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ON THE TOTAL ABSOLUTE CURVATURE OF MANIFOLDS
IMMERSED IN RIEMANNIAN MANIFOLDS, III

BY BANG-YEN CHEN

0. Introduction.

Before Willmore-Saleemi's paper [10] appeared, the total absolute curvature was
defined only for the closed manifolds in euclidean space (see, for instances, [3,4,5,
6,7,9]).

In [10], Willmore and Saleemi defined the total absolute curvature for closed
manifolds in riemannian manifolds and proved that if / and f are two immersions
of two closed manifolds into two riemannian manifolds, then the total absolute
curvature of the product immersion fxf satisfies the relation: TA(f)xTA(f)
= TA(fxf).

In the first paper of this series [1], the author used the Levi-Civita translation
in riemannian manifold to define the generalized Gauss mapping and to generalize
many results due to Chern, Lashof, and Kuiper [3,4,5,6]. In the second paper of
this series [2], the author studied the total absolute curvature for surfaces in real
space forms.

In the present paper, we shall study the total absolute curvature for cornered
manifolds and bounded manifolds in riemannian manifolds. This is the first paper
we have so far which studies the total absolute curvature for cornered manifolds
(also for bounded manifolds).

Thanks are due to Professor Tadashi Nagano who proposed the author to study
the total absolute curvature of these kinds.

In section 1, we give the definitions of bounded manifolds, cornered manifolds,
and the total absolute curvature. In section 2, we find some relations between
the total absolute curvature and totally geodesic submanifolds of the ambient
riemannian manifold. In section 3, we give some inequalities of the total absolute
curvature for attached cornered manifolds and product cornered manifolds. In
section 4, we get a fundamental inequality for cornered manifolds in euclidean
space. From this inequality, we find some relations between the total absolute
curvature and critical point theory. In particular, if the cornered manifold Mn is
closed, then this fundamental inequality gives us the Chern-Lashof ineqality for
total absolute curvature. In section 5, we consider the total absolute curvature for
cornered surfaces in euclidean space. In this section, we prove that if M2 is com-
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pact, then TA(M2: E*)=0 for the case BdM2^ψ. From this equation, we prove
that every orientable cornered surface with non-empty boundary can be convexly
immersed in £ 3 , and every cornered surface with non-empty boundary always
admits a real-valued function on it without critical points. In section 6, we study
the total absolute curvature for cornered surfaces in iV-spheres. In this section, we
also prove that every cornered surface with non-empty boundary has vanishing
total absolute curvature. In the last section, we study the total absolute curvature
for cornered surfaces in Kahler manifolds. Under some suitable conditions, we
find that there are some relations between the total absolute curvature, the
riemannian sectional curvature and the second fundamental form.

1. Preliminaries.

We recall that a (usual) smooth manifold structure Σ of Mn is a set of
homeomorphisms λ: Uλ-^Vχ between open sets Uχ and Vλ in En and Mn respec-
tively, subject to the condition among others to the effect that θ~ιoλ is smooth for
θ, λ in Σ. Now, a bounded manifold and a cornered manifold respectively are
defined by the above with En replaced by En~1x[0, oo) and [0, oo)71, where by a
smooth map means a map defined on an open set U in En-1x[0Joo) or [0, oo)n into
Em which extends to a smooth map in the usual sense on a neighborhood of U in
En. The smooth maps between bounded or cornered manifolds are defined in the
obvious way. The boundary of a bounded or cornered manifold Mn

y denoted by
BdMn, is by definition the subset of Mn consisting of all points which are in the
image of the boundary Bd (En~ι x [0, oo)) or Bd ([0, oof) in En under some (hence
any) coordinate map λ. Every bounded or cornered manifold can "extend beyond
its boundary" to a smooth manifold, which is not at all unique. Thus, a smooth
map between bounded or cornered manifolds extends to a smooth map between
usual smooth manifolds. A bounded manifold is a cornered one and its boundary
is a smooth manifold. A smooth manifold Mn is a cornered manifold with Bd Mn=φ.
The interior set (Mn—BdikP) of a cornered or bounded manifold Mn is a smooth
manifold of the same dimension. A closed manifold is a compact smooth manifold.

In the following, we assume throughout that Mn is an w-dimensional cornered
manifold unless otherwise stated. We assume throughout that Yn^N is an oriented
riemannian manifold of dimension n+N.

Let

(1) / : Mn->Yn+N

be an immersion of Mn into Yn+N. By a frame x,elf-~,en+N in Yn+N we mean
a point x and an ordered set of mutually perpendicular unit vectors elt'~,en+N,
such that their orientation is coherent with that of Yn+N. Unless otherwise stated,
we agree on the following ranges of the indices:

( 2 )
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Let F(Yn+N) be the bundle of the frames on Yn+N. In F(Yn+N) we introduce
the linear differential forms ΘA, ΘAB by the equations:

(3) deA = ΣΘABeBf df=Σ0AeA} ΘAB+ΘBA=O.
B A

Their exterior derivative satisfy the equations of structure:

(4) dθA=Σ0BΛ ΘBA, dθAB =Σ0ACΛ ΘCB+ΩAB.
B G

Let B be the set of elements b = (p,eu ~,en+N) such that (f(p),elf'")en+N)
eF(Yn+N), p€Mn,e1,-~,en are tangent vectors and en+u~ yen+N are normal vectors
at f(p). Let ωΛ, ωAB be the 1-forms on B induced from the natural immersion
B—F(Yn+N); (p,ely -fen+N)^(f(p)feu ~',en+N). Then by the definition of B, we
have

(5) ω r=0,

and o)i, ~',ωn are linearly independent. Hence the first equation of (4) gives

( 6 ) Σ O)iAu)ir = 0.
i

From this it follows that

( 7 ) Wίr = Σ Anjύϋj, Λrιj=Λrjΰ
3

We define the normal bundle Bv by

(8) Bv = {(p, e) :psMn, e unit normal vector at f(p)}.

We call

(9) # ( A 0 r ) = ( - l ) Λ d e t ( i W ,

the Lipschitz-Killing curvature at (p,er)€Bv. We call the integral

(10) TA(f) = [ \K(p,e)\dW/cn+N-i,

the total absolute curvature of the immersion / , if the right hand side of (10) exists,
where CH+N-I denotes the volume of the unit (n+N— 1)-sphere and dW the volume
element of the normal bundle BΏ.

We call

(11) TΛ(Mn: Γw +*)=inf {TA(f) :f:Mn-*Yn+N immersions},
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the total absolute curvature of the cornered manifold Mn in Yn+N, if the right
hand side of (11) exists.

If there exists no immersion of Mn into Yn+N or for every immersion of Mn

into Yn+N, the right hand side of (10) doesn't exist, then we set TA(Mn; Yn+N) = oo.

REMARK. In the special case, Mn is closed, the definitons of the total absolute
curvature of [2,10] and the present paper are equivalent.

2. Total absolute curvature and totally geodesic submanif old.

In this section, we want to seek some relations between the total absolute
curvature and totally geodesic submanifold of the ambient manifold.

LEMMA 2.1. Let f: Mn->Yn+N be an immersion of a cornered manifold Mn

into a riemannian manifold Yn+N. If Mn is immersed in a totally geodesic
submanifold Ϋ of Yn+N, then

(12)

where / : Mn-*Y is defind by /(/>)=/(/>) for all p in Mn.

Proof. If Ϋ is a totally geodesic submanifold of Yn+N, then we can easily
derive from equations (7) and (9) that

(13) K(p, e) = (cosw θ)K(p, e)y

where K(p, e) and K(p, e) denote the Lipschitz-Killing curvatures of / and / re-
spectively, and 0 denotes the angle between e and the unit vector e which is in
the direction of the projection of e into the tangent space 7/CP)(F). Using (13) we
can easily deduce that equation (12) holds.

