A SECOND THEOREM OF CONSISTENCY FOR ABSOLUTE SUMMABILITY BY DISCRETE RIESZ MEANS

By T. Pati

1.1. Definitions and notations. Let $\sum a_n$ be any given infinite series, and let $\{\lambda_n\}$ be a monotonic increasing sequence of positive numbers, tending to infinity with *n*. Let us write

$$A_{\lambda}(\omega) = A_{\lambda}^{0}(\omega) = \sum_{\lambda_{n} \leq \omega} a_{n},$$
$$A_{\lambda}^{r}(\omega) = \sum_{\lambda_{n} \leq \omega} (\omega - \lambda_{n})^{r} a_{n}, \qquad r > 0.$$

Let us write $R_{\lambda}^{r}(\omega) = A_{\lambda}^{r}(\omega)/\omega^{r}$, $r \ge 0$. $\sum a_{n}$ is said to be absolutely summable by Riesz means of type λ_{n} and order r, or summable $|R, \lambda_{n}, r|, r \ge 0$, if

$$R^{r}_{\lambda}(\omega) \in BV(k, \infty), 1$$

where k is some finite positive number.²⁾ We say that $\sum a_n$ is absolutely summable by *discrete Riesz means of type* λ_n and order r, or summable $|R^*, \lambda_n, r|, r \ge 0$, if

$$\{\Omega_n\} \equiv \{R_{\lambda}^r(\lambda_n)\} \in BV.^{3}$$

By definition, summability $|R, \lambda_n, 0|$ and summability $|R^*, \lambda_n, 0|$ are the same as absolute convergence.

Let P and Q be any two methods of summability. Then, by $P \subset Q'$ we mean that any series which is summable P is also summable Q. By $P \sim Q'$ we mean that $P \subset Q$ as well as $Q \subset P$.

It is easily seen that

$$R, \lambda_n, r | \subset | R^*, \lambda_n, r |, r \ge 0.$$

Throughout, for any sequence $\{f_n\}$, we shall write $\Delta f_n = f_n - f_{n+1}$, and K will denote a positive constant, not necessarily the same at each occurrence.

1.2. It is known that $|R, \lambda_n, 1| \sim |R^*, \lambda_n, 1|$.⁴⁾ For summability $|R, \lambda_n, r|$ the

Received April 3, 1968.

2) Obrechkoff (4), (5).

3) By $\{f_n\} \in BV$ we mean that $\sum_n |f_n - f_{n-1}| < \infty$.

4) A proof of this by the present author has been quoted in Iyer [2].

¹⁾ By $f(x) \in BV(h, k)$, we mean that f(x) is a function of bounded variation over (h, k).

following 'second theorem of consistency' is known.

THEOREM A.⁵⁾ If $\varphi(t)$ is a monotonic non-decreasing function of t for $t \ge 0$, tending to infinity with t, and

$$t^r \varphi^{(r)}(t) / \varphi(t) \in B(h, \infty), 6$$

where h is some finite positive number, then $|R, \lambda_n, r| \subset |R, \mu_n, r|$, where r is a positive integer and $\mu_n = \varphi(\lambda_n)$.

In this theorem one assumes a functional relation: $\mu_n = \varphi(\lambda_n)$ between the two types. The object of the present paper is to demonstrate a second theorem of consistency for absolute summability by discrete Riesz means, in which we get the inclusion relation: $|R^*, \lambda_n, 1| \subset |R^*, \mu_n, 1|$, or equivalently $|R, \lambda_n, 1| \subset |R, \mu_n, 1|$, where μ_n and λ_n are related to each other in a simpler and more direct manner, without appealing to any such functional relation.

2.1. We establish the following

THEOREM. If $\{\lambda_n\}$ and $\{\mu_n\}$ be monotonic increasing sequences, diverging to ∞ with n, such that

$$\Delta \mu_n / \Delta \lambda_n = O(\mu_n / \lambda_n), \quad as \quad n \to \infty,$$

then $|R^*, \lambda_n, 1| \subset |R^*, \mu_n, 1|$, or, equivalently, $|R, \lambda_n, 1| \subset |R, \mu_n, 1|$.

2. 2. We require the following lemma.

LEMMA.⁷⁾ If $P_n = p_1 + p_2 + \dots + p_n$ (n=1, 2, 3, ...) and $p_n > 0$ for every n, then $(c_n) \in BV'$ implies:

$$\left\{\frac{1}{P_n}\sum_{k=1}^n p_k c_k\right\} \in BV.$$

3. Proof of the Theorem. We are given that

(3.1)
$$\left\{\frac{1}{\lambda_n}\sum_{m=1}^n(\lambda_n-\lambda_m)a_m\right\}\in BV,$$

and we are to show that, under the hypotheses of the theorem,

(3.2)
$$\left\{\frac{1}{\mu_n}\sum_{m=1}^n(\mu_n-\mu_m)a_m\right\}\in BV.$$

We observe that (3.1) can be re-written as:

⁵⁾ Guha [1].

⁶⁾ By ' $f(t) \in B(h, k)$ ' we mean that f(t) is bounded over the interval (h, k).

