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THE ASYMPTOTIC DISTRIBUTION OF INFORMATION PER UNIT
COST CONCERNING A LINEAR HYPOTHESIS FOR MEANS
OF GIVEN TWO NORMAL POPULATIONS

By Kazuromo KAWAMURA

§1. Introduction.

On the sequential design problem Chernoff [1] has studied a sequential testing
problem concerned with composit hypothesis. In his paper he has shown an es-
sential and simple example in which he treated two mutually independent Bernoulli
trials 77 and 7. If we denote the probability of success of trial 7y with p, and
the probability of success of the trial 7; with p, and the hypothesis p,=p, with H,
and pi3p. with H;, the subject which he treated was sequential test of the hypothe-
sis Hy,. He has given a selecting way of trial at each step definitely considering the
results of preceding observations. More precisely, the procedure is deterministically
given step by step comparing with Kullback-Leibler (K-L) informations of 7y and
Tz.

We have studied in [2] the asymptotic behavior of the sum of informations
which discriminate the hypotheses H, and H; gained between first and »n-th step
under the procedure using K-L information deterministically at each step.

In our paper [4], for given finite number of populations £, (i=1,---, k) which
has a distribution of exponential type with one dimensional parameter 6; (i=1,---, k)
respectively, we had treated the sequential testing problem with respect to the
given hypothesis p-0=p, concerning unknown parameters 6, ---, 6, in & dimensional
(01, -+, 0x) space. The distribution of i-th population E; (=1, .-+, k) was restricted
by an exponential type introduced by S. Kullback. We have given in [2], [3] a
cost optimal procedure & selecting the populations and in [4] the equivalent
randomized procedure @* the limiting property of the logarithm of the likelihood
ratio per unit cost concerning the hypothesis p-6=p of our unknown % dimensional
parameter 0=(6s, --+, Ox).

We have specially had some interests on the asymptotic property of the de-
terministic procedure. Given two trials 73 and 7; each of which has a normal
distribution with mean m,; and m. and variance ¢,* and ¢,2 respectively, then the
hypothesis H, becomes ,=m, and H; becomes m,3m, analogously. In this model
using the deterministic procedure which compares with K-L informations of the
given trials 7y and 73, the selecting ratio of 73 and 7; has strait convergence
property to the optimal ratio as given in [3] and [4] as “special example ”.
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In this paper we treat two trials E; and E, each of which has normal distri-
bution with unknown mean #,; and m, and known variance ¢, and .2 respectively.
Under the deterministic procedure using K-L informations of E; and E, we shall
show the asymptotic distribution of the sum of informations between the first step
and #-th step discriminating two hypotheses H, and H;. The expected value and the
order of the variance of the sum of informations will be obtained in the following
sections.

In section 2 of this paper we assume that we have given a normal population
N(m,s* and its » independent samples i, ---, z,, we shall show the asymptotic
behavior of the sum of self informations of the unknown mean s, the logarithm
of the likelihood of 7 and the logarithm of the maximum likelihood of . In
section 3, 4 we shall restrict the number of populations to 2. And the distributions
of E,, E, are normal with means m;,, m, and variances ¢,% ¢.> where m;, m, are
unknown values. In section 4 the main result of this paper will be shown, that is,
under the procedure P we have the limiting property and the asymptotic distri-
bution of the gained sum of self informations si(xi, -, x»), the logarithm of the
maximum likelihood of (2, m.,), the logarithm of the likelihood ratio under the
hypotheses m,=m, and m,>m, and the logarithm of the likelihood ratio per unit
cost.

§ 2. Asymptotic behavior of the sum of self information and the logarithm
of the maximum likelihood.

2.1. Here we consider the asymptotic behavior of the sum of self informations
of » independent random variables Xj,---, X, from a given normal population
N(m,%. The sum of self informations s,(Xj, -, X) of the » independent random
variables Xj, ---, X,, is given by

@1 $u(Xa -+, Xa)= 37 log (X, m, 0%),
=1

where (X, m, %) is a normal density function of population N(@m,¢?), ie.

1
2) — — —(X-m)2/202
2.2 F (X, m,a? NGT e
2.1.1. First we consider the distribution of s,(Xj, ---, X») for fixed ». From
the equality (2. 1), (2. 2) the random variable sn(Xj, -+, X») becomes

n 1
wes — — (X ~m)2/202
sa( Xy, -, Xn) z=§ 1log NZT e

2. 3)

n o 2 -
:——%;(XI m) ——nlog«/27ra,

g

where (X;—m))o is a normal random variable with meae zero, variance one. Since
Xi, -+, X, are independent, then (X;—m)/o, -, (X,—m)lo are independent random
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variables. In the following lines we put
—_ 2 —_— 2
@. 4) xn2=<X1 m) +~~+<X" m)
g ag

then yx,? is distributed as y*-distribution with » degree of freedom. Therefore
su(Xy, +++, Xy) is given by a linear form of the random variable y,? as given in (2. 3)

