KÖDAI MATH. SEM. REP. 22 (1970), 244-249

AN APPLICATION OF GREEN'S FORMULA OF A DISCRETE FUNCTION: DETERMINATION OF PERIODICITY MODULI, II

By Hisao Mizumoto

Introduction. In the present paper, we shall briefly deal with a problem corresponding to the previous paper I in the case of the Hermitian method (Mehrstellenverfahren) (cf. p. 384 of Collatz [1] & Opfer [6]).¹⁾

§4. Determination of periodicity moduli by Mehrstellenverfahren.

1. Definition. We preserve the notations in § 2. 1.²⁾ Let R be a lattice with mesh width h, and let V be a real function on R. Let z_0 be an inner point of R, and set $z_1=z_0+h$, $z_2=z_0+h+ih$, $z_3=z_0+ih$, $z_4=z_0-h+ih$, $z_5=z_0-h$, $z_6=z_0-h-ih$, $z_7=z_0-ih$ and $z_8=z_0+h-ih$. If the equation

(4.1)
$$20 V_{(0)} - \sum_{j=1}^{4} (4 V_{(2j-1)} + V_{(2j)}) = 0$$

holds for every $z_0 \in \mathbb{R}^\circ$, then V is said to be *discrete harmonic* on R with respect to Mehrstellenverfahren, where $V_{(j)} = V(z_j)$ $(j=0, \dots, 8)$. Throughout § 4, the terms "discrete harmonic" is taken with respect to Mehrstellenverfahren.

2. Green's formula. We preserve the notations in § 2. 2. Let V and V' be functions on R, and set $V_{(n)} = V(z_n)$ and $V'_{(n)} = V'(z_n)$ $(n=1, \dots, \nu)$. We consider bilinear forms

$$\mathfrak{S}_{R}(V, V') = \frac{4}{6} \sum_{|z_{m}-z_{n}|=h,m$$

and

$$\mathfrak{S}_{R}^{\circ}(V, V') = \frac{4}{6} \sum_{|z_{m}-z_{n}|=h,m$$

Received December 26, 1969.

2) § 2. 1 indicates one of I.

¹⁾ See References of I.

If V or V' is constant on each boundary component Λ_j $(j=0,\cdots,N-1)$ of R, then we see immediately that

$$\mathfrak{S}_{R}^{\circ}(V, V') = \mathfrak{S}_{R}(V, V').$$

We set $\mathfrak{S}_R(V) \equiv \mathfrak{S}_R(V, V)$ and $\mathfrak{S}_R^{\circ}(V) \equiv \mathfrak{S}_R^{\circ}(V, V)$.

LEMMA 4.1. Let V and V' be two functions on a lattice R. Then the formula

(4. 2)

$$\mathfrak{S}_{R}^{\circ}(V, V') + \sum_{n=1}^{\mu} V_{(n)} \left(\frac{1}{6} \left(\sum_{j=1}^{4} (4V'_{(n_{2j-1})} + V'_{(n_{2j})}) - 20V'_{(n)} \right) \right)$$

$$= \sum_{n=\mu+1}^{\nu} V_{(n)} \left(\frac{2}{3} \sum_{nl} (V'_{(n)} - V'_{(nl)}) + \frac{1}{6} \sum_{nd} (V'_{(n)} - V'_{(nd)}) \right)$$

holds. Here z_{n_j} (j=1,...,8) is the point z_j in 1 respectively on taking z_0 in 1 in place of the present z_n , z_{nl} is a point of R neighboring to z_n which lies on the left of z_n with respect to the oriented curve Γ and which is not neighboring to z_n along Γ , z_{nd} is a point of R with $|z_n-z_{nd}| = \sqrt{2}h$ which lies on the left of z_n with respect to Γ , and thus if a number of z_{nl} for some n $(n=\mu+1,...,\nu)$ is κ $(\kappa=0,1,2$ or 3) then a number of z_{nd} is $\kappa+1$ respectively.

