ON THE CHARACTERISTIC OF AN ALGEBROID FUNCTION

By Masanobu Tsuzuki

Let $f(z)$ be an n-valued transcendential algebroid function in $|z|<\infty$ defined by an irreducible equation

$$
F(z, f) \equiv A_{n}(z) f^{n}+A_{n-1}(z) f^{n-1}+\cdots+A_{0}(z)=0
$$

where the coefficients A_{0}, \cdots, A_{n} are entire functions without any common zeros. We set

$$
A(z)=\max \left(\left|A_{0}\right|, \cdots,\left|A_{n}\right|\right)
$$

Let $\mu(r, A)$ be defined by

$$
\mu(r, A)=\frac{1}{2 n \pi} \int_{0}^{2 \pi} \log A\left(r e^{i \theta}\right) d \theta
$$

Recently Ozawa [1] obtained
Lemma. Suppose that there is at least one index j satisfying

$$
m\left(r, \frac{1}{A_{\jmath}}\right) \leqq c m(r, A), \quad c<1
$$

then

$$
(1-c) m(r, A) \leqq n \mu(r, A) \leqq m(r, A) .
$$

In connection with this lemma he proposed the following problem.
Are there any algebroid functions satisfying

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{n \mu(r, A)}{m(r, A)}=0 ? \tag{1}
\end{equation*}
$$

In this note using Ozawa's method we construct a two-valued algebroid function satisfying (1).

In the first place we consider

$$
h(x)=\frac{(\log x)^{\rho}}{x},
$$

Received November 21, 1968.
where $\rho>0$. $h(x)$ is a strictly decreasing function in $x>x_{0}>e$. Let r_{1} be a real number such that

$$
r_{1}>x_{0}>e, \quad\left(\log r_{1}\right)^{\rho}>2
$$

We suppose that the real numbers $r_{1}<r_{2}<\cdots<r_{n}$ have been defined. Then we choose r_{n+1} such that

$$
\begin{equation*}
h\left(r_{n+1}\right)=\frac{1}{n^{\rho} r_{n}} \tag{2}
\end{equation*}
$$

By this process we get an increasing sequence $\left\{r_{n}\right\}(n=1,2, \cdots)$, satisfying (2). We set

$$
N_{1}=\left[1 \cdot \log r_{1}\right],
$$

where $[x]$ denotes the greatest integer not larger than x. Suppose that the numbers $N_{1}<N_{2}<\cdots<N_{n}$ have already been defind and let

$$
S_{1}=1, \quad S_{n+1}=\sum_{\nu=1}^{n} N_{\nu} \quad(n \geqq 1) .
$$

Then we define

$$
\begin{equation*}
N_{n+1}=\left[(n+1) S_{n+1} \log r_{n+1}\right] . \tag{3}
\end{equation*}
$$

Thus we have an increasing sequence $\left\{N_{n}\right\}(n=1,2, \cdots)$. Now for a positive number λ

$$
\begin{aligned}
\frac{N_{n}}{r_{n}^{2}} / \frac{N_{n+1}}{r_{n+1}^{2}} & =\left(\frac{r_{n+1}}{r_{n}}\right)^{\lambda} \frac{n S_{n} \log r_{n}}{(n+1) S_{n+1} \log r_{n+1}}(1+o(1)) \\
& =\frac{n^{2 \rho}\left(\log r_{n+1}\right)^{2 \rho}}{n \log r_{n+1}}(1+o(1)) \quad(n \rightarrow \infty)
\end{aligned}
$$

Therefore the series

$$
\sum_{n=1}^{\infty} \frac{N_{n}}{\left(3 r_{n} / 2\right)^{\lambda}}=\left(\frac{2}{3}\right)^{\lambda} \sum_{n=1}^{\infty} \frac{N_{n}}{r_{n}^{\lambda}}
$$

is convergent if $\lambda>1 / \rho$ and divergent if $\lambda<1 / \rho$. For $\rho>1$ let $g(z)$ be