1 _
(2. 5) sn(le “tty Xﬂ)z - ‘Z“an_ n IOg N/Zﬂ' a,
where the mean value of s,(Xi, -, X») is given by

1 _
Esu(Xy, -+, Xp)=— iEx,ﬁ-—n log /\/27'[ g

=—g—nlogM2_no,

and the variance of s,(Xj, -+, X,) is given by

1

2
Var sx(Xy, -+, Xn)=<— %) Var (322 = 5'27;:

n
5
2.1.2. Next we treat the normal approximation of the distribution of

Sn()(ly ) Xn)/n

Sn(le Tty Xn) __l_ an _ a5
T =yt g/ 2.

First we consider the distribution of

2 1 T 2 Xn_m 2
b= (B e (257)
”n ”n G G
By the central limit theorem y,%/n is asymptotically normally distributed with
mean one and variance 2/z in the sense of convergence in distibution. So that

(—1/2)ys2[n is asymptotically normally distributed with mean —1/2—(1/2)log 2r0®
and variance 1/2xn.

2.1.3. Finally we consider the limit value of a random variable su(Xj, -+, Xz)/7%.
In the equation (2.5) y.%/z is the sum of square of » independent random variables
with common density N(0,1)

(=52) - (57)

Then by the strong law of large numbers we get
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20 olimE(ET) o (B () o

n—oo 7 g

Therefore we have

@7 fim 20 L)

n—oco

———;——logN/ZrU

with probability one.

2.2.4. In this place we consider the asymptotic behavior of the maximum
likelihood given by # independent random variables X;, -+, X,, from the population
given in the preceding section. And we assume that the mean value is unknown.
We define the logarithm of the likelihood function of m by

n n 1
2) — e p—(Xq—m)2/202
(2. 8) log Z|=|1 f(X,, m, %)= k}_ 1log NG e .

Then the logarithm of the likelihood function becomes our sum of self informations
Sn(Xy, -+, X,) defined in preceding section. The maximum likelihood of the parame-
ter m is given by the maximum value of the likelihood function of m with respect
to m.

n 1 n Xl_m 2 .
2.9 max log [[ f(X,, m, 0®)= max {— 5 Zl <—0————> —nlog \/27{0}.
m =1 m 1=

The maximum value is given by differentiation of the logarithm of the likelihood
function with respect to'm. The value of the maximum estimate of m is given by

2 Xy

Then the maximum value becomes

K3 n Ry 2
tog 1T £ 7, o=~ 5 3, (272 ) s log /25
=1 =1
(2.11) o

where X7, (X;—Mn)/o)? is distributed as y? distribution with freedom #—1. There-
fore we put it as yn—:% Then

n 1 __
(2.12) max log [] f(X,, m, 6?) = — 5 Lam—nlog &2z 0,
m =1

where the expected value of the logarithm of the maximum likelihood is
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Elog [1£(Xs, im 0)=— + Eynr®—nlog o/ Z 0
=1

2
2.13)
-1 .
=— n2 —nloga/2z ¢
and the variance is given by
n 1 2
Var log [T 7(X, o) = (= ) Var Gs?)
=1
(2. 14)
1 n—1
=7 20—D=—5—

As a conclusion the logarithm of the maximum likelihood of 7 given in (2.12) is
distributed as a linear form of a y* random variable y,_,> with »—1 degree of
freedom.

Next we consider the asymptotic behavior of max,, sn(Xi, -, Xn)/#.

Maxs,(X,, -, Xo)jn= - max 33 1og (X,,m, 0%
m mo =1

(2. 15) = 2 (l0g /(X i, )+ +108 f (Ko, i, 09)
_ 1 n—l Xn—12 ‘ ——
ST T Tam1 08w/

By the central limit theorem y._.%/(n—1) is asymptotically normally distributed
with mean one and variance 2/(r—1) in the sense of convergence in distribution.
Therefore (—1/2) yn-.%/n is asymptotically distributed with mean —(z—1)/2» and
variance (#—1)/2n*%. Then the logarithm of the maximum likelihood per unit sample
max,, Y., log f(X,, m, 6%)[n is asymptotically distributed as normal distribution with
mean —(#—1)/2n—log »/2x¢ and variance (z—1)/2n2.

Finally we consider the limit value as #—oo of the logarithm of the maximum
likelihood:

1 = .
31 (Xi—n) —nloga/2r 0

20% 21

max log ]n_[f(Xi, m, %) =—
m =1
(2.11)

=— 27;2 <1 ixzz—ﬁan)—%log«/Z—no.

And, by the strong law of large numbers, Y7, X.?/n—E(X?) as n—oo with proba-
bility one. Then the logarithm of the maximum likelihood per unit sample has a
limit value as followings,
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lim%max log [] £ (X, m, %)
n—00 m =1

L (B — X)) ~log v/2r0

(2. 16) ==

1 _— 1 _
= 252 {02}_10g\/271'0'= ——2——logJ2ng

with probability one.