Proof.

$$\begin{split} 6 \, \mathfrak{S}_{R}^{\circ}(V, \, V') &= \frac{1}{2} \left(\sum_{n=1}^{\mu} \left(\sum_{j=1}^{4} \left(4(V_{(n)} - V_{(n_{2J-1})})(V'_{(n)} - V'_{(n_{2J-1})}) + (V_{(n)} - V_{(n_{2J})})(V'_{(n)} - V'_{(n_{2J})}) \right) \right) \\ &+ \sum_{n=\mu+1}^{\nu} \left(4 \sum_{nl} \left(V_{(n)} - V_{(nl)} \right)(V'_{(n)} - V'_{(nl)}) + \sum_{nd} \left(V_{(n)} - V_{(nd)} \right)(V'_{(n)} - V'_{(nd)}) \right) \right) \\ &= \frac{1}{2} \left(\sum_{n=1}^{\mu} V_{(n)} \sum_{j=1}^{4} \left(5 V'_{(n)} - 4 V'_{(n_{2J-1})} - V'_{(n_{2J})} \right) + \sum_{n=1}^{\mu} \sum_{j=1}^{4} \left(4 V_{(n_{2J-1})}(V'_{(n_{2J-1})} - V'_{(n)}) + V_{(n_{2J})}(V'_{(n_{2J})} - V'_{(n)}) \right) \\ &+ \sum_{n=\mu+1}^{\nu} \sum_{j=1}^{\mu} V_{(n)} \left(4 \sum_{nl} \left(V'_{(n)} - V'_{(nl)} \right) + \sum_{nd} \left(V'_{(n)} - V'_{(nd)} \right) \right) \right) \\ &+ \sum_{n=\mu+1}^{\nu} \left(\sum_{nl} 4 V_{(nl)} \left(V'_{(nl)} - V'_{(n)} \right) + \sum_{nd} V_{(nd)} \left(V'_{(nd)} - V'_{(n)} \right) \right) \right) \\ &= \frac{1}{2} \left(\sum_{1} + \sum_{2} + \sum_{3} + \sum_{4} \right), \end{split}$$

HISAO MIZUMOTO

where by $\sum_{j} (j=1,2,3,4)$ we denote the *j*-th summation with respect to *n* of the third side respectively. We note that a summation of all terms with $z_{n_{2j-1}}, z_{n_{2j}}, z_{nl}, z_{nd} \in R^{\circ}$ $(z_{n_{2j-1}}, z_{n_{2j}}, z_{nl}, z_{nd} \in A)$ of \sum_{2} and \sum_{4} is equal to $\sum_{1} (\sum_{3} \text{ resp.})$. Then

$$6\mathfrak{S}_{R}^{\circ}(V, V') = \sum_{1} + \sum_{3}.$$

COROLLARY 4.1. If V' in Lemma 4.1 is discrete harmonic, then

$$\mathfrak{S}_{R}^{\circ}(V, V') = \sum_{n=\mu+1}^{\nu} V_{(n)} \left(\frac{2}{3} \sum_{nl} (V'_{(n)} - V'_{(nl)}) + \frac{1}{6} \sum_{nd} (V'_{(n)} - V'_{(nd)}) \right).$$

COROLLARY 4.2. If V is a function on R with the boundary property V(z)=0for $z \in \Lambda$, and V' is a discrete harmonic function on R, then

$$\mathfrak{S}_{R}(V, V') = \mathfrak{S}_{R}^{\circ}(V, V') = 0.$$

 \boldsymbol{n}

Conversely, if a function V' on R satisfies the relation (4.3) for every function V on R with the boundary property V(z)=0 for $z \in \Lambda$, then V' is discrete harmonic on R.

COROLLARY 4.3. If V is a discrete harmonic function on R, then

$$\sum_{=\mu+1}^{\nu} \left(\frac{2}{3} \sum_{nl} \left(V_{(n)} - V_{(nl)} \right) + \frac{1}{6} \sum_{nd} \left(V_{(n)} - V_{(nd)} \right) \right) = 0.$$

3. Boundary value problem, minimum problem, monotonicity. The following lemmas are quite analogous to Lemmas 2. 2, 2. 3 and 2. 4 respectively.

LEMMA 4.2. (Cf. pp. 212–213 of Milne [4].) Let f be an arbitrarily given function on the boundary Λ of a lattice R. Then there exists one and only one discrete harmonic function V on R which has the boundary property V(z)=f(z) for $z \in \Lambda$.

LEMMA 4.3. (Cf. p. 213 of Milne [4].) Let W be a function on a lattice R, and let V be a discrete harmonic function on R with the boundary property V(z) = W(z)for $z \in \Lambda$. Then the inequality

$$\mathfrak{S}_{R}(V) \leq \mathfrak{S}_{R}(W)$$

holds, where the equality appears if and only if $W \equiv V$.

LEMMA 4.4. Let R_1 and R_2 be the lattices defined in §2.4. Let c_j (j=1, ..., N-1) be a system of real numbers being not simultaneously zero. Let V^k (k=1, 2) be a discrete harmonic function on R_k respectively which has the boundary property

$$V^k(z) = c_j$$
 for $z \in \Lambda^k_j = \Gamma^k_j \cap R_k$ $(j=0, \dots, N-1; c_0=0).$

Then the inequality

$$\mathfrak{S}_{R_1}(V^1) \geq \mathfrak{S}_{R_2}(V^2)$$

246

holds.

