KODAI MATH. SEM. REP.
20 (1967), 155158

ON RIGID ANALYTIC MAPPINGS AMONG SURFACES {e"=f(z)}
By Mitsuru Ozawa

1. Introduction. Let R be an open Riemann surface (z, w) defined by
e’=1(2)

with an entire function f(2) which has no zeros other than an infinite number of
simple zeros. For the topological structure of the surface R we can refer to a
paper due to Heins [1]. Let pz be the projection map (z, w)—z. Let S be another
such surface defined by e”=¢(Z). Consider a non-trivial analytic mapping ¢ of R
into S, which satisfies the following rigidity condition:

psp(D)=pse(q)  Whenever  Prp=Drq.

Let Dg be the domain in which f(2)20 and Er the set of zeros of f(z). Evidently
Dp={|z|<co}—Fpg. Let h(z)=psep-pz'(z), then A(z) is a single-valued regular func-
tion in Dg, whose image A#(Dg) lies in Ds. In the present paper we shall prove
the following theorems.

THEOREM 1. Let ¢ be a non-trivial vigid analytic mapping of R into S, then
the corresponding h is a polynomial and ¢ is onto.

THEOREM 2. Let ¢ be a non-trivial rigid analytic mapping of R into itself,
then the corresponding h is of the following form e*"z-+B with a suitable rational
number v and ¢ reduces to a one-to-one conformal mapping of R onto itself.

2. Proof of Theorem 1. Assume that %(z) has an essential singularity at a
point z*¥ of Er. Then in an arbitrary small neighborhood of the point z* A(z) takes
every value infinitely often excepting at most two. Hence all the points of Es
excepting at most two are taken by A(z). This contradicts the into-ness of 7A(2).
Thus there is no essential singularity of % at Er. The same is true for z=oco.
Hence %(z) must be a rational function of z in the z-sphere. Next we prove that
A(z) is a polynomial of z.

Assume that %(z) has a pole at some point in the finite z-plane. Then a fixed
neighborhood of this point is mapped around Z=oco by A(z) and its image by Z(z)
contains a neighborhood of Z=oco, which contains at least a point of Es. This
contradicts the into-ness of 4(z) in Dg. This implies that 4(z) is a polynomial.
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Next we prove the onto-ness of ¢. Suppose that ¢ is not onto. Evidently /4(z)
is a mapping of the z-sphere onto the Z-sphere with a constant finite valence. If
/(z) is a mapping of Dz onto Dg, then there is a point P of S such that ¢ does
not cover P but % does cover its projection psP. Then there is a point Q such that
o(@=Q, psQ=psP. On S we join P and Q by a suitable curve C and make its
projection psC. psC is a closed curve joining psP with itself. There is a curve ¢
which starts from prg and ends to a point # whose image by % is psP. Now ¢ does
not belong to Er by the onto-ness of 4. Then we can construct the curve & whose
projection is ¢ and whose starting point is ¢. Then ¢ can be continued along ¢ to
the end point. This means that P is covered by ¢(R). If %(z) is a mapping of Dr
into Dg, then there is a point z* of Er such that Z*=/k(z*)¢ Es. Consider the set
of counter-images {z}}._1, 2f=h"1(Z*), z;*=2z* of Z*. Really this is a finite set. All
the z¥ (u=1, ---, v) must belong to Ez. Consider the set of small neighborhoods 7,
of zFf such that A(n;) covers just the same neighborhood N(Z*)—Z* of Z* and
n;Nn=¢ for jxk. We can make N(Z*) a sufficiently small disc. Then consider
p3*N(Z*)=N(Z*). This consists of an infinite number of disjoint discs Ki, Kz, --.
Since ¢ is analytic, @epz!(n;) must be connected. Hence ¢opz'(%;) lies in a single K.
There remains still an infinite number of discs. Take such a disk K,. If every
point of K, is not covered by ¢(R), then this point must be a point of S over a
point in A(Er). Then we can find a point which is near from that point and is
covered by ¢(R). We have already taken all the counter-images 42 *(N(Z)), v in
number. If there is another disc lying over N(Z*) which has a point covered by
v(R), the number of A~'(N(Z*)) must be greater than v. This contradicts the de-
finition of ».

3. Proof of Theorem 2. By theorem 1 A(z) must be a polynomial and a map-
ping of Dr onto itself. Let d be the degree of A(z). Suppose d=2. Consider the
solutions of A(z)=z,, z;e Er. Then every solution belongs to Ez. If |z;]=R, for a
sufficiently large R,, the solution satisfies the same inequality. Making these pro-
cesses for some z, successively then, the successive solutions make a bounded infinite
set. This implies that £ has at least one cluster point in a bounded part of the
z-sphere. This is a contradiction. Hence d=1, that is, A(z)=az+p. If a=xe*" with
any rational number 7, we make the iterations of 2. Then we have some cluster
point of E% in a bounded part of the z-plane. This is a contradiction.

4. We do not have any effective method in order to decide whether there is a
non-rigid analytic mapping of R into S or not. Now we shall consider a simple
case. Let R be the surface (z, w) defined by e¥=z°+4az+b with two constant «
and b. We here assume that ax0. Let S be the surface (Z, W) defined by e%
=73+AZ+B with Bx0. Then R and S are two three-sheeted algebroid surfaces
over the w-plