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ON THE CHARACTERISTIC OF AN ALGEBROID FUNCTION

By MasaNoBuU Tsuzuki

Let f(2) be an #n-valued transcendential algebroid function in |z]<co defined by
an irreducible equation

F(z, /)= An@) "+ AnaR) "7+ Ao(2) =0,

where the coefficients A,, -+, A, are entire functions without any common zeros.
We set

A(z)=max (|4,], -+, | Anl).
Let p(r, A) be defined by

— 1 2” 0
r, A)= SO log A(re)ds.
Recently Ozawa [1] obtained
LEMMA. Suppose that there is at least one index j satisfying
1
m(r— ) =emtr, 4), o<1,
4,

then
A—oym(r, A)=npu(r, A)=m(r, A).
In connection with this lemma he proposed the following problem.

Are there any algebroid functions satisfying

. npn A)
() 11_{2 m(r, A) =0

In this note using Ozawa’s method we construct a two-valued algebroid function
satisfying (1).
In the first place we consider

b

)= (loi x)
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where p>0. #(z) is a strictly decreasing function in x>=z,>e. Let 71 be a real
number such that

7 >x0>e, (log 71)P>2.

We suppose that the real numbers 7 <#,<---<r, have been defined. Then we
choose 7,1 such that

1
(2) h(rn+1):m—'

n

By this process we get an increasing sequence {r.} (n=1, 2, ---), satisfying (2).
We set

N;=[1-log r1],

where [x] denotes the greatest integer not larger than x. Suppose that the numbers
Ni<N,<-++<N, have already been defind and let

81:1, Sn+1: Z -Zvu (n%l).
v=1

Then we define
(3) Np1=[(#+1)Sn 1 10g 7n.11].

Thus we have an increasing sequence {N,} (#=1,2, ---). Now for a positive number 2

Ny, /Nnﬂ _< Yri1 )‘ %Sy log 7
Th 9’2“ o ¥ (”+1)Sn+1 log Yni1

(I+o(1))

_ #*(log rz.)*
=l (L+o))  (n—oo).

Therefore the series

= N, _<2>w N,
n=1 (37-”/2)1 B

3) B

n=1

is convergent if 2>1/p and divergent if 2<1/p. For p>1 let g(z) be
) Np
@ (e 22)"
By the above result g(z) has the order 1/p. For the zeros of g¢(z) we get

70, 0) log 7y 7(#n, 0) log 75,

(2, 0) (2ra, 0)—n(rs, 0)-Fn(rs, 0)

= (o) (nco),
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and by Shea’s result [2, p. 226] we obtain

. N(rs,0,9) . m(rn, 1/g)
2w 9 I 18 1.
(5) }ng M(ny 9) 0, 71,1_1,2 m(¥n, 9)

Now we set

o z Nn
(6) 1@=2 <1+ Sraf2—2[37 ) ’

g1(2) has the same order as ¢(z). Setting 3r,/2=a., we have for z=r,e®

9@) | _ 5| 14zla, |

g1(2) l v=1 1+Z/(d,,'—‘(l,_1)
= 1+z/a, o= 1AM
LY ey 1 (1 a_z)

L) 1
=G i@

oo 1 Ny
=TI (1— a’)

y=1 v

where

is a positive constant. Further

el ) <l )"
ala,+2) | T ala,+r) ] T @&rn ]
NV ND N)’
PN T PR Ly
ala,+2) a,|a,—tx| a,

Thus

o L 1 \M]-1 1 o 1 \M]-1
_ _ > > — .
Ce {U< a,) } =l T aeram —{ﬂ(l afrn> }

Hence C; is a positive constant and the right hand side converges to 1 as n—oo.
Hence we can find 7, such that for n=n,

8

g(rn eiﬂ)
g1(rne®)

> ._C_l_.>0.

OO>CI'C22'|‘ = 2

Then we obtain
A(rne”)=max (|g(rze™)|, |9:(r2')|) = K |g(rae™)],
where K(>1) is a positive constant. By this estimate we have

(7 m(rn, A)=m(ra, 9)+K
and
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1\_ 1 . 1
’”(“’ A )g‘z? S log" ratraem

gm(rn, %—) —log K—log 2K.

(8)

Finally consider the equation
(9) 91(2) 2 +9(2)f+9(2)=0.

For this two-valued algebroid function f, whose order is 1/p (1<p),

20(¥n, A)=m¥n, A)—m(rn, %)

By (7) and (8)

2u(rn, A) —1_ m(ra, 1/9)—2 log 2K
_ 1 mlrs,1]g) -
Thus by (5)
tim 20 Ay 260 A

e MT, A) Tase M(Ta, A) B
This is the desired result.

ReEMARK. If we take 75=#ny1 and Npy1=Sp.i(log 7x.1)? for (2) and (3) re-
spectively, g(z) and gi(z) defined by (4), (6), with these 7,, N,, have the same order
0. Then we have

lim #1(¥2, 0, 9) log 7, -0

lim = 7m0, 0) and (3

Moreover the above arguments remain for those ¢(z) and ¢.(z). Hence if we use
those ¢(2), ¢:(2) in (9), we get a two-valued algebroid function of the order zero,
which satisfies (2).
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