) is also
even- dimensional.

If U and F are linearly dependent, there exist two numbers a and b such that

aU+bV=0

and a2+b2^0. Applying / to the equation above and using (1.2) and (1.3), we
find

λ(-aV+bU)=0,

from which

bU-aV=0.

Thus, we must have

u=v=o.

Thus, from (1.1), we have

px=-x
for any vector X in Tp(M). Thus 7p(M) is even dimensional.

The case left to examine is the case in which u=0, v=0. But in this case also
we have, from (1.1), f2X=—Xίor any vector X in Tp(M) and consequently 2p(M)
is even dimensional. Thus we have completed the proof of Theorem 1.1.

DEFINITION. The structure (/, U, F, uf v, λ) is said to be normal if the ̂ Nijen-
huis tensor N of / satisfies

(1. 6) S(X, Y)=N(X, Y)+du(X, Y)U+dv(X, Γ)F=0

for any vector field X and Y of M.
We consider a product manifold Mx R2, where R2 is a 2-dimensional Euclidean

space. Then, (/, U, F, u, v, Λ)-structure gives rise to an almost complex structure
/on MxR2:

(1.7)

as we can easily check using (1.1)^—{1. 5).
Computing the Nijenhuis tensor of /, we can easily prove

PROPOSITION 1. 2. // / is integrable, then (/, U, V, u, v, λ)-structure is normal.

We assume that, in M with (/, U, V, u, v, Λ)-structure, there exists a positive
definite Riemannian metric g such that
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(1.8) g(U,X)=u(X)9

(1.9) g(V,X)=υ(X),

and

(1.10) g(fX,fY)=g(X, Y)-u{X)u{Y)-v{X)v{Y)

for any vector fields X, Y of M. We call such a structure a metric (/, U, V, u, v, λ)
structure and denote it sometimes by (/, g, u, v, X).

We prove

PROPOSITION 1. 3. Let ω be a tensor field of type (0. 2) of M defined by

(1.11) ω(X, Y) = g(fX, Y)

for any vector fields X and Y of M, then we have

(1.2) ω(X, Y)=-ω(Y,X),

that is, ω is a 2-form.

Proof From the definition (1.11) of ω, we have

ω(fX,fY)=g(f(fX),fY),

from which, using (1.10),

ω(fX,fY)=g(fX,Y)-u(fX)u(Y)-v(fX)υ(Y),

or

ω(fX, fY)=ω(X, Y) - λv{X)u{ Y) + λu(X)v( Y),

by virtue of (1. 2) and (1. 3).

On the other hand, using (1.1), we have

ω{fXJY)=g(PXJY)

=g(-X+u(X)U+v(X)V,fY)

by virtue of (1. 8) and (1. 9) and consequently

ω(fX, fY) =-ω(Y,X)+λu{X)v{ Y) - λv{X)u{ Y).

Thus we have

ω(X, Y) = -ω(Y,X).
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§2. Submanifolds of codimension 2 of an almost Hermitian manifold.

In this section, we study submanifolds of codimension 2 of an almost Hermitian
manifold as examples of the manifold with (/, g, u, v, X)-structure.

Let M be a (2^+2)-dimensional almost Hermitian manifold covered by a system
of coordinate neighborhoods {U; y"}, where here and in this section the indices /c, λ, μ, vf

-" run over the range {1, 2, •••, 2^+2}, and let (F/, Gμλ) be the almost Hermitian
structure, that is, let Fλ

κ be the almost complex structure:

(2.1) Fa

κFλ

a=-δh

and Gμχ a Riemannian metric such that

(2.2) GΐβF/F/=Gμλ.

We denote by {/;} the Christoffel symbols formed with GμX.
Let M be a 2^-dimensional differentiable manifold which is covered by a system

of coordinate neighborhoods {U; xh), where here and in the sequel the indices h, i,j,
• •• run over the range {1, 2, •••, 2n) and which is differentiably immersed in M as a
submanifold of codimension 2 by the equations

(2.3) yκ=y\χh).

We put

(2.4) BiK=diy\ (βi=d/dx*)

then Bi is, for each fixed i, a local vector field of M tangent to M and vectors Bi
are linearly independent in each coordinate neighborhood. B£ is, for each fixed K,
a local 1-form of M.