In this section we have considered the asymptotic behavior of the sum of self
informations s.(Xj, ---, X») given by Xj, ---, X, and the logarithm of the maximum
likelihood max,, s.(Xj, -+, X») with respect to unknown mean m for » independent
random variables X;, ---, X, from a given normal population N(m, o2).

Note 1. For #z independent random valiables Xj,---, X, from N(m,s?), the
difference between the two values max,, log 117, £(X,, m, ¢®) and su(Xj, -+, Xn)

max log ﬁ f(X,, m, 0%)—sn( Xy, -+, Xan)
m =1

) e B v

=1 g

—m)?—(X;—X)?

Il
- ag[H
i

>

= {nm?:—2nmX +nX? = 1 <%>2

20° 2

is distributed as y? distribution with one degree of freedom.
Note 2. It holds the next relation:

(2.18) max s 0 X Xy Xa) _ 1,
7 n - 2n e

Therefore the difference has mean 1/2x# and variance 1/2#%2.

Note 3. If we have two independent samples Xj,---, X, and X *,.--, X,,;* with size »
from the normal population N(m,os?), then s,(X,---, X,)/%n is asymptotically distri-
buted as normal distribution N(—1/2—log »/274, 1/2r)and maxm sa(X:¥, -+, Xu¥)/n is
asymptotically distribued as normal distribution N(—(#—1)/2n—log &/ 2r s, (n—1)/2n2).
Therefore the difference maxy, sp(Xi*, «--, Xo*)/n—su( Xy, -, Xu)/n is asymptotically
normally distributed with mean

n—1 — 1 1
(2.19) <——fz—’/&——log/\/Zﬂ0>—(——2——log\/E0>=%
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and variance

(2. 20)

that is, the difference is asymptotically considered as a random variable of normal
population N(1/2#n, 1/n—1/2n?).

§3. Most informative procedure concerning the costs of experiments.

In this section we shall discuss the procedure of selection of two normal popu-
lations N(my, 01%), N(ms,0,?), where the means m,, m, are unknown and the vari-
ances are known. And if we select N(m, 6,2 (i=1,2) we must pay cost C; (i=1,2)
for each sample from the populations.

First we define the aim of policy of selecting populations. Under the given
aim we shall define the optimal policy ¢ of selecting populations in each steps.
And we shall define equivalent, in limiting property, randomized policy of selecting
populations ¢*. Under the policy @, ¢* we have studied the limiting optimality
and the equivalence in limiting property of the two policy ¢, @* in [3].

In 3.1 we shall discuss, under the sequential deciding procedure <, the
asymptotic behavior of the objective function as given in [2], [3] etc., specially the
logarithm of the likelihood ratio per unit cost Su(fn, Gn)/ X171 C.

3. 1. Definition of the optimal procedure.

The aim of our procedure of selecting the two trials £} and E is to discriminate
whether the unknown pair of means m; and m, exists on a given linear line
my=ms or not. To discriminate the two hypotheses m,=m, and m,xm, we ad-
ditionally consider the optimality in the sense of discrimination per unit cost.®
We considered to pay costs C; or C, to observe samples from the two trials £; or
E, respectively. For the discrimination we define the logarithm of the likelihood
ratio Sp(6, 6,) as followings:

max log [] £(X,, 0, E)
@1 Su(Bny )= —28—2=1 ,
max log [] f(Xs, 6, E®)

oeaGy) =1

where Xj, ---, X, are the first »# observations, £® (i=1, ---, #) means the i-th selected
trial, # means the two dimensional mean (m;, m,) of the trials E;, E; and =4,
gives the logarithm of the likelihood
@2 max log [] f(X,, 0, E®)=log [[ f(X;, 6., E).

GER: =1 =1

In the following lines we define A(§,) as the alternative domain of 4, in the 2-

1) See [2] and the generalized form [3].
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dimensional Euclidean space R?. On the alternative domain there exists unique 5
which maximizes the likelihood function

(3.3 max log ﬂf(Xu 0, E®)=log Hf (Xa, On, E®).
0sA(0n) =1

We put #; as the number of £ in the first # selections E®, --., E™ and we define
ne so that #,4+n,=xn. Then the unique 4, is given by

3. 4) b — ( DED-p; Xi DEp@ag, Xi)
X n nl , s .

And #, is determined uniquely as following way. Put
L@)=log [1 £ (X, 6, E)
=1

=log [ f(X,0,E®)+log [] f(Xi0,E®)

ED=p EM=E,

= Z 10g75i;;_e—(xz—mx)2/zale+ Z log «/_——we (X §—-m2)2/2092

E@D=E 1 E®=E,

(Xi—m)® (Xs—m)?
1 I L) 5 e
(%1 OgN/Z — +n; log '\/2 02) 2525, 202 E(i)Z=Ez 2052

Then we have easily that maxoeacs,) L(6) is ginen uniquely on the boundary = of
hypotheses m;=m,, so that we have

(3.5) max L®)= max L(6).