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1+\frac{2}{3} \frac{z}{r_{n}}\right)^{N_{n}} \tag{4}
\end{equation*}
$$

By the above result $g(z)$ has the order $1 / \rho$. For the zeros of $g(z)$ we get

$$
\begin{aligned}
\frac{n\left(r_{n}, 0\right) \log r_{n}}{n\left(2 r_{n}, 0\right)} & =\frac{n\left(r_{n}, 0\right) \log r_{n}}{n\left(2 r_{n}, 0\right)-n\left(r_{n}, 0\right)+n\left(r_{n}, 0\right)} \\
& =\frac{1}{n}(1+o(1)) \quad(n \rightarrow \infty)
\end{aligned}
$$

and by Shea's result [2, p. 226] we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{N\left(r_{n}, 0, g\right)}{m\left(r_{n}, g\right)}=0, \quad \lim _{n \rightarrow \infty} \frac{m\left(r_{n}, 1 / g\right)}{m\left(r_{n}, g\right)}=1 . \tag{5}
\end{equation*}
$$

Now we set

$$
\begin{equation*}
g_{1}(z)=\sum_{n=1}^{\infty}\left(1+\frac{z}{3 r_{n} / 2-2 / 3 r_{n}}\right)^{N_{n}} \tag{6}
\end{equation*}
$$

$g_{1}(z)$ has the same order as $g(z)$. Setting $3 r_{n} / 2=a_{n}$ we have for $z=r_{n} e^{i \theta}$

$$
\begin{aligned}
\left|\frac{g(z)}{g_{1}(z)}\right| & =\prod_{\nu=1}^{\infty}\left|\frac{1+z / a_{\nu}}{1+z /\left(a_{\nu}-a_{\nu}^{-1}\right)}\right|^{N_{\nu}} \\
& =\prod_{\nu=1}^{\infty}\left|\frac{1+z / a_{\nu}}{1+z / a_{\nu}-1 / a_{\nu}^{2}}\right|^{N_{\nu}} \prod_{\nu=1}^{\infty}\left(1-\frac{1}{a_{\nu}^{2}}\right)^{N_{\nu}} \\
& =C_{1} \prod_{\nu=1}^{\infty} \frac{1}{1-1 /\left.a_{\nu}\left(a_{\nu}+z\right)\right|^{N_{\nu}}},
\end{aligned}
$$

where

$$
C_{1}=\prod_{\nu=1}^{\infty}\left(1-\frac{1}{a_{\nu}^{2}}\right)^{N_{\nu}}
$$

is a positive constant. Further

$$
\begin{aligned}
& \left|1-\frac{1}{a_{\nu}\left(a_{\nu}+z\right)}\right|^{N_{\nu}} \leqq\left(1-\frac{1}{a_{\nu}\left(a_{\nu}+r_{n}\right)}\right)^{N_{\nu}} \leqq\left(1-\frac{1}{a_{\imath}^{2} r_{n}}\right)^{N_{\nu}}, \\
& \left|1-\frac{1}{a_{\nu}\left(a_{\nu}+z\right)}\right|^{N_{\nu}} \geqq\left|1-\frac{1}{a_{\nu}\left|a_{\nu}-r_{n}\right|}\right|^{N_{\nu}} \geqq\left(1-\frac{1}{a_{\nu}}\right)^{N_{\nu}} .
\end{aligned}
$$

Thus

$$
C_{2}=\left\{\prod_{\nu=1}^{\infty}\left(1-\frac{1}{a_{\nu}}\right)^{N_{\nu}}\right\}^{-1} \geqq \prod_{\nu=1}^{\infty} \frac{1}{\left|1-1 / a_{\nu}\left(a_{\nu}+z\right)\right|^{N_{\nu}}} \geqq\left\{\prod_{\nu=1}^{\infty}\left(1-\frac{1}{a_{\nu}^{2} r_{n}}\right)^{N_{\nu}}\right\}^{-1}
$$