⁷⁾ Mohanty (3).

$$\left\{\frac{-1}{\lambda_n}\sum_{m=1}^{n-1}\Delta\lambda_m S_m\right\} \in BV,$$

or, what is the same thing,

$$\{\sigma_n\} \equiv \left\{ \frac{1}{\lambda_{n+1}} \sum_{m=1}^n \Delta \lambda_m S_m \right\} \in BV. \qquad (\sigma_0 = 0)$$

Similarly, (3.2) has the equivalent form:

$$\{\tau_n\} \equiv \left\{\frac{1}{\mu_{n+1}} \sum_{m=1}^n \Delta \mu_m S_m\right\} \in BV.$$

Now

$$\begin{aligned} \tau_n &= \frac{1}{\mu_{n+1}} \sum_{m=1}^n \frac{\Delta \mu_m}{\Delta \lambda_m} \Delta \lambda_m S_m \\ &= -\frac{1}{\mu_{n+1}} \sum_{m=1}^n \frac{\Delta \mu_m}{\Delta \lambda_m} \Delta (\lambda_m \sigma_{m-1}) \\ &= -\frac{1}{\mu_{n+1}} \sum_{m=1}^n \frac{\Delta \mu_m}{\Delta \lambda_m} \lambda_m \Delta \sigma_{m-1} - \frac{1}{\mu_{n+1}} \sum_{m=1}^n \Delta \mu_m \sigma_m \\ &= \tau_n^{(1)} + \tau_n^{(2)}, \qquad \text{say.} \end{aligned}$$

We write

$$\tau_{n}^{(2)} = -\frac{\sum_{m=1}^{n} \Delta \mu_{m} \sigma_{m}}{\sum_{m=1}^{n} \Delta \mu_{m}} \cdot \frac{\sum_{m=1}^{n} \Delta \mu_{m}}{\mu_{n+1}}$$

We observe that, by the lemma, the first factor is a sequence of bounded variation, since, by hypothesis, $\{\sigma_n\} \in BV$. Also, the second factor is the sequence

$$\Big\{ \frac{\mu_1}{\mu_{n+1}} - 1 \Big\},$$

which is a sequence of bounded variation since $\{\mu_n\}$ is monotonic increasing and $\mu_n \rightarrow \infty$, as $n \rightarrow \infty$. Thus $\{\tau_n^{(2)}\} \in BV$.

We proceed to show that $\{\tau_n^{(1)}\} \in BV$. Now

$$\begin{aligned} \Delta \tau_{n-1}^{(1)} &= \frac{1}{\mu_{n+1}} \sum_{m=1}^{n} \frac{\Delta \mu_m}{\Delta \lambda_m} \lambda_m \Delta \sigma_{m-1} - \frac{1}{\mu_n} \sum_{m=1}^{n-1} \frac{\Delta \mu_m}{\Delta \lambda_m} \lambda_m \Delta \sigma_{m-1} \\ &= -\Delta \left(\frac{1}{\mu_n}\right) \sum_{m=1}^{n} \frac{\Delta \mu_m}{\Delta \lambda_m} \lambda_m \Delta \sigma_{m-1} + \frac{1}{\mu_n} \frac{\Delta \mu_n}{\Delta \lambda_n} \lambda_n \Delta \sigma_{n-1}. \end{aligned}$$

456

Hence

$$\begin{split} \sum_{n} |\varDelta \tau_{n-1}^{(1)}| &\leq \sum_{n} \varDelta \left(\frac{1}{\mu_{n}}\right) \sum_{m=1}^{n} \frac{\varDelta \mu_{m}}{\varDelta \lambda_{m}} \lambda_{m} |\varDelta \sigma_{m-1} + \sum_{n} \frac{1}{\mu_{n}} \frac{\lambda_{n}}{\varDelta \lambda_{n}} \varDelta \mu_{n} |\varDelta \sigma_{n-1}| \\ &= \sum_{n} 1 + \sum_{n} 2, \qquad \text{say.} \end{split}$$

Now

$$\sum_{2} \leq K \sum_{n=1}^{\infty} |\varDelta \sigma_{n-1}| \leq K,$$

by hypothesis. And

$$\sum_{1} = \sum_{m=1}^{\infty} \frac{\Delta \mu_{m}}{\Delta \lambda_{m}} \lambda_{m} |\Delta \sigma_{m-1}| \sum_{n=m}^{\infty} \Delta \left(\frac{1}{\mu_{n}}\right)$$
$$= \sum_{m=1}^{\infty} |\Delta \sigma_{m-1}| \frac{\Delta \mu_{m}}{\Delta \lambda_{m}} \frac{\lambda_{m}}{\mu_{m}}$$
$$\leq K \sum_{1}^{\infty} |\Delta \sigma_{m-1}| \leq K,$$

by hypothesis.

References

- [1] GUHA, U., The 'second theorem of consistency' for absolute Riesz summability. Jour. London Math. Soc. 31 (1956), 300-311.
- [2] IYER, A. V. V., An inclusion theorem for two absolute summability method. Jour. of Math. (Univ. of Jabalpur) 1 (1965).
- [3] MOHANTY, R., A criterion for the absolute convergence of a Fourier series. Proc. London Math. Soc. (2) 51 (1949), 189-196.
- [4] OBRECHKOFF, N., Sur la sommation absolute des séries de Dirichlet. C.R. Acad. Sci. Paris 186 (1928), 215-217.
- [5] Über die absolute Summierung der Dirichletschen Reihen. Math. Zeits. 30 (1929), 375-386.

DEPARTMENT OF POST-GRADUATE STUDIES AND RESEARCH IN MATHEMATICS, UNIVERSITY OF JABALPUR, INDIA.