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A SECOND THEOREM OF CONSISTENCY FOR ABSOLUTE
SUMMABILITY BY DISCRETE RIESZ MEANS

By T. PaTI

1. 1. Definitions and notations. Let Ya, be any given infinite series, and let
{1} be a monotonic increasing sequence of positive numbers, tending to infinity
with #. Let us write

Axw)=AYw)= 3 an,
inSo
AY(0)= Z (0—2a) @, r>0.
ip<e

Let us write Rj(w)=Aj(w)/o", r=0. X a, is said to be absolutely summable by
Riesz means of type . and order v, or summable |R, A, 7|, 7=0, if

Ri(w)eBV (&, o0),
where % is some finite positive number.? We say that 3 a, is absolutely summable
by discrete Riesz means of type A, and order 7, or summable |R*, A, 7|, r=0, if
{2.}={R{(2)}eBV.®
By definition, summability |R, s, 0| and summability |R*, 1, 0] are the same
as absolute convergence.
Let P and @ be any two methods of summability. Then, by ‘ PCQ’ we mean
that any series which is summable P is also summable Q. By ‘P~Q’ we mean

that PcQ as well as QCP.
It is easily seen that

|R, An, 7| C|R¥, Ay, 7], r=0.

Throughout, for any sequence {fa.}, we shall write 4f»=fa—fns1, and K will
denote a positive constant, not necessarily the same at each occurrence.

1.2. It is known that |R, A, 1|~|R*, 24, 1.2 For summability |R, ., 7| the
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1) By ‘f(z)e BV (k, k)’ we mean that f(z) 1s a function of bounded variation over
(4, ).

2) Obrechkoff (4), (5).

3) By ‘{fa}e BV’ we mean that }a|fn— fr-|<oo.

4) A proof of this by the present author has been quoted in Iyer [2].
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following ‘second theorem of consistency’ is known.

THEOREM A.® If ¢(t) is a monotonic non-decreasing function of t for t=0,
tending to infinity with t, and

1o @)/ ¢(t)e B(h, o),

where h is some finite positive number, then |R, 2y, r|C|R, p, v|, where r is a posi-
tive integer and pn=¢(Ay).

In this theorem one assumes a functional relation: p,=¢(2,) between the two
types. The object of the present paper is to demonstrate a second theorem of con-
sistency for absolute summability by discrete Riesz means, in which we get the
inclusion relation: |R*, A, 1|C|R*, s, 1|, or equivalently | R, An, 1|C|R, pta, 1|, where
#n and 2, are related to each other in a simpler and more direct manner, without
appealing to any such functional relation.

2.1. We establish the following

THEOREM. If {A:} and {p} be monotonic increasing sequences, diverging to oo
with n, such that

Apn] A2, =0(pa]2n),  as n—oo,
then |R*, An, L|C|R*, s, 1|, o7, equivalently, |R, in, 1|C|R, ys, 1].
2. 2. We require the following lemma.
LEMMA.? If P.=p:i+ps++p. #=1,2,3,-) and p.>0 for every n, then
‘{cale BV implies:

1 n
{E kglpkck}eBV.

3. Proof of the Theorem. We are given that

@1 1 (zn—x,n)am}er,
1

n m=

and we are to show that, under the hypotheses of the theorem,

3.2) 15 (ﬂn‘ﬂm)‘lm}GBV.

Pn m=1

We observe that (3.1) can be re-written as:

5) Guha [1].
6) By ‘f(t)eB(h, k)’ we mean that f(¢) is bounded over the interval (4, k).
7) Mohanty (3).
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{ by Azmsm}eBV
275 m=1

or, what is the same thing,

{o,.}—{ 5 Azms,,,}eBV (00=0)

1n+1 m=1

Similarly, (3. 2) has the equivalent form:

{rn}s{ 3 AymSm}eBV

n+l m=1
Now

1 LA | Apm

Untl m=1

1 n
= Z Alm A(lmam 1)

Pnil m=1

Tp =

1 L | »
=— P Lbm_ — 2 Al — 3 Apmon

Unil m=1 iy, Unsl m=1

=tP+7P2, say.

We write

n

2 Apmom mZI=1 Apm

=1
P=—n

2 Uni1
4
2, A

We observe that, by the lemma, the first factor is a sequence of bounded
variation, since, by hypothesis, {s,}¢ BV. Also, the second factor is the sequence

J 51
{ _1}’
Hn41
which is a sequence of bounded variation since {u,} is monotonic increasing and

ttn—00, as n—oo, Thus {P}eBV.
We proceed to show that {zP}eBV. Now

1 n Aﬂm 1 n—1 A;t,,,,
W
Arn_l Hnt1l m=1 Alm /zm,AO'm 1= n mz_l Alm Zmdo'm 1
A(ﬂn)nzz_1 yiy- Andom—s+ - = tn an, —5— Andon_1.



Hence

Now
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12,,

z s D4 z”; Abtm o domat % S dnldow
S D

= 21+ Do say.

SL=K Y | dona| =K,

n=1

by hypothesis. And

n

Zmldam 1] Z A(: )

by hypothesis.
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