Hence C_{2} is a positive constant and the right hand side converges to 1 as $n \rightarrow \infty$. Hence we can find n_{0} such that for $n \geqq n_{0}$

$$
\infty>C_{1} \cdot C_{2} \geqq\left|\frac{g\left(r_{n} e^{i \theta}\right)}{g_{1}\left(r_{n} e^{i \theta}\right)}\right| \geqq \frac{C_{1}}{2}>0 .
$$

Then we obtain

$$
A\left(r_{n} e^{i \theta}\right)=\max \left(\left|g\left(r_{n} e^{i \theta}\right)\right|,\left|g_{1}\left(r_{n} e^{i \theta}\right)\right|\right) \leqq K\left|g\left(r_{n} e^{i \theta}\right)\right|,
$$

where $K(>1)$ is a positive constant. By this estimate we have

$$
\begin{equation*}
m\left(r_{n}, A\right) \leqq m\left(r_{n}, g\right)+K \tag{7}
\end{equation*}
$$

and

$$
m\left(r_{n}, \frac{1}{A}\right) \geqq \frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+} \frac{1}{K\left|g\left(r_{n} e^{i \theta}\right)\right|} d \theta
$$

$$
\begin{equation*}
\geqq m\left(r_{n}, \frac{1}{g}\right)-\log K-\log 2 K . \tag{8}
\end{equation*}
$$

Finally consider the equation

$$
\begin{equation*}
g_{1}(z) f^{2}+g(z) f+g(z)=0 . \tag{9}
\end{equation*}
$$

For this two-valued algebroid function f, whose order is $1 / \rho(1<\rho)$,

$$
2 \mu\left(r_{n}, A\right)=m\left(r_{n}, A\right)-m\left(r_{n}, \frac{1}{A}\right)
$$

By (7) and (8)

$$
\begin{aligned}
\frac{2 \mu\left(r_{n}, A\right)}{m\left(r_{n}, A\right)} & \leqq 1-\frac{m\left(r_{n}, 1 / g\right)-2 \log 2 K}{m\left(r_{n}, g\right)+K} \\
& =1-\frac{m\left(r_{n}, 1 / g\right)}{m\left(r_{n}, g\right)}(1+o(1)) \quad(n \rightarrow \infty) .
\end{aligned}
$$

Thus by (5)

$$
\lim _{r \rightarrow \infty} \frac{2 \mu(r, A)}{m(r, A)} \leqq \lim _{n \rightarrow \infty} \frac{2 \mu\left(r_{n}, A\right)}{m\left(r_{n}, A\right)}=0 .
$$

This is the desired result.
Remark. If we take $r_{n}^{2}=r_{n+1}$ and $N_{n+1}=S_{n+1}\left(\log r_{n+1}\right)^{2}$ for (2) and (3) respectively, $g(z)$ and $g_{1}(z)$ defined by (4), (6), with these r_{n}, N_{n}, have the same order 0 . Then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{n\left(r_{n}, 0, g\right) \log r_{n}}{n\left(2 r_{n}, 0, g\right)}=0 \quad \text { and } \tag{5}
\end{equation*}
$$

Moreover the above arguments remain for those $g(z)$ and $g_{1}(z)$. Hence if we use those $g(z), g_{1}(z)$ in (9), we get a two-valued algebroid function of the order zero, which satisfies (2).

Acknowledgement. The author should like to express his hearty thanks to Professor M. Ozawa for his kind encouragement in preparing this note.

References

[1] Ozawa, M., Deficiencies of an algebroıd functıon. Kōdaı Math. Sem. Rep. 21 (1969), 262-276.
[2] Shea, D. F., On the Valiron deficiencies of meromorphic functions of finite order. Trans. Amer. Math. Soc. 124 (1966), 201-227.

