ON RIGID ANALYTIC MAPPINGS AMONG SURFACES $\{e^w = f(z)\}$

By Mitsuru Ozawa

1. Introduction. Let R be an open Riemann surface (z, w) defined by

$$e^w = f(z)$$

with an entire function f(z) which has no zeros other than an infinite number of simple zeros. For the topological structure of the surface R we can refer to a paper due to Heins [1]. Let \mathfrak{p}_R be the projection map $(z,w)\rightarrow z$. Let S be another such surface defined by $e^w=g(Z)$. Consider a non-trivial analytic mapping φ of R into S, which satisfies the following rigidity condition:

$$\mathfrak{p}_S \varphi(p) = \mathfrak{p}_S \varphi(q)$$
 whenever $\mathfrak{p}_R p = \mathfrak{p}_R q$.

Let D_R be the domain in which $f(z) \neq 0$ and E_R the set of zeros of f(z). Evidently $D_R = \{|z| < \infty\} - E_R$. Let $h(z) = \mathfrak{p}_S \circ \varphi \circ \mathfrak{p}_R^{-1}(z)$, then h(z) is a single-valued regular function in D_R , whose image $h(D_R)$ lies in D_S . In the present paper we shall prove the following theorems.

Theorem 1. Let φ be a non-trivial rigid analytic mapping of R into S, then the corresponding h is a polynomial and φ is onto.

Theorem 2. Let φ be a non-trivial rigid analytic mapping of R into itself, then the corresponding h is of the following form $e^{2\pi i r}z + \beta$ with a suitable rational number r and φ reduces to a one-to-one conformal mapping of R onto itself.

2. Proof of Theorem 1. Assume that h(z) has an essential singularity at a point z^* of E_R . Then in an arbitrary small neighborhood of the point z^* h(z) takes every value infinitely often excepting at most two. Hence all the points of E_S excepting at most two are taken by h(z). This contradicts the into-ness of h(z). Thus there is no essential singularity of h at E_R . The same is true for $z=\infty$. Hence h(z) must be a rational function of z in the z-sphere. Next we prove that h(z) is a polynomial of z.

Assume that h(z) has a pole at some point in the finite z-plane. Then a fixed neighborhood of this point is mapped around $Z=\infty$ by h(z) and its image by h(z) contains a neighborhood of $Z=\infty$, which contains at least a point of E_S . This contradicts the into-ness of h(z) in D_R . This implies that h(z) is a polynomial.

Received September 25, 1967.

Next we prove the onto-ness of φ . Suppose that φ is not onto. Evidently h(z)is a mapping of the z-sphere onto the Z-sphere with a constant finite valence. If h(z) is a mapping of D_R onto D_S , then there is a point P of S such that φ does not cover P but h does cover its projection p_s P. Then there is a point Q such that $\varphi(q) = Q$, $\mathfrak{p}_S Q = \mathfrak{p}_S P$. On S we join P and Q by a suitable curve C and make its projection $\mathfrak{p}_s C$. $\mathfrak{p}_s C$ is a closed curve joining $\mathfrak{p}_s P$ with itself. There is a curve c which starts from $p_R q$ and ends to a point t whose image by h is $p_S P$. Now t does not belong to E_R by the onto-ness of h. Then we can construct the curve \tilde{c} whose projection is c and whose starting point is q. Then φ can be continued along \tilde{c} to the end point. This means that P is covered by $\varphi(R)$. If h(z) is a mapping of D_R into D_S , then there is a point z^* of E_R such that $Z^* \equiv h(z^*) \notin E_S$. Consider the set of counter-images $\{z_{\mu}^*\}_{\mu-1}$, $z_{\mu}^*=h^{-1}(Z^*)$, $z_1^*=z^*$ of Z^* . Really this is a finite set. All the z_{μ}^* ($\mu=1, \dots, \nu$) must belong to E_R . Consider the set of small neighborhoods n_I of z_j^* such that $h(n_j)$ covers just the same neighborhood $N(Z^*)-Z^*$ of Z^* and $n_j \cap n_k = \phi$ for $j \neq k$. We can make $N(Z^*)$ a sufficiently small disc. Then consider $\mathfrak{p}_{S}^{-1}N(Z^*)=\tilde{N}(Z^*)$. This consists of an infinite number of disjoint discs K_1, K_2, \cdots . Since φ is analytic, $\varphi \circ \mathfrak{p}_R^{-1}(n_j)$ must be connected. Hence $\varphi \circ \mathfrak{p}_R^{-1}(n_j)$ lies in a single K_j . There remains still an infinite number of discs. Take such a disk K_n . If every point of K_n is not covered by $\varphi(R)$, then this point must be a point of S over a point in $h(E_R)$. Then we can find a point which is near from that point and is covered by $\varphi(R)$. We have already taken all the counter-images $h^{-1}(N(Z))$, ν in number. If there is another disc lying over $N(Z^*)$ which has a point covered by $\nu(R)$, the number of $h^{-1}(N(Z^*))$ must be greater than ν . This contradicts the definition of v.