We choose two mutually orthogonal unit vectors Cκ and Dκ of M normal to M
in such a way that 2^+2 vectors Bf, C\ Dκ give the positive orientation of M.

The transforms Fλ*Biλ of B/ by Fλ

κ can be expressed as linear combinations of
Bi, C and D% that is,

(2. 5) Fx'BS =fihBh' + UiC+ViD%

where ft

h is a tensor field of type (1.1) and uit vt are 1-forms of M. Similarly the
transform Fλ

κCλ of Cλ by Fλ

κ and the transform Fλ

κDλ by Fλ

κ can be written as

(2.6)

where

uι=utg
H

}

being the Riemannian metric on M induced from that of M.
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and λ is a function on M. The function λ seems to depend on the choice of normals
C and Dκ, but we can easily verify that λ is independent of the choise of normals
and consequently that λ is a function globally defined on M.

Applying Ff again to (2. 5) and taking account of (2. 5) itself and (2. 6), we find

(2. 7) ///V = - δH UiUh+vtvh

(2.8) uhfi
h=λvu vhfi

h=-λUi.

Applying F/ again to (2. 6) and taking account of (2. 5) and (2. 6) itself, we find

(2.9) fihuι=-λvh, UiW=l-λ\ UiV*=0,

(2.10) fihv*=λuh, ViU^O, ViVl=l-X2.

On the other hand, we have, from (2. 2),

from which

Qkhfjkfih

or

(2.11)

Equations (2. 7), (2. 8), (2. 9), (2.10) and (2.11) show that a submanifold of codi-
mension 2 of an almost Hermitian manifold admits a (/, g, u> v, Λ)-structure.

We denote by {/*} and V% the Christoffel symbols formed with gji and the
operator of covariant differentiation with respect to {/*} respectively.

The so-called van der Waerden-Bortolotti covariant derivative of Bi is given by

(2.11) FjBi

κ=djBi

κ + {μ

κx}B/Bi

λ-Bh

κ{j\}

and is orthogonal to M and consequently can be written as

(2.12) FjBS

which are equations of Gauss, where hji and kji are the second fundamental tensors
of M with respect to the normals C and Dκ respectively.

For the covariant derivatives of Cκ and Dκ along M, we have equations of
Weingarten

r&^-hSBi'+ijir,

(2.13)

FjD^-kf

where
κ

x}B/O,
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and lj is the so-called third fundamental tensor.
As we see from (2.13), equations

(2.14) 'FjD*=

define the connexion induced in the normal bundle. If this induced connexion is
flat, then we can choose C and Dκ in such a way that we have 13—O.

Differentiating (2. 5) covariantly along M, we have, taking account of equations
of Gauss and those of Weingarten,

+ (Fjvi)DK+vi(-kj

hBh

K-ljC),

or

iD
κ

Thus, if M is a Kahlerian manifold, that is, if FμFλ

κ=0, then we have

(2.15) Fjf%

h =

(2.16) FjUi^

(2.17) FjVi = -

Using (2.15), (2.16) and (2.17) to compute

we find

i — /^j) — Vh(JjUi — /i^j).

Thus we have
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PROPOSITION 3.1. Let M be a submanifold of codimension 2 of a Kάhleήan
manifold whose connection induced in the normal bundle is flat. If f commutes
with both of h and k, M admits a normal (/, g, u, v, λ)-structure.

COROLLARY 3. 2 A totally umbilical submanifold of codimension 2 of a Kάhler-
ian manifold whose connection induced in the normal bundle is flat admits a
normal (/, g, u, v, λ)-structure.

Corollary 3. 2. holds of course for a totally geodesic submanifold. A plane or
a sphere of codimension 2 in an even-dimensional Euclidean space are examples for
which the corollary holds.

For a totally umbilical submanifold whose connection induced in the normal
bundle is flat, we have, for suitably chosen unit normals C and D,

lj=0

and consequently (2.16) and (2.17) become

(2.18) PjUi^hfji-λkgji,

and

(2. 19) FjVi=kfji+Xhgji

respectively. These equations give

(2. 20) FjUi + ViUj = - 2λkgji

and

(2. 21) VjVi+ViVj=2λhgμ

which show that uh and vh define infinitesimal conformal transformations in M.

§3. Hypersurfaces of an almost contact metric manifold.

In this section, we study hypersurfaces of an almost contact metric manifold as
examples of the manifold with (/, g, u> v, Λ)-structure.

Let M be a (2^+1)-dimensional almost contact metric manifold covered by a
system of coordinate neighborhoods {U; yκ}, where here and in this section, the
indices tc, λ, μ, v, ••• run over the range {1, 2, •••, 2^+1} and let (F/, Gμλ, vλ) be the
almost contact metric structure, that is [9],

(3.1) Fμ

κF/=-δl+vλv\

(3.2) v.Fχ'=0, FxV=0,

(3.3) vχvλ=l
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and

(3.4) GΐβFμ

rF/=Gμλ-vμvλ.

Let M be a 2^-dimensional differentiate manifold which is covered by a system
of coordinate neighborhoods {U; xh}y and which is differentiably immersed in M as
a hypersurface by the equations

(3.5) yκ=y\χh).

We put Bi=diyκ and choose a unit vector C* of M normal to M in such a
way that 2n+l vectors Bϊ and O give the positive orientation of M

The transforms F!B%1 of Biλ by F / can be expressed as linear combinations
of Bi and C\ that is

(3.6) Fx'Bi^ffB^+UiC,

where f%

h is a tensor field of type (1,1) and uι is a 1-form of M. Similarly, the
transform Fλ

κCλ of Cλ by F / can be written as

(3.7) FfC^-WBi',

where

gSi being the Riemannian metric on M induced from that of M.
We put

(3.8) i ι ϊ = & V + Γ ,

where *̂ is a vector field of M and Λ a function of M.
Applying F/ again to (3. 6) and taking account of (3. 6) itself, (3. 7) and (3. 8),

we find

(3.9) fitfth=-%+utu
h+υiυ*,

(3.10) utff=tot.

Applying FS again to (3. 7) and taking account of (3. 6), (3. 7) and (3. 8), we
obtain

(3.11) fi

hui=-λv\

(3.12) utu^l-λ2.

Finally applying FS to (3. 8), we find

(3.13) Λ V = ^ Λ ,

(3.14) «ii;*=0.
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Since uκ is a unit vector, we have, from (3. 8),

(3.15) ViV^l-λ2.

On the other hand, we have, from (3. 4)

from which

Qkhfjkfih

that is

(3.16) Qkhfjkfih=

Equations (3. 9)~(3.16) show that a hypersurface of an almost contact metric
manifold admits a (/, g, u, vy ^-structure.

For the hypersurface M, the equations of Gauss and those of Weingarten are

(3.17)

and

(3.18)

respectively.
Differentiating (3. 6) covariantly along M", we have, taking account of (3.17)

and (3.18),

or

Thus, if M is a Sasakian manifold, that is, if

then we have

from which

(3.19)
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(3.20) Pjt4i=-hjtfit-λgji.

On the other hand, differentiating (3. 8) covariantly along M and taking account

of (3.17), (3.18), and

we find

or

F/B/= - hjhBh

κ),

from which

(3. 21)

or

(3. 22)

and

(3. 23)

Thus, computing SΛ

(3. 24)

Now we prove

Fjϋh=fjh+λhjh,

PjVi=fji+λhji

Γjλ^j-hjiVK

ah we obtain

PROPOSITION 4.1. In order that the induced (/, g, u, v, λ)-structure on a hyper-
surface of a Sasakian manifold be normal it is necessary and sufficient that f
commutes with h.

Proof. The sufficiency of the condition is trivially seen from (3. 24). So we
prove the necessity of the condition.

Suppose that the (/, g, u, vy ̂ -structure be normal, then we have, from 5/^=0,

(3.25) Uf

ί%
h-h/fth)Ui=(f^/kh-hitfth)uJ.

Thus, for some vector field wh, we have

(3.26) f}W-h}f?=w*u3.

Since the covariant components of the tensor defined by the left hand members of
the above equation are symmetric, it follows that w is proportional to u, that is,

f/hth +fhhtJ=aUjUh,

a being a function, from which, by transvection of gjh, α = 0 or Uj—0. This, together
with (3. 26), shows that / commutes with h.
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It is known [12] that if / commutes with h and λ2^l almost everywhere, the
hypersurface is totally umbilical. So we get

PROPOSITION 4. 2. If the (/, g, u, v, X)-structure induced on a hypersurface of
a Sasakian manifold is normal, the hypersurface is totally umbilical.