4. Monotone convergence theorem of $\mathfrak{S}_{R_n}(V^n)$. We preserve the notations in §2.5. Let V be a discrete harmonic function on R with the boundary property $V(z)=c_j$ for $z \in \Lambda_j$ $(j=0, \dots, N-1; c_0=0)$. Then by Opfer's method (see pp. 293-294 of [6]) we see that

(4.4)
$$S_R(U) > \mathfrak{S}_R(V) > S_{R'}(U').$$

By Lemmas 1.1, 4.4, 2.6 and (4.4) we can easily conclude the theorem.

THEOREM 4.1. With the notations of Theorem 2.1, let V^n $(n=0,1,\cdots)$ be a discrete harmonic function on R_n respectively with respect to Mehrstellenverfahren which has the boundary property $V^n(z)=c_j$ for $z \in \Lambda_j^n = \Gamma_j^n \cap R_n$ $(j=0,\cdots,N-1;c_0=0)$. Then

$$S_{R_n}(U^n) > \mathfrak{S}_{R_n}(V^n) > D_G(u) \qquad (n = 0, 1, \cdots),$$

and if $R_n \nearrow G$ $(n \rightarrow \infty)$,

$$\mathfrak{S}_{R_n}(V^n) \searrow D_G(u) \quad (n \to \infty).$$

Let *R* be an *N*-ply connected lattice $(N \ge 2)$, and let Λ_j $(j=0, \dots, N-1)$ be its boundary components. A discrete harmonic function V_j $(j=0, \dots, N-1)$ on *R* which has the boundary property

$$V_{j}(z) = \begin{cases} 1 & \text{for } z \in \Lambda_{j} \\ 0 & \text{for } z \in \Lambda - \Lambda_{j} \quad (\Lambda = \bigcup_{j=0}^{N-1} \Lambda_{j}), \end{cases}$$

is said to be a discrete harmonic measure of Λ_j on R (with respect to Mehrstellenverfahren) respectively.

COROLLARY 4.4. With the notations of Theorem 2.1, let V_j^n (j=1, ..., N-1)be a discrete harmonic measure of Λ_j^n on R_n (n=0, 1, ...) respectively with respect to Mehrstellenverfahren, and σ_{jk} (j, k=1, ..., N-1) be the system of modified periodicity moduli of G. Then

$$S_{R_n}(U_j^n + U_k^n) > \mathfrak{S}_{R_n}(V_j^n + V_k^n) > \sigma_{jk}$$
 $(j, k=1, \dots, N-1; n=0, 1, \dots),$

and if $R_n \nearrow G$ $(n \rightarrow \infty)$,

$$\mathfrak{S}_{R_n}(V_j^n + V_k^n) \searrow \sigma_{jk} \quad (n \rightarrow \infty; j, k = 1, \dots, N-1).$$

5. Period of conjugate discrete harmonic function. We preserve the notations in § 3. 1. Let V be a discrete harmonic function on R. We set $z_{j_r\pm 1}=z_{j_r}\pm(z_j-z_{j-1})$ and $z_{j_l\pm 1}=z_{j_l}\pm(z_j-z_{j-1})$, respectively. Furthermore, we set

(4.5)
$$\delta t_{(j)} = \frac{2}{3} (V_{(j_{f})} - V_{(j_{l})}) + \frac{1}{12} ((V_{(j_{f}-1)} - V_{(j_{l})}) + (V_{(j_{f})} - V_{(j_{l}-1)}) + (V_{(j_{f}-1)} - V_{(j_{l})}) + (V_{(j_{f}-1)} - V_{(j_{l})})) \quad (j=1, \dots, \ell)$$

HISAO MIZUMOTO

and

$$\mathbf{t}_{\tau} = \sum_{j=1}^{t} \delta \mathbf{t}_{(j)},$$

where $V_{(k)} = V(z_k)$.

LEMMA 4.5. (Cf. Satz 8 of Opfer [6].) If γ and γ' are two Jordan curves defined in Lemma 3.1, then $t_{\gamma} = t_{\gamma'}$.

Proof. It is easily shown by making use of Corollary 4.3.

 t_r is said to be a *period of the conjugate discrete harmonic function of V along* γ . We can easily verify that our definition of the period t_r is equivalent to Opfer's S_r ((23) of [6]).