- 3. Proof of Theorem 2. By theorem 1 h(z) must be a polynomial and a mapping of D_R onto itself. Let d be the degree of h(z). Suppose $d \ge 2$. Consider the solutions of $h(z) = z_J$, $z_j \in E_R$. Then every solution belongs to E_R . If $|z_j| \le R_0$ for a sufficiently large R_0 , the solution satisfies the same inequality. Making these processes for some z_J successively then, the successive solutions make a bounded infinite set. This implies that E has at least one cluster point in a bounded part of the z-sphere. This is a contradiction. Hence d=1, that is, $h(z) = \alpha z + \beta$. If $\alpha \neq e^{2\pi i r}$ with any rational number r, we make the iterations of h. Then we have some cluster point of E_R in a bounded part of the z-plane. This is a contradiction.
- 4. We do not have any effective method in order to decide whether there is a non-rigid analytic mapping of R into S or not. Now we shall consider a simple case. Let R be the surface (z, w) defined by $e^w = z^3 + az + b$ with two constant a and b. We here assume that $a \neq 0$. Let S be the surface (Z, W) defined by $e^W = Z^3 + AZ + B$ with $B \neq 0$. Then R and S are two three-sheeted algebroid surfaces over the w-plane and the W-plane, respectively. Let $\mathfrak{p}_S^* \circ \mathfrak{p}_R^{*-1} = h^*$ is a single-valued function [3], [6]. However the rigidity in this sense is not the rigidity defined in No. 1. Anyhow we have the following condition:

$$D_S \circ h^*(w) = D_R [f_1^3 + a f_1 f_2^2 - (e^w - b) f_2^3]^2,$$

where $D_S = 27(e^w - B)^2 + 4A^3$, $D_R = 27(e^w - b)^2 + 4a^3$. Hence

$$27(e^{h^*(w)}-B)^2+4A^3=[27(e^w-b)^2+4a^3][f_1^3+af_1f_2^2-(e^w-b)f_2^3]^2$$
.

Assume a=0. Then A=0 and vice versa. In this case we have a=0, A=0. Then R and S are regularly branched three-sheeted. By an earlier result in [4] there exists a suitable entire function f(w) satisfying either $e^{h^*(w)} - B = f(w)^3 (e^w - b)$ or $e^{h^*(w)} - B = f(w)^3 (e^w - b)^2$. In the second case we have a contradiction by considering the set of simple zeros. In the first case by [2] or [5] 1) we have $h^*(w) = \alpha w + \beta$, $|\alpha| = 1$. Consider the sets of zeros of $e^w - b$ and $e^{\alpha w} - e^{-\beta}B$, that is, $\{\log b + 2n\pi i\}$, $\{\alpha^{-1}(-\beta + \log B + 2n\pi i)\}$. These two sets must be coincide with each other. Hence

$$\alpha(\log b + 2n\pi i) + \beta = \log B + 2m\pi i$$
.

Thus $\alpha = \pm 1$.