By the definition of total absolute curvature, we have easily the follows:

THEOREM 2.2. Let f: Mn^Yn+N be an immersion of a cornered manifold
Mn into a riemannian manifold Yn+N. If Mn is immersed in an n-dimensional
totally geodesic submanifold of Yn+N, then TA(f)=0.

We may consider conventionally the case N=0 in the above, hence we have

COROLLARY 2. 3. // a cornered manifold Mn can be immersed into a riemannian
manifold Yn of dimension n, then TA(Mn: Yn)=0.

3. Total absolute curvature for attached cornered manifolds and product
cornered manifolds.

Let Mn and Mn be two ^-dimensional cornered manifolds. Then we say that
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a cornered manifold Un is an attached cornered manifold of Mn and Mn if Un

can be obtained byjdentified some boundaries of Mn and Mn from the (abstract)
union of Mn and Mn.

THEOREM 3.1. Let Un be an attached cornered manifold of Mn and Mn.
Then we have

(14) TA{ Un: Yn+N) ^ TA{Mn: Yn+N) + TA{Mn: Yn+N).

There exists an attached cornered manifold which satisfies the inequality sign of (14).

Proof. Let Un be an attached cornered manifold of Mn and Mn denoted by

(15) Un=MnUMn.
Q

Let / : Un->Yn+N be an immersion of Un into Yn+N. Then the restriction im-
mersions f\Mn and f\ Mn can be regarded as two immersions of Mn and Mn into
γn+N respectively. From (9) and (10), we can easily deduce that

(16) TA(f) = TA{f I Mn) + TA(f \ Mn).

Hence, by (16), we get (14).
Now, suppose that Mn and Mn are the upper and lower semi-spheres of a

euclidean ^-sphere Sn in En+1, and Un is the euclidean ^-sphere Sn itself. Then
Un is an attached cornered manifold of Mn and Mn by identified the boundaries
of Mn and Mn in a usual way. Since Mn and Mn can be immersed into a euclidean
^-space En. Hence, by Theorem 2. 2, we have

(17) TA(Mn: En+1) = TA{Mn: En+1)=0.

On the other hand, by a result of Chern and Lashof, we have TA(Un:En+1)=2.
Hence the inequality sign of (14) holds for this example. This completes the proof
of the theorem.

EXAMPLE 3.1. Let

Mn=Sn~1 x [0,1], M n =S n - 1 x[2,3], u r f l =S n " 1 x[ l ,2] .

The Un can be regarded as an attached cornered manifold of Mn and Mn by
identified (a?, l )eM w with (x, 2)sMn, xsSn-\ Since Mn, Mn and i/n can be immersed
into 5 n as shells, hence we have

This shows that there exists an attached cornered manifold such that the equality
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sign of (14) holds.

THEOREM 3. 2. Let Mn and Mm be two cornered manifolds, and let Yy 7 be
two riemannian manifolds. Then we have

(18) TA(Mn xMm\Yx7)^ TA(Mn: Y) x TA(Mm: 7).

Proof. Let / : Mn-*Y and / : Mm-*Ϋ be two immersions of _the cornered
manifolds Mn and Mm into Y and Γ, respectively. Let fxf: MnxMm-+Yx 7 be
the product immersion of / and / . Then by a direct computation, we can prove
that

(19) TA{fx f) = TA(f) x TA(f).

From this equation, we get (18).

EXAMPLE 3. 2. Let Mn=Sn and Mm=Sm be two euclidean spheres of dimen-
sion n and m respectively. Then we have

TA(Mn x Mm: En+m+2) = TA(Mn: En+1) x TA(Mm: Em+1)=4.

EXAMFLE 3. 3. Let M 2 be the real projective plane P2 and Mm the euclidean
m-sphere Sm. Then, by a result due to Kuiper [5,7], we have

(20) TA(M2 :E3)> TA{M2: Eά) and TA(Mm: Em+2) = TA(Mm: Em+1)=2.