0eA(y)
Therefore, #, is an element of n. If we put m,=m,=m, then

max L)= max L(0),

0cA(By)
aL ___a_(_ ZE(':)=E1 (X,,-—m)z _ ZE(i)gEELXi"‘m)ZV)
om - om 2(712 20'22
_ Xp-g, (Xs—m) i De g, (Xi—m)
- 20,2 20,2
_ Yeirop Xa n e Dog, Xi __< n )
0'12 o2? 01 0‘2

If we put L/om=0 then m=(Z g, Xifo:*+ X g, Xilo:?)[(n:]01*+n2[0.*). Then we have

(e B ) (2 B ()
0'12 0'22 0'12 0'2 0'1 g3 g1 dg

I
3
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én=<<—”% Za ki M ZEzX‘)/<£+"—i),

o1 7 [ V23 0'12 )
n Np,Xa | M Np, Xu | N
i Ter o )\eEztoe))
g1 1 gy Ny gy Oz

where Yz, means the sum of i such that E®=F) in the first » trials E®, ..., F™
and also Xz, means the sum of i such that £®=F, in the first » trials. And we
put 7',,=n1/012/(n1/012+n2/022), then l—rn=n2/022/(n1/012+n2/¢722),

2z X +(1—7n) Lz Xz,rn Z;’;‘ Xi +(1—79;)L';2 X }
1 2

1 2

(3. 6) Gn=17n

And (3. 1) becomes

A ~ _ 7 f(X‘Ly ém E(i))
(3' 7) Sn(om 0”) - ; IOg f(Xzy 57“ E(i)) .

Next we introduce the notion of costs, that is, for any step we pay the costs
C, for the observation from the trials £, (7=1,2). The sum of costs between the
first and #n-th step is X7, C®, where C®, ...,C™ are the sequence of costs paid
for these steps.

DEFINITION OF THE PROCEDURE . For any step # the ratio

Sn(bny G2)
©-9 e

is considered as a random variable. The limiting property of the random variable
as n—oo for some selecting way of E®, E®, ... is given in [2], [3] and [4]. We
shall call a selecting way of E®, E® ... as a procedure (or policy) in the following
lines. Under any procedure ¢ having selecting ratio 2 of £; the sequence of the
random variables (3. 8) has a limiting value. So we may classify the procedure by
the limiting ratio 2 of selecting E: and put the class of the procedure as ¢,. By
an easy calculation the right side of equality (3. 1) becomes

3.9 Sn(én; 571):”1[(57» 57“ Ey) +n2[(ém 57», E,)
where I(f, ¢, E;) is the mean discrimination defined by S. Kullback [5]:

f(X’ 0’ Ej)

FX, o By ) o O ENAX.

3. 10) 10, 0,E)= Slog

The sum of costs paid in the first # steps is

C(i) zﬂlc;[ + nzCZ.

M=

1=1
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Therefore, to maximize the ratio

Sn(ém 57&) . nll(ém 57’4 El) +n21(ém 5114 EZ)
R, C® - mC1+n:C,

3. 11)

we may define the procedure P as n+1-th step E@+D as follows:

E, A > R
3.12) pew=|E, | if {Cnln 2 <, I(""’g"’E”.
E® : _ :

In fact we can verify the Kullback’s mean information for discrimination (3. 10)
as followings:

(my—m;*y:

3.13) 16, 0, Ep= "5

(7=1,2),

where 0=(my, ms), o=(m* my*). From 64, in (3.4), §, in (3. 6) and the equality
(3. 13) our procedure (3. 12) becomes

£ ’ 2
Bew=iE, | if lzc [ZEI X —{r,, Lo X | gy e }]
E@ 01°C1 n o0 [z
(3.14)

>
1 Y, Xi _{ X, X, o\ LeXi }]2
[ < } 20‘2262 I: 23 "a 7 + (1 Tn) 2

or equivalently

ANY

U S zglxz_zEzXzy
(3.15) if 5=l rn)(

7,
n1 nz 20'22C2 " nl nZ

] 1 2<ZE1X1_2E2X1-)2

or equivalently with probability one

2 > 2
3.16) i A=) [<] i

d.*C, 732C, ’

And by definition of 7, used in (3. 6) we have

1'—-7'", _{nz ni +n2)}/{n1/(7’l1 +n2>}_n2 (5]
T a2 \oi®2  0a2? 7.2 \o:2  02° a:2] 0%’

Then (3. 16) becomes equivalently

>
. Ny 7y 2 0'12C1
&40 (%) [j] G,
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or equivalently

> S
3.18 if M) < lo/C
(3.18) it [i } /G,
or equivalently
> __ _
.on N oA/ C1 +014/C
f =% 41 IV TN La
! ny ny + i 01/\/ C.
Therefore we get equivalently
< _
. 71 o «/ C.
3.19 f —i>f vz
( ) ' n {= 0'2/\/01 +0'1'\/Cz

with probability one. In the following lines we put right side of (3.19) as 2 then

3. 20 1= oG
( ) sz\/c1 +01'\/Cz

LEMMA 1. For some procedure if min (#;, n:)—oco as n—oo, then b8, converges
to the pair of unknown parameters (mi, ms) with probability one.