For a hypersurface with the induced normal (/, gy u, v, A)-structure, we have
from (3. 20),

(3.27) Fj

and from (3. 22)

(3.28) Fj

which show that uh and vh define infinitesimal conformal transformations in M.

§ 4. Identities in manifolds with normal (f, g, u, v, ^-structure.

In this section we shall prove some identities in manifolds with normal
(/, g, u, v, Λ)-structure for later use.

Let M be a manifold with normal (/, g, u, v, Λ)-structure. The structure being
normal, we have

(4.1)

i - FiUj)uh+(FjVi - FiV3)vh=0.

We first prove

LEMMA 4.1. In a manifold M with normal (/, gr, u, v, λ)-structurey we have

Kf/uu -fίutί) +f/fMs - vji

(4.2)

+UrM-f%%wa-λ{(rJλ)Όi-(riX)υj}=o,

and

KfMi -fMj) -f/fMs+uji+(fj% -f%

lVj) Ftλ

(4.3)

+λ{(Fjλ)ui-(FίX)uj}=0,

where

Proof, Transvecting (4.1) with vhy we find
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by virtue of (1. 3) and (1. 5), or

tut) -ftΨjtit - PiifM) +fjΨiUt} + (1 - X2)(FjVi- PiVj)=0,

from which

-fihVtvh} +ft

by virtue of (1. 2) and (1. 3), from which

+(fjtui-fitUj)Ftλ-λ{(Fjλ)vi-(Fiλ)vj}=0,

which proves (4. 2)
Similarly, transvecting (4.1) with uh} we can prove (4. 3).

In order to get further results on manifolds with normal (/, g, u, v, Λ)-structure,
we put the condition

(4.4) vji=2fji.

As we have seen in the preceding section, for a hypersurface of Sasakian
manifold, we have

and consequently the condition (4. 4) is always satisfied.

LEMMA 4. 2. Let Mbe a manifold with normal (/, g, u, v, λ)-structure satisfying
(4. 4). If the function λ(l—λ2) is almost everywhere non-zero, then we have

(4.5) uΨtλ=l-λ*.

Proof Transvecting (4. 2) with uhι and using (1. 2) (1. 5), we find

λ( - λujivh1 - λUijuW)+λ2vtsu
ιvs -

or, using vts=2fts,
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which proves (4. 5)

LEMMA 4. 3. Let Mbe a manifold with normal (/, g, u, vt λ)-structure satisfying
(4. 4), then we have

(4. 6) fjΨhfu-fWhftj=Uj(FiUh) - Ui(FjUh)+Vj(PiVh) -vt(Pjvh).

Proof. Since / # is given by

we have

(4.7) ΓJ

On the other hand, (4.1) can be written as

i - FiUj)uh+(PjVi - FiVj)vh=0,

and consequently

-f/(Fιfht+PhfH)+fAPjfht+Phftj)

+ (Fjfu - Pxfώfit+(Pflh - FiUj)uh+(FjVi - FiV3)vh=0,

that is,

PjUi - FiU3)uh + (FjVi - FiVj)vh=0.

Substituting

f/fht = Qjh - UjUh - VjVh,

we obtain

uj(PiUh)+Vj(PiVh) -fjΨhfa - Ui(Fjuh) - Vi{FjVh) Λ-fiFhft3=0,

which gives (4. 6).

§5. Vector fields U and V.

In §3, we have seen that a totally umbilical submanifold of codimension 2 of
a Kahlerian manifold whose connection induced on the normal bundle is flat admits
a normal (/, g, u, v, λ) -structure and that the vector fields U and V define
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infinitesimal conformal transformations.
Also in §4, we have seen that a totally umbilical hypersurface of a Sasakian

manifold admits a normal (/, g, u, vy X) -structure and that the vector fields U and
V define infinitesimal conformal transformations.

In this section, we prove that, under certain conditions, the vector fields U and
7 of a normal (/, g, u, v, Λ)-structure both define infinitesimal conformal trans-
formations.

In the sequel, we assume that

(5.1) Vjui-ViuJ=2φfji

and

(5.2) Fjvί-Fίv3=2fjU

where φ is a differentiate function on M.

