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ON THE CHARACTERISTIC OF AN ALGEBROID FUNCTION

BY MASANOBU TSUZUKI

Let f(z) be an z- valued transcendential algebroid function in |z|<oo defined by
an irreducible equation

where the coefficients AQ, ~,An are entire functions without any common zeros.
We set

Let μ(r, A) be defined by

,

Recently Ozawa [1] obtained

LEMMA. Suppose that there is at least one index j satisfying

then

(l-c)m(r, A)^nμ(r, A)£m(r, A).

In connection with this lemma he proposed the following problem.

Are there any algebroid functions satisfying

(1) li7=^, m(r, A)

In this note using Ozawa's method we construct a two-valued algebroid function
satisfying (1).

In the first place we consider
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where io>0. h(x) is a strictly decreasing function in x>x0>e. Let n. be a real
number such that

n>xo>ey (logrι/>2.

We suppose that the real numbers r1<r2< -<rn have been defined. Then we
choose rn+ι such that

(2) ^Vι) = -i-.

By this process we get an increasing sequence {rn} (n=l, 2, •••), satisfying (2).
We set

JVi=[MogrJ,

where [x] denotes the greatest integer not larger than x. Suppose that the numbers
Nι<N2<- <Nn have already been defind and let

Then we define

( 3 ) Nn+ι=[(n+ϊ)Sn+1 log rn+J.

Thus we have an increasing sequence {Nn} (n=l, 2, •••)• Now for a positive number λ

Nn Nn+ι_/rn+ιV nSn\ogrn

»log rw+ι

Therefore the series

3/ Ί ri

is convergent if ^>l/io and divergent if λ<l/p. For lo>l let g(z) be

By the above result 0(2) has the order l/^. For the zeros of g(z) we get

M(yn,0)logrn _ «(rn, 0) log r^
rw, 0) ~ ^(2rn, 0)-«(rn, 0)+^(rw, 0)

(n-*oo),



Γ n,, n,lim 7 r— =0, lim -. r— =1.
n-oo m(rn,g)
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and by Shea's result [2, p. 226] we obtain

(5)

Now we set

(6)

gι(z) has the same order as g(z). Setting 3rn/2=an we have for z=rne
ί(

l+z/av
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= u

1

where

is a positive constant. Further

1

l+z/av

l+z/av-l/άt

1-

1-

av(av-\-z)

1
av(av+z)

5^1--

1—

Thus
Nv } -1 oooo 1 f oo / 1 \ ^y 1 -1

.D.ιι-ι/^.+2)r.-iϋ.(^j-) 1
Hence C2 is a positive constant and the right hand side converges to 1 as w— »oo.
Hence we can find n<> such that for

Then we obtain

A(rne
iθ)=mzx (\g(rne

iθ)\, \g,(rne^\)^

where K(>ΐ) is a positive constant. By this estimate we have

(7) m(rn,A)

and
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dθ

(8)

^mrn, -log K-log 2K.

Finally consider the equation

(9) f lr ι(«)/ 2 +(7(«)/+flf(«)=0.

For this two-valued algebroid function /, whose order is l/p (Kp),

2μ(rn, A)=m(rn, A)—m(rn, -j- J.

By (7) and (8)

2μ(rn,A) ^l m(rnyl/g)-2 \og2K
m(rn,A) =

Thus by (5)
9/,/V Δ^ 9/ΛV A)

TΓ* —0.7^ m(r, A)

This is the desired result.

REMARK. If we take r^=rn+ι and Nn+ι=Sn+ι(logrn+ι)2 for (2) and (3) re-
spectively, g(z) and g^z) defined by (4), (6), with these rn, Nnj have the same order
0. Then we have

Λ/t( Λ? ί\ S*\ 1/>/-<• Λf

=0 and (5).

Moreover the above arguments remain for those g(z) and gλ(z). Hence if we use
those g(z\ gι(z) in (9), we get a two-valued algebroid function of the order zero,
which satisfies (2).
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