LemMA 2. For some procedure if mi/n—2i as n—co, then 6, converges to 6%
with probabiliy one as n—oco. Where 0% is given by the equations
(mi—my*)* _ (my—m*)?

3.21) oI T and m*=my*.
101 202

In the paper [4] the conditions in lemma 1, lemma 2:

I. min (s, #;)—oc0 as n—oo with probability one,

II. n/n—2 as n—oo with probability one
are called as the optimal conditions and we have shown in [4] that under the
procedure ¢ we can get the property conditions I, II.

LemMA 3. The pocedure P has the property of optimal conditions.
Therefore under the lemma 1~3 we have

THEOREM 1. Under the procedure P we have

lim S =1%(0)

with probability one as given in [2]. The value I*(0) is given by

I(ﬁ, 0*, El) _ I(ay 0*a E2)

3. 23) C. G

=I*(0)
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where 0 is the unknown parameter and 6% is the root of the equation mi=m, given
in (3. 23) or see (3.21).

THEOREM 2. Under the other procedure P’ if the vatio Su(Bn, 0,)/ 50, C®
converges to the limit value I**(0), then

(3.24) I**0)=1*(0).

The proof is given in [4] so that our procedure @ is the asymptotically optimal
procedure in the sense described above.

3.2. The randomized optimal procedure.

In preceding 3.1 we have observed that the procedure ¢ (3.12) has the
optimal conditions I, II and the maximum limit property in (3. 22), (3. 24). And the
optimal procedure (3. 12) becomes equivalently

E, a [S
E, if == >l
Em no_

with probability one as in (3. 19), (3. 20). In this place we generalize the procedure
P as the following binomially randomized way. We define the procedure ¢* by
PE®D=F\}=2,

3. 25) Ea =

LEMMA. The procedure P* has the optimal condition I and II.

Proof. By the strong law of large numbers &* has the property that the
selecting ratio of E; between first and #-th step #:/# converges to the ratio 2 with
probability one. Therefore @* has the property of optimal condition II, and by
the inequality 0<2<1 we easily have min (%, #,)—0c0 as #n—oco with probability one,
that is, @* has the optimal condition I as to be proved.

Therefore, under @*, we can verify the same result of lemmas 1, 2. Therefore
under ¢*, we have the same result of theorem 1, 2. So that @* also is an element
of the optimal procedure in the sense (3. 22), (3. 24) in theorems 1, 2.

Note. If we put the costs Ci, C; of Ei, E, as Ci;=C,=1, then we have
2 C®» =g, Therefore, the ratio of our interest (3. 8) becomes

1 2 f(X'Ly é‘ny E(i))
(3. 26) PRI A )

which is ordinary sample mean of self discriminations given by the » samples

between first and #-th step.

§4. Main results.

In this section we consider the asymptotic behavior of the sum of self infor-
mations, the logarithm of the maximum likelihood, the logarithm of the likelihood
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ratio on the hypothesis m,=m, and the logarithm of the likelihood ratio per unit
cost under the procedure .

4. 1.
4.1.1. The asymptotic behavior of sum of self informations s,(Xi, -, X»)
under <.

Sn(X, -+, Xn)=log ﬁ F(X,, 0, E®)
1=1

=10g ]_[ f(X‘L; 0: E(i)) +10g n f(Xi’ 0; E(i))
Ey E,

4.1) =log ]| e Crmotlog T] leTf e

7Z' [
1 1
= <n1 log Jomos +n, log oo 02)

(B 3 ()]

Here Yz ((X;—mu)lo,)? is a random variables which is a function of #; independent
random variables from the normal population Ei: N(mi,0:2). And (X;—m)lo, is a
random variables from a normal population N(0,1) if E®=F, is satisfied, therefore
(Xs—my)o1)? is a random variable of y* distribution with one degree of freedom,
S0 our Xz ((X;—miy)lo,)? is a random variable of y? distribution with #, degree of
freedom. And 3, (Xi—ms)fo.)? is a random variable of y* distribution with
n, degree of freedom which is independent of X ((Xs—mu)/o1)®. Therefore
2ig (Xs—my)fo)* + X, (Xs—me)fos)? is a random variable of y? distribution with
ni+n.=n degree of freedom. In the following lines we put it as y,2. Then our
sa(Xi, -+, Xu) becomes