LEMMA 5.1. Let Mbe a manifold with normal (/, g, u, v, λ)-structure satisfying
(5.1) and (5. 2). If the function λ(l—λ2) is almost everywhere non-zero, then we
have

(5.3) vΨtλ=-φ(l-λ2).

Proof. Transvecting (4. 3) with u3v% and using (1. 2)—(1. 5), we find

λ{—λVjiVh1+λVjiU3'uι)—λ2utsUιvs+Ujiuh1

-λ(l-λ2)vΨtλ-λ(l-λ2)vΨiλ=0,

or, using uts=2φfts,

- 2λ(X - λ2)2φ - 2MX ~ λ*)vΨtλ=0,

which proves (5. 3).

LEMMA 5. 2. Under the same assumptions as those in Lemma 5.1, we have

(5.4) Viλ=Ui-φVi.

Proof. From (4. 2), (5.1) and (5. 2), we have

or

Transvecting this equation with v3, we find

-2λ(l-λ2)uί+λuiuΨtλ-λ(v3Fjλ)Vi+λ(l-λ2)Fiλ=0}

from which, substituting (4. 5) and (5. 3),
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- λ2)Ui+λ(X - λ2)φVi+λ(l - λ2) Fd=0,

which proves (5. 4).

LEMMA 5. 3. Under the same assumptions as those in Lemma 5.1, φ is constant.

Proof. Differentiating (5. 4) covariantly, we have

from which, using (5.1) and (5. 2),

which implies that

for some scalar function a.
Differentiating the equation above covariantly, we get

from which, using (5.1)

2afji=VjFiCc —

Thus, if n>2, we have a=0, because the rank of//* is almost everywhere maximum.
This shows that φ is constant.

LEMMA 5. 4. Under the same assumptions as those in Lemma 5.1, we have

(5. 6) (FjUi+ FiUj)uί=-2λu3

and

(5.7) (FjVi+Fίvj)vί=2λφVj.

Proof. Differentiating

UiUl=l—λ2

covariantly and using (5. 4), we find

2{Fjui)uί = - 2λ(uj - φvj).

Substituting this into

2(FjUi)ui = {(FjUi+PiUj) + (FjUi - Fφj)}u\

or

2(Fjui)ui={FjUi+PiUj)u*+2λφvJf
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we find

- 2λ(Uj - φv3) = (FjUi+ViUj)ux+2λφvJy

which proves (5. 6).

Similarly, we can prove (5. 7).

THEOREM 5.1. Under the same assumptions as those in Lemma 5.1, both of
the vector fields uh and vh define infinitesimal conformal transformations.

Proof. Transvecting (4. 6) with vι and using (1. 3), we find

f,\Vhfu)*-λuΨhftj

=uj(pΨiUh)+vj(pΨivh)-(X-λ2)Fjvh,

from which

{vWiVh) - (1 - λ2) VjVh,

or, again using (1. 2) and (1. 3),

-fjWhλ)ut+λVhut +ftΨhVi]

that is,

- 2λfjΨhut+(δ) - UjW1 - VjV1) Vhvι+λ2 VhVj

= Uj(vΨiUh) + VjivΨiVn) - (1 - λψjVhy

or

- 2λfj

or

- 2λfjΨhut+(VhVj + Fjvh) + 2λ2fhJ

=2λφUjUh

Substituting

2Vhut = (Vhut + Vtuh) + (Vhut - Vtuh)

and (5. 7) into the equation above, we find
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Vtuh) - 2λφ(gjh -

or

(5. 8) Fhvj + VjVh=λfjψuUt + Vtuh)+2λφghj - 2λ2fhj

Similarly, we have

(5. 9) Fhuj+Fjuh = -λfWnVt + Ftvh) - 2λghj- 2λ2φfhJ.

Substituting (5. 8) into (5. 9), we obtain, using (5. 6),

(5.10) (l-λ2WhUj + Fjuh)=-2λa-λ2)ghj-2λzvhVj-

Transvecting (5.10) with υ3, we find

( l - W Λ W y + F / f f o ) ! ^ - ^

or

from which

(5.11) (Fhuj+FjUh)vJ = - 2λvh.