Assume $aA \neq 0$. If $27B^2 + 4A^3 = 0$ and $27b^2 + 4a^3 = 0$, then we have

$$27e^{h^*(w)}(e^{h^*(w)}-2B)=27e^w(e^w-2b)(f_1^3+af_1f_2^2-(e^w-b)f_2^3)^2.$$

By this equation we have $h^*(w) = \alpha w + \beta$, $|\alpha| = 1$. Then by the same argument we have $\alpha = \pm 1$. If $27B^2 + 4A^3 = 0$ and $27b^2 + 4a^3 \neq 0$, then

$$27e^{h^*(w)}(e^{h^*(w)}-2B)=[27(e^w-b)^2+4a^3][f_1^3+af_1f_2^2-(e^w-b)f_2^3]^2.$$

By this equation we have $h^*(w) = \alpha w + \beta$. The set of zeros of $(e^w - b + 2ia^{3/2}/3\sqrt{3})$ ($e^w - b - 2ia^{3/2}/3\sqrt{3}$) coincides with that of $e^{\alpha w} - 2Be^{-\beta}$. Then $|\alpha| = 2$. This implies that the distance of two successive zeros must be equal to π . But this is not the case unless b = 0. This is a contradiction. If $27B^2 + 4A^3 = 0$ and $27b^2 + 4a^3 = 0$, then

$$27(e^{h^*(w)}-B)^2+4A^3=27e^w(e^w-2b)[f_1^3+af_1f_2^2-(e^w-b)f_2^3]^2$$
.

By this equation we have $h^*(w) = \alpha w + \beta$. Consider the set of zeros of $e^w - 2b$. Then $|\alpha| = 1/2$. In order that the minimum distance of two zeros of $(e^{\alpha w + \beta} - B)^2 - 4A^3/27$ is equal to 2π , B must be equal to zero, which is a contradiction. If $(27B^2 + 4A^3) = (27b^2 + 4a^3) = 0$, then $h^*(w) = \alpha w + \beta$, $|\alpha| = 1$. In this case we have $\alpha = \pm 1$.

Summing up these results we have the desired rigidity of φ with respect to \mathfrak{p}_R and \mathfrak{p}_S . Indeed $\mathfrak{p}_R p = \mathfrak{p}_R q$, p = (z, w), q = (z, w') imply $w' = w + 2n\pi i$ and $\mathfrak{p}_S \varphi(p) = \mathfrak{p}_S \varphi(q)$, $\varphi(p) = (Z, W)$, $\varphi(q) = (Z, W')$ imply $W' = W + 2m\pi i$. And further $h^*(w) = \pm w + \beta$ implies $W' - W = \pm (w' - w)$ and hence $W' - W = \pm 2n\pi i$ whenever $w' - w = 2n\pi i$. This is nothing but the rigidity of φ with respect to \mathfrak{p}_R and \mathfrak{p}_S .

Theorem 3. Let R and S be three-sheeted surfaces defined by

$$y^3+ay+b=e^x$$
 and $Y^3+AY+B=e^X$, $Bb \neq 0$,

¹⁾ In [5] we proved several estimations of the N-function of a composed function. In these estimations we used the second fundamental theorem erronously. Main theorem was proved in [2] correctly. In our present case we can use our estimations in [5]. Indeed $|w_j - w_k| \ge 2\pi$ for any two roots of $e^w - b = 0$.

respectively. If there is a non-trivial analytic mapping φ of R into S, then φ is rigid in the sense of No. 1.

REFERENCES

- [1] Heins, M., Riemann surfaces of infinite genus. Ann. of Math. 55 (1952), 296-
- [2] Hiromi, G., AND H. Mutō, On the existence of analytic mappings, I. Kōdai Math. Sem. Rep. 19 (1967), 236–244.
- [3] Hiromi, G., And H. Mutō, On the existence of analytic mappings, II. Kōdai Math. Sem. Rep. 19 (1967), 439–450.
- [4] Митō, H., On the existence of analytic mappings. Kōdai Math. Sem. Rep. 18 (1966), 24–35.
- [5] OZAWA, M., On the existence of analytic mappings, II. Kōdai Math. Sem. Rep. 18 (1966), 1–7.
- [6] OZAWA, M., On analytic mappings among three-sheeted surfaces. Kōdai Math. Sem. Rep. 20 (1968), 146–154.

DEPARTEMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.