1, _1 1
4. 2) Sa( X, -+, Xn)——7X" + n, log N/%01+nz log NG TN
4.1.2. The distribution of s,(X3, -+, Xy)/n.
Since
Xy X)) Lo om0l e 1
= 0 —11'0'1+ " logN/z—Mz,

under P, we have |n/n—2|=1/n with probability one. Therefore, by the equivalent
condition of @ (3. 25), ny/n is a function of »# with probability one. Using the result
of section 2, —(1/2n)y,* is asymptotically normally distributed as N(—1/2,1/2n).
Then s.(Xi, -+, Xy)/n is asymptotically normally distributed with mean —1/2+(#,/n)
log (1/a/27 61) + (na/n) log(1/a/ 27 0;) and variance 1/2x.
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4.2,
4.2.1. The asymptotic behavior of the logarithm of the maximum likelihood

maxy (X, +++, Xn)-

mvaxsn(-le "ty Xn)=max Iog if(Xz, 0, E(i))
I} 1=1
=log [] (X, bu, E®)
1=1

4. 4) =log ] f(Xi, By Fy) + log [17(X., by Es)
E By

(s o+ mtog =)
(0w gy melon 7y

L (REa iy L (X En X,

where Yz {(Xi— X5, Xi/n:)/01)? is a random variable consisting of #, random variables
from our population N(m,0,%) which is distributed as §? distribution with 7,—1
degree of freedom, and 3z, {(X;— X 5, Xi/ns)/o2}? is also a random variable of y* distribu-
tion with #,—1 degree of freedom which is independent of 3z {(Xs— X g Xifni)/oa}
Then the sum is a random variable of y? distribution with (#;—1)+(#n.—1)=n—2
degree of freedom. Therefore we get

2 5

__1 ., _1 ”_l_>
@5 maxsi(X e, X)=— 5t +(n1 log 75— +malog ).

4.2.2. The asymptotic behavior of maxy s,(Xj, -+, Xu)/%.

maXy Sn(Xl, oy Xn) _ _1_ X'n—zz 7y 1 ﬂ 1
” =TT a T log~/2—7wl+ n logMQEoz

(4. 6)
ng

_ PR R
T2 n n—2 7 8 Joma w8 ey

The random variable y,-.%/(r—2) is asymptotically normallydistributed with mean
one and variance 2/(n—2). Therefore max, s,(Xs, --+, X»)/# is asymptotically normally
distributed with mean

o 1

7 log 27T [

1 n—2 7y 1
PR IV, s

and variance

<—% "Ez)znfz = (n;2>22(n1—2) = (;;;22).

4.2.3. The limit value of max, s,(Xj, ++, Xn)/%.
In the inequality (4.6) yn-»%/(#—2) has a limit value 1 with probability one;
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P{limyeo gn—2?/n—2=1}=1. Then we have

) Ii Sn(Xl, sty Xn) =___l _l‘_._ — ——1_——
@ lim =5 2 == g g s+ (1) log

with probability one.

4.3. Under the procedure ¢ we consider the asymptotic distribution of
Su(Bn, 0)/n and limit value.
By (3. 9), (3.13) and (3. 6) we have

Sn(ény 571) =”ll(é7u én: EN+ nzl(ém 57» E)

_ (Xg Xifn—m*)? (X5, Xi[ta—m*)?
=7 20,2 + 72 2052 ’

. 8)

where m*=r, 3,5, Xi/#1+(1—72) X g, Xi/n,. Then we have

(Zm Xifm—m*)* _ (A—12)(Zp, Xita— L, Xifna)’
20,® - 20,° ’

4.9)
(2 &, Xafn,—m*)? _ 1 (B Xim— g, Xi/ns)?
20'22 - 20'22 ’

Therefore we have

A—r) 1’ }(ZE;XZ _ ZEin>2

By Gn)= 052
Sn(On, 0n) {”1 20,2 % 26,2 1 s

R I TR Y (ZElXi Yim, Xi \*
_2[0'12(1 7n)+0227n] 7 - N2 >’

4. 10)

where 7,=#1/6,%)](n1]0:%2+ns/0.%). Then we get

A X ‘l _n-]_ 23 <n1 23 >2 Ny [ 1y 71 Ny 2 ZE1X'L ZEth 2
Sal0n 0a)= 2 [012<022/ a,® + 022> +—U_zz<012/<0_12+—0_2?>> }( 1y B e )
_L{n_ln_z("_ur ”_>/<”_+Z‘_)}<ZEX . ZEX>
2 a.® g:% \ g.* % g,® a2’ 7y 2