Therefore, by (18) and (20), we have the following:

TA(M2 x Mm: Em+5) < TA(M2 :E*)x TA(Mm: Em+2).

Examples 3. 2 and 3. 3 show that the equality sign and the inequality sign of
(18) hold for some product cornered manifolds.

EXAMPLE 3. 4. Let M and M be two unit 1-spheres. Let Y be a unit 3-
sphere and iu i2 the inclusion mappings of M and M into Y respectively. Then
by Theorem 2. 2, we have

(21) ϊ!A(f1) = Γi4(f,)=0.

On the other hand, by a result due to Chen [2], we know that every immersion
of MxM into Y has positive total absolute curvature.

By Theorem 3. 2, we have the following:

COROLLARY 3. 3. Let Mn and Mm be two cornered manifolds, Y and 7 two
riemannian manifolds. If TA(Mn: Γ) = 0 and TA(Mm: 7) is finite, then we have
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TA(MnxMm:Yx7)=0.

In particular, we have

COROLLARY 3. 4. If a cornered manifold Mn can be immersed in a riemannian
manifold Y with finite total absolute curvature, then we have

TA(MnxI:YxE1)=O)

where I denotes an interval of 1-dimensional euclidean space E1.

REMARK. It is easy to see that the ambient riemannian manifold Yn+N can
be replaced by a cornered riemannian manifold for almost all propositions.

4. An inequality for cornered manifolds in euclidean space.

In the following, let 3<(Mn) be the set of real-valued functions on a cornered
manifold Mn with only non-degenerate critical points on Mn—BdMn. For any
/€£F(MW), let nti(f) denote the number of critical points of index i of/ on Mn.
Let

(23) m(f) =

(24) m(Mn)=inf {m(f) :

THEOREM 4 .1. Let Mn be a compact cornered manifold. Then we have

(25) TA(Mn:En+N)^m(Mn), N^l.

In particular, if Mn is closed, then we have

(26) TA(Mn:En+N)^Σ h(Mn),

where h(Mn) denotes the i-th betti number of Mn; i=Q,lf'~,n.

Proof Let / : Mn-»En+N (N^O) be an immersion of a cornered manifold Mn

into En+N. Let S?"*"^"1 denote the unit sphere with center at the origin 0 in
En+N. For any e in SQ+N~1, we define the height function:

(26) he\ Mn-*R

by he(p)=f(p)-e for every e in So+N~1- Then it is clear that for almost all e in
Sn+N-i^ t k e height function he have only non-degenerate critical points.

Let

(27) v: Bv-^SΓ"-1
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be the mapping defined by v(p,e)=e. Then, by the definition of he, we know that
for every (p,e)eBΌ with v(p,e)=e, we have

(28) dhe(p)=df(p)>e=0.

Hence, p is a critical point of the height function he.
Conversely, if p is a critical point of the height function he, then, by the de-

finition of the critical points, we have

df(p) e=dhe(p)=0.

Hence (p, e) belongs to Bv. For almost all e in S?*^-1, the number of all critical
points of he is equal to the number of points (p, e) in Bυ with ϋ(p,e)=e. There-
fore, we have the following equation:

(29) [ \v*dΣn+N-i
JBV

where dΣn+N-x is the volume element of S?+jvr"S and ϋ* the dual mapping of ϋ.
Thus, by (23), (24) and (29), we have

(30) [ I V*dΣn+N-11 ^ Cn+N-MMn).
JBV

On the other hand, since the ambient riemannian manifold is euclidean, hence, by
(7), (8), (9) and (10), we find that

(31) TA(f) =

By (30) and (31), we get the inequality (25), This completes the proof of the
theorem.

COROLLARY 4. 2. Let Mn be a cornered manifold. If TA(Mn:En+N)=0, then
there exists a real-valued function on Mn which has no critical points.

This Corollary follows immediately from Theorem 4.1.

5. Total absolute curvature for cornered surfaces in Ez.

In this section, we assume throughout that M2 is compact and of dimension 2.
Put

(32) k=number of components of BdM 2 .