Substituting (5. 11) into (5.10), we obtain

(5.12) FjUi+FiUj =

Substituting (5.12) into (5. 8), we find

(5.13) FjVί + FίvJ

Equations (5.12) and (5.13) show that both of the vector fields uh and vh

define infinitesimal conformal transformations.
Using (5.12), (5. 3) and

- Fφj=2fjU

we have

(5.14)

(5.15)

FjUi - FtUj=2φfji, FjVi -

FjUi=-λgji+φfji,

FjVi=λφgji+fji.
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§6. Covariant derivative of 2-f orm fJt.

THEOREM 6.1 If a manifold with normal metric (/, g, u> v, λ)-structure satisfies
(5.1) and (5. 2), and if λ(l—λ2) is an almost everywhere non-zero function, then we
have

(6. 1) Vjfih = - Qjlφun+vh)+gjh(φUi+Vt).

Proof. Substituting (5.14) and (5.15) into (4. 6), we find

fjΨ*fti-ΛΨhftj

=Uj( - λgih+φfih) - Ui( - λgjh+φfjh)

+Vj(λφgίh +fih) - Vi{

or

= - λ{Uj - φv3)gίh

+ (φUj + Vj)fih - (φUi + Vi)fJh,

from which

= - λ(uj - φVj)gih+λ{Ui - φvι)gjh

+ (φUj + Vj)fih - (φUi + Vi)fJh,

or, using (5.14) and (5.15),

(6.2) fjΨhfu=λ(uj-φVj)gih + (φui + Vi)fjh.

Transvecting (6. 2) by fk

J and using (1.1), we find

=λ\φuk+Vk)gίh - (φUi+Vi)(ghk - uhuk - vhvk),

or

- Vhfik+uk{Vh(ttut) -ttVhUt}+vk{Fh(f%%) -A

=λ\φuk+vk)gih - (φUi+Vi)(ghk - uhuk -

from which, using (1. 2) and (1. 3),

- vk{{Vhλ)Ui+λ(VhUi) +f%ψhvt]

= l \ φ u k + vk)gίh -{φUiΛ- Vi)ghk
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Substituting (5. 4), (5.14) and (5.15) into this equation, we find

- Fhfit + uk{(uh - φvh)Vi+λ{λφghί +fM) -f%\ - λght + φfht)}

- vk{(uh - φvh)Ui+λ{ - λghί+φfhi) +f%t(λφgM +fM)}

=λ\φuk + vk)gih - iφui+Vi)ghk + (φut + Vi)(uhuk + vhvk\

which proves (6.1).

We have seen that if a manifold with normal (/, g, u, v, Λ)-structure satisfies

VjUt - ViU3=2φfJit VjVi - VtVj=2fji9

then

Vjfih = - Qji(φuh+vh) + gjhiφui+Vi)

Conversely, we have

THEOREM 6. 2. If a (/, g, u, v, λ)-structure satisfies (5.1), (5. 2) and (6.1) then
the structure is normal.

Proof. Substituting (6.1) into

we have

Sjih =f/{ - gu(φuh+vh

-fΆ - Qtj(φuh+vh)+dft

=0,

and consequently the structure is normal.

§7. Characterizations of even dimensional spheres.

We prove

THEOREM 7.1. Let M be a complete manifold with normal (/, g, u} v, λ)-structure
satisfying (5.1) and (5. 2). If λ(l—λ2) is an almost everywhere non-zero function
and n>2 then M is isometric with an even dimensional sphere.

Proof. Differentiating (5. 4) covariantly, we have



422 KENTARO YANO AND MASAFUMI OKUMURA

φ being a constant, from which, using (5.14) and (5.15),

(7.1) FjPiλ=

Thus, λ being not identically zero, by a famous theorem of Obata [6], M is
isometric with a sphere.

We next prove

THEOREM 7. 2. Let Mbe a complete manifold with normal (/, g, u, v, λ)~structure
satisfying

(7.2) PjVi=fji.

If λ(l—λ2) is an almost everywhere non-zero functiony then M is isometric with an
even dimensional sphere.

Proof. Differentiating

covariantly and using (7. 2), we find

or

from which

This shows that

Equation (7. 2) shows that

Thus all the assumptions of Theorem 7.1 are satisfied, and consequently M is
isometric with an even dimensional sphere.
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