) (B 2

0'12 0'22 0'12 0'22 V5 V2

2
_1_ 71722 (ZE, X; _ ZE; Xi)2
2

0'22”1 +O'12n2 1 Ny
_ﬁ{_’&ﬂ/ Mmoo\ (ZnXe  ZeX)
20n n/\n 2" #n™ 7 72

55 1 2 (G o) (B Y,
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Following the procedure @ for any step » the number of selections #, of E
is a fixed number depending only on #z. By the argument of 3.1, of preceding
section, under the procedure P, as (1/2)nms/(o:2n,+0:2n,) is a fixed number for
fixed #, we see that in Su(6,,6,) only X Xi/n, Tz Xi/n. are random variables.
These two random variables are independent random variables which are distributed
normally with means my, m, and variances o:2/n, o.%/n, respectively, so that
Yim Xil#i— X5, Xi/n, is a random variable of a normal distribution with mean
my—m, and variance ¢,2/n;+a,2/n,. Therefore, to know the distribution of (X, Xi/#:
— X Xilno)?, we put Yo=Y g Xi/ni— T g, Xi/n, then mean value m of Y, equals
to m;—m, and variance of Y, o,% equals to ¢,%/n;+0:%/n,. Under the procedure
P we have shown in lemma 3 that min (s, #,)—co as n—oo, therefore our ¢,
converges to zero.

Now we assume m=m;—m,=0, then Y,lo, is a ramdom variable of normal
population N(0,1), so that Y,%/e,? is a random variable of y? population with one
degree of freedom. We put it

2
Y, .

(4.12) L =it

On

Therefore Y,?=¢,%p? then Y,? is distributed as y* distribution with constant
coefficient ¢,?%, the mean value of Y2 equals to ¢,? and the variance equals to 2s,%
In the following lines we assume m=m;—m,*0, then by the equality

Ve—m  Yeom _ (Yo—m)
(4.13) 2mon  on  2mon

we can get the asymptotic behavior of Y,2. As (Y,—m)? is asymptotically equal
to zero in higher order as compared with (Y,—m), Y,2—m?/2ms, is asymptotically
equal to (Y,—m)/o, in probability, where the random variable (Y,—m)/o, is a
random variable of normal population N(0,1). In the following lines we put the
random variable as Z, then we have

Y P—m?

in probability for sufficiently large #. Therefore, for sufficiently large #, Y,? is
asymptotically distributed as 2mo,Z+m? in probability, then this is a random vari-
able of normal population N(m? 4m?,?). Hence under the procedure P we have
the following

LemMA 1. Under the procedure P, if mixms, then (g, Xini— X g, Xiln.)* is
asymptotically normally distribuled with mean (m;—ms)? and variance 4(m;—ms)?
(6:2/n1+02%ns) in probability. And if mi=ms, then the random variable is exactly
distributed as y* distrvibution with one degree of freedom having a coefficient
0:%[ny +02%ns.
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Note that the order of the variance of the random variable (X g Xif7n:
— X g, Xs/n2)? in the case mym, is given by

(2 12_2)_ (0_2 £)= (f_ __032_>= (l)

(4.15)  4A(my—m,) <n1 + . =0 e + p, 0 o + A1—D) 0 )

And, in the case m,=m,, we have the variance of the random variable is given by
(4. 12)

Var f(E8_ Zn Xy _pot , o)

7y (2 (5 72

~off5i+ i) =)

By the equation (4.11) our function Sn(6.,8,)/n is given as follows.

Sn(6n, ) _ l_ (/)L —m:/n) < 2EXa _ 2iE, Xi>2
n 2 (11/n)(02* —01%) +0.® 2 (2 )

4. 16)

4.17)

In the right hand of this equation only (X gz, Xi/#:— Xz, Xi/n,)? is a random vari-
able. Using the result of lemma 1 we can get the asymptotic behavior of Su(8x, 0,)/7
as follows.

In the case mu%m,, Su(6n, 0.)/n is asymptotically normally distributed with
mean

4. 18) L (ﬂ . / (%UH %012>>(m1_m2)2

and variance

Lfm o [(m o 2 o \\Vy,, <0 a2’
<5<n n/<n02+ n“‘)))“’"‘ ) 71+n2)

1 Mty
n2 n10'22+n20'12

(_”_i/(&.,_ %012))(1%1—9%2)

n

=o([5 wramron ) =o(z)

And if m,=m,, then by (4. 12) our Sn(8,, #,)/n becomes

(4.19) (my—my)*
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Sullmbn) 1 (i e (0, 1 N\\[ZmXi XmXi)®
T n 2\n n T -

= —0

7 2 n 7 s
none [(w ., me L\\[o | 6\ ,
— — |+ —oa — +—)u
n nl\n n Ny M

Ll (m m M gy M 2)).£ <7’L1 oy T 2)/1&&) 2
_2<-n—7/<n02+na1 n<n02+n01 n n )P

(4. 20)

Therefore if m,=ms, our Su(6n, §,)/n is distributed as y* distribution with one degree
of freedom having a coefficient number 1/2z under the procedure ¢. Hence we
have the next.