THEOREM 5.1. Let M2 be a compact orientable cornered surface. Then we
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have the following:

(I) TΛ(M2:E2)=0 if and only if k^l and b1(M2)=k-l,

(Π) TA(M2:E3)=0 if k>0.

Proof. By the assumption, M2 is a compact orientable cornered manifold of
dimension 2. Hence each component of BdM 2 is diffeomorphic to a 1-sphere i.e.,
a circle. If Bd M2 is not empty, then by the Mayer-Victoris sequence on homology
groups, we can deduce that the betti numbers of M2 are given by the following:

(33) WM")=1, 61(Af2)=2flf+ft-l, b2(M2)=0,

where g is a non-negative integer which is called the genus of the cornered sur-
face M 2.

(I) If TA(M2:E2)=0, then by (11) we know that M2 can be immersed as a
compact subset of E2. Hence we can attach k 2-cells to M2 as a 2-sphere. Thus,
by a direct computation on the betti numbers of M2, we find that the genus g=0
and k^O. Thus we get b1(M2)=k-l.

Conversely, if k^O and b1(M2)=k-l, then by (33), we get 0=0. Hence, M 2

is a proper subset of a 2-sphere. This shows us that M2 can be immersed into E2.

(a) 0 = =3, •• ,etc.

(b) g=2

(c) 0 =

k=2, .-.etc.

,etc.

Fig. 5. 1.
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By Corollary 2. 3, we get TA(M2:E2)=0.
(II) If k^O and g^O, then we can immerse M2 into Ez as a cornered surface

which is the union of some cylinders1} in E* shown in Fig. 5.1. Since the
Gaussian curvature of each point of a cylinder is zero. Hence, by (7), (9), (10)
and (24), we get TA(M2:E*)=0. This completes the proof of the theorem.

If an immersion / : Mn-^En+N of a cornered manifold Mn into En+N has the
total absolute curvature

TA(f)=m(Mn),

then it is called to be convex.

COROLLARY 5. 2. // M2 is a compact orientable cornered surface, then there
exists a convex immersion of M2 into E3. In particular, if k\0 and bί(M2)=k—1,
then there exists a convex immersion of M2 into E2.

These convex immersions have been constructed in the proof of theorem 5.1
and in [6].

COROLLARY 5. 3. Let Mz be a compact orientable cornered surface with &>0.
Then there exists a real-valued function on M2 which has no critial points.

This Corollary follows immediately from Corollary 4. 2 and Theorem 5.1.

THEOREM 5. 4. Let M2 be a compact non-orientable cornered surface with non-
empty boundary. Then we have the following equation:

(35) TA(M2:E*)=0.

Proof. Let M2 be a compact non-orientable cornered surface with non-empty
boundary. Then every component of BdM 2 is diffeomorphic to a 1-sphere. Now,
we go to construct the immersions of M2 into Ez as follows:

Case I. If M2 is a Mδbius band, i.e., M2 is obtained from a real projective
plane by taking off a 2-cell. Then we can immerse M 2 into E* shown in Fig. 5. 2.

Fig. 5. 2.

1) In this paper, a cylinder in Ez means that it is a cornered surface which is given
by the following: Through each point of a curve in E3, there passes a straight line
segment which has the constant direction, and the curve is not equal to one of these line
segments.
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into a MobiusThus, by taking an immersion of the Mobius band in Fig. 5. 2
band shown in Fig. 5. 4 of the next page we get TA(M2:E*)=0.

Case II. If M2 is not a Mobius band, then, by the assumption, we know that
M2 is the union of a compact orientable cornered surface with a Mobius band.
Hence, we can immerse M2 into 5 3 as a cornered surface shown in Fig. 5. 3.

Mobius band

(a)

Mobius band

,etc.

Hence, by Theorem 5.1 and adjoint the part of Mobius band as given in Fig. 5. 4,
we know that there exists an immersion of M2 into E3 such that the total absolute
curvature of this immersion equal to zero. Consequently, we have TA(M2:EB)=0.
This completes the proof of the theorem.

REMARK. There exists a Mobius band in E3 with vanishing Gaussian curva-
ture as the figure illustrated below: C is a closed curve passing through Pi€A2A3,
P2€A3Ai, P3€AiA2, P4€lnt JAiA2A3. Each point P*, ί=l ,2,3, has a small neigh-
borhood arc of C which is a straight line segment. Make conical surface pieces
projecting from the vertices Ai, A2, A3 for the subarcs C(P2, P3), C(P3, Pi), C(Pi, P2),
respectively as shown in Fig. 5. 4. Then, we get a Mobius band composed of three
conical surface pieces. Hence, its Gaussian curvature is zero everywhere. (The
above construction of Mobius band in E3 is due to Dr. Hideki Ohmori.) This
example tells us that there is a convex immersion of a Mobius band in E3,
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A,

Po

A 3

Fig. 5. 4.

6. Total absolute curvature for cornered surfaces in SN.

In the following, let SN denote the euclidean JV-sphere of radius a (or of
curvature I/a2).

THEOREM 6.1. Let M2 be a compact orient able cornered surface. Then
TA(M2:S2)=0 if and only if either M2 is diffeomorphic to a 2-sphere or M2 has
non-empty boundary and bχ(M2)=k—l.

Proof. If TA(M2:S2)=0, then there exists an immersion of M2 into S2.
Hence, if k=0, then M2 is diffeomorphic to a 2-sphere. If k^O, then we can
attach k 2-cells to M2 to become a 2-sphere. Thus, by a direction computation on
the betti numbers of M2, we find that b1(M2)=k-l.

Conversely, if k^O and δi(M 2)=&-l, then by (33), we get g=0. Hence, M2

is a proper subset of a 2-sphere. Thus, we can immerse M2 into S2. Therefore
by Corollary 2.3, we get TA(M2:S2)=0. If M2 is diffeomorphic to S2, then
TA(M2:S2)=0 is trivial. This completes the proof of the theorem.

If / : Mn->Sn+N is an immersion of Mn into Sn+N with total absolute curvature
TA(f) = TA(Mn:Sn+N), then / is called to be convex.

THEOREM 6. 2. Let M2 be a compact orientable cornered surface. Then we
have the following:

(I) &=0 and TA(M2:S3)=Q if and only if M2 is either diffeomorphic to a 2-
sphere or diffeomorphic to a torus. In the second case, there exists no convex
immersion of M2 into S3.

(II) // /?%() and g=0,l, then TA(M2:S3)=0.

Proof. (I), Case (a). If M 2 is diffeomorphic to a 2-sphere, then TA(M2:S3)=0
follows immediately from Lemma 2.1 and Theorem 6.1.

(I), Case (b). If M2 is diffeomorphic to a torus, then for any pair (c, d) with
c>0, d>0 and c2+d2=a2

f we construct an immersion
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of M 2 into S 3 as follows:

(36) (ccosu, csinu, dcosv, dsinv).

By a direct computation, we can find that

(37) TA(U,d,) = 2cdπ/a\ c2+d2=a2.

Hence, by (37), we can choose a sequence of immersions of M2 into S 3 such that
the total absolute curvature of these immersions converge to zero. Thus, by
(11), TΛ(M2:SS)=O.

Conversely, by Theorem 2 of [2], we know that if k=0 and TA(M2:S*)=0,
then M2 is either a 2-sphere or a torus. Furthermore, by Theorem 5 of [2], we
know that if M2 is a torus, then the total absolute curvature for every immersion
of a torus into S 3 never vanishes. Thus there exists no convex immersion of M2

into S3.
(II), Case (c). If g=0, and k±r-0, then M2 is a proper subset of a 2-sphere.

Hence we can immerse M2 into a great 2-sphere of S3. Hence, by Theorem 2. 2,
we get TA(M 2 :S 3 )-0.