REMARK. Our definition admits to define the *conjugate discrete harmonic* function V^* of a discrete harmonic function V by a relation

$$V^*(z_j) - V^*(z_{j-1}) = \delta \mathfrak{t}_{(j)}$$

with the notation of (4.5). It is easily verified that the function V^* is discrete harmonic on the set of middle points of meshes of R. The detailed argument is omitted.

6. Periodicity moduli of N-ply connected lattice. We preserve the notations in § 3. 2. Let V_j $(j=0, \dots, N-1)$ be the discrete harmonic measure of Λ_j on Rrespectively. By t_{jk} $(j, k=0, \dots, N-1)$ we denote the period of the conjugate discrete harmonic function of V_j along γ_k respectively. By Lemma 4. 5, t_{jk} is independent of a particular choice of γ_k . It is immediately seen that

$$\sum_{j=1}^{N-1} \mathfrak{t}_{jk} = 0 \qquad (k = 0, \cdots, N-1).$$

Furthermore by Corollary 4.1 we see that

$$\mathfrak{S}_{R}(V_{j}, V_{k}) = \mathfrak{S}_{R}^{\circ}(V_{j}, V_{k}) = \sum_{z_{n} \in A_{j}} \left(\frac{2}{3} \sum_{nl} (V_{k(n)}^{\prime} - V_{k(nl)}^{\prime}) + \frac{1}{6} \sum_{nd} (V_{k(n)}^{\prime} - V_{k(nd)}^{\prime}) \right) = \mathfrak{t}_{kj}$$
(4. 6)
$$(j, k = 0, \dots, N-1),$$

which implies

$$t_{jk} = t_{kj}$$
 (j, k=0, ..., N-1),

where $V_{k(m)} = V_k(z_m)$. The collection of t_{jk} $(j, k=1, \dots, N-1)$ is said to be a system of periodicity moduli of R with respect to Mehrstellenverfahren. Furthermore a system of modified periodicity moduli of R with respect to Mehrstellenverfahren is defined by a collection of quantities

$$\mathfrak{s}_{jk} \equiv \mathfrak{S}_R(V_j + V_k) = \mathfrak{t}_{jj} + 2\mathfrak{t}_{jk} + \mathfrak{t}_{kk} \qquad (j, k = 1, \dots, N-1).$$

248

By Corollary 4.1 we see that \hat{s}_{jk} is a period of the conjugate discrete harmonic function of $V_j + V_k$ along $\gamma_j + \gamma_k$ respectively.

7. Monotone convergence theorem of periodicity moduli. By Theorem 4.1 and (4.6) we obtain the following results analogous to Theorem 3.1 and Corollary 3.1.

THEOREM 4.2. With the notations of Theorem 2.1, the following hold:

(i)
$$\sum_{j,k=1}^{N-1} c_j c_k t_{jk}^n > \sum_{j,k=1}^{N-1} c_j c_k t_{jk}^n > \sum_{j,k=1}^{N-1} c_j c_k \tau_{jk} \qquad (n=0,1,\cdots);$$

(ii) If $R_n \nearrow G$ $(n \rightarrow \infty)$, then

$$\sum_{j,k=1}^{N-1} c_j c_k t_{jk}^n \searrow \sum_{j,k=1}^{N-1} c_j c_k \tau_{jk} \qquad (n {\rightarrow} \infty),$$

where by t_{jk}^n , t_{jk}^n and τ_{jk} $(j, k=1, \dots, N-1)$ we denote the systems of periodicity moduli of R_n , R_n with respect to Mehrstellenverfahren and G respectively.

COROLLARY 4.5. With the notations of Theorem 4.1, let s_{jk}^n , \mathfrak{S}_{jk}^n and σ_{jk} $(j, k=1, \dots, N-1)$ be the systems of modified periodicity moduli of R_n , R_n with respect to Mehrstellenverfahren and G respectively. Then the following hold:

(i) $s_{jk}^n > s_{jk}^n > \sigma_{jk}$ $(j, k=1, \dots, N-1; n=0, 1, \dots);$

(ii) If $R_n \nearrow G$ $(n \rightarrow \infty)$, then

$$\mathfrak{B}_{jk}^n \searrow \sigma_{jk} \qquad (n \rightarrow \infty; \ j, k = 1, \cdots, N-1),$$

and thus

$$t_{jk}^{n} \rightarrow \tau_{jk}$$
 $(n \rightarrow \infty; j, k=1, \dots, N-1).$

If N=2, then Theorem 4.2 and Corollary 4.5 coincide to Satz 14 of Opfer [6].

School of Engineering, Okayama University.