THEOREM. Under the procedure P if mi=ms, then Su(8.,0.)n is asymptotically
normally distvibuted with mean

1
Pl <"%i ﬂ/<ﬂ g’ + ’;—20‘12)>(m1—m2)2

n n n

and variance

l <& ﬁz‘/<£‘1—022+ ;;;—20'12>>(m1—m2)2-

n\n n n
And if my=m,, then

—_— 2
n om

is distributed exactly ¥* distribution with one degree of freedom having a coefficient

number 1/2n.

Finally we shall show the limit value of S,(d,,§,)/z under the procedure <.
By lemma 3 we have seen the fact #,/#n—2 under the procedure . And by the
fact 0<21<1 we have min (#;, #;)—co as n—oo under the procedure ¢. Therefore
by lemma 1 we have 6,—6 as n—oo with probability one under the procedure .
Hence, under the procedure @,

Sl ) =l<ﬂ £/<L+_’Z_>)<ZEX B ZEX)

n 2\n n n A N

4. 21) 1 A2
—2
T T @ er T

as #—oco with probability one,
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4.4. In this place we consider the limiting property and the asymptotic
behavior of the logarithm of the likelihood ratio per unit cost with respect to the
hypothesis 7, =m: Sn(b, §,)] X2, CP.

First we shall show the limiting property of the function S,(8n,@,)/ 27, C®.
Under the procedure ¢ we have

lim2 —, p{nmzz_lXi=ml}=1 and P[limzi&=mz}=1
1

n—oo N n—oo n—o0 Na

as we have seen in preceding 4.3. Our function can be written in the form

Sn(ﬁn, 0n) = ﬁ(—ni ﬁ/(Zl-l— %+ & 012)> < ZEI X - ZEZ Xt>2/(n161+n202)

SrL,C®  2\mn =»n n n "y N,

= l(ﬂ ﬂi/(-n—lCrl'&Cz) <%‘0‘22+ %‘Uﬁ)) ( ZEI Xi - ZEZ Xz)?‘.

2\n =n n n 7y Ny

Then under the procedure ¢ we can easily get

. Sn(én, 5,;) _l AL —2)(my,—mz)?
“.23 im o =3 GO+ (A—0Co) o +(A—o)

with probability one.

In the following we shall show the asympiotic behavior of our function
Su(fr, 0)/ 571 C®, Under the procedure ¢, by lemma 1 in preceding 4.3, if
myxme then (X g, Xi/ni— X g, Xi/n.)* asymptotically distributed normally with mean
(my—m,)? and variance 4(m;—m;)%(0:/n+022(n,) in probability and if m;=m. then
we have given (X g, Xi/ti— X5, Xi/n2)? =(012[1:+ 027 ne)y %

In the equality (4.21) the coefficient of (X g Xi/#:— Xz, Xi/ne)* is a function
of # because of the properties (3.19) and (3.20) of the procedure . Therefore
if my=m, the function S(fn,0,)/3%-1C® is asymptotically distributed normally
with mean

1
5 (‘%1‘ '%’/(%’Cl'i‘ % Cz) ('2—1‘0224‘ %‘022 ))(mr‘mz)z

and variance

2 2 2
{%(n_ _"_/ (_n_ Cit ﬂQ) (1@ o _"_0))} 4(ml_m2)z<o_l. n ,,_)
n n n n n n 01 V2

1 2
(4. 24) =;<%%/<%C1+ %2*02) (%‘022+ —’::—0'12>>(m1—mz)2
1

A1—2) (1
~ % GO A=y o T A—Ded ) _O< n ) :
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And if my=m, then S,(6,,0,)/271 C® can be written as following

Sn(émén) —l<n1 R <-{l—1— e o 5, Mo 2) 2 X Zm X\
Ti.C® 2\ m n/ w 2><702+nm>< o )

1 on [ s ., M2 L\\[(o® | a®\ ,
=5 (5 S/ (o e (s S ) (5 50)

1 n n
=—2-;<1/<7101+ —nz—02>>X12-

Therefore if my=m, then S,(6,, §,)/X7-; C® is exactly distributed as y? distribution
with one degree of freedom which has a coefficient (1/2%)(1/(9:C1/%n+n.Coln)).
Therefore we have the next theorem as to be proved.

THEOREM. Under the procedure P if my=xms, then Sy(fn, G1) 5721 CD is asymp-
totically normally distributed with mean

B (3 20 Bt ) o
n n n n n n

and variance

l(ﬂ..ﬁ/(&cl—}-—n—z 2>2<ﬂ022+ﬁ2—012>)(m1——m2)2.
n\n n n n n

And if mi=ms,, then exactly distributed as y* distribution with one degree of freedom
and the ratio can be rvepresented by

1 n n
o (1/—nLC1+ 7;— 2>)X12:

wheve y.* is a y* distributed random variable with one degree of freedom.
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