(II), Case (d). If k^O and g = l, then M2 can be immersed into Ez as a
cornered surface which is the union of a compact cylinder, say C, with k handles
(each handle is a small compact cylinder) shown in Fig. 6.1.

Fig. 6. 1.

Furthermore, since there exists an immersion of M2 into S3 which maps the part
C into a great 2-sphere of S3 and map these k handles onto some strips in 2-spheres
in S3. Hence we can construct an immersion of M 2 into S3 such that the total
absolute curvature of these immersion equal to zero. Hence, we get TA(M2:S3)=0.

This completes the proof of the theorem.

7. Cornered surfaces in a Kahler manifold with TA(f)=0.

In this section, let Y2N be a Kahler manifold with complex dimension N. Let
/ : Mn—*Y2N be an immersion of a cornered manifold of dimension n into Y2N. In
the following, let S' denote the riemannian sectional curvature of Y2N, and let S



398 BANG-YEN CHEN

the riemannian sectional curvature at the points of Mn with respect to the induced
riemannian metric. An immersion / : Mn—>Y2N immerses Mn into Y2N as a com-
plex submanifold if the interior set of Mn is immersed as a complex submanifold
of Y2N. The aim of this section is to prove the following theorem:

THEOREM 7.1. Let f: M2-*Y2N be an immersion of a cornerd surface M2 into
a Kάhler manifold Y2N as a complex submanifold of Y2N. Then the following
three statements are equivalent:

( I ) TA(f)=0,
(II) S^S',
(III) / is totally geodesic, i.e., the second fundamental from 11=0.

Proof. In order to prove the theorem, we first prove the following lemma:

LEMMA 7. 2. Let f: Mn-+ Y2N be an immersion of a cornered manifold Mn

into Y2N such that Mn is immersed as a complex submanifold of Y2N. If the
holomorphic sectional curuature H of Mn {with the induced structure) and the
holomorphic sectional curvatme H' of Y2N satisfy the following inequality:

(41)

then the immersion f: Mn-*Y2N is totally geodesic.

Proof. In the following, let ] denote the complex structure of the Kahler
manifold Y2N. By the assumption, we have the equation of Gauss:

(42) R'(W, Z, X, Y) = R(W, Z, X, Y)+g(II(X9 Z\ II(Y, W))-g{II(Yy Z\ Π(X, W)),

where R and R! denote the riemannian sectional curvature tensor field of Mn—BdikP
and Y2N respectively, and g is the riemannian metric of Y2N.

Furthermore, the second fundamental form // of the immersion / : Mn—>Y2N

satisfies the following equations:

(43) IKJX, Y)=Π(X, JY) =J(IKX, Y)).

By (42) and (43), we get

(44) R(X,JX, XJX)=R'(X,JX, XJX)-2g(Π(X, X\ Π(X, X)),

for all vector fields X on Mn-BάMn. Thus, by (41) and (44), we have

g(Π(X,X),Π(X,X))=0,

for all vector fields X on Mn—BdMn. Hence, the second fundamental form 77=0
Now, we return to prove theorem 7,1:
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(II) => (III) => (I): These follow immediately from the definitions and Lemma 7. 2.
(I) => (III): Since M2 is immersed as a complex submanifold of Y2N. Hence /

is minimal, that is the normal vector field

(45) N=ΣΠ(ei,ei) = ΣArner
% r,ι

vanishes. Thus, by (I) and (45), we have

det (Λ*/)=trace (Λij)=0.

Thus we get

This means that the second fundamental from 11=0.
(IΠ)i>(II): If the second fundamental form vanishes, then by equation (44),

we have

mxjx, XJX)=R'(XJX, xjx)

for all vector fields X on M 2 - B d M 2 . Thus, by dimM 2 =2, we get (II). This
completes the proof of the theorem.

REMARK. From the proof of Theorem 7.1, we know that statement (II) can
be replaced by

(II)': S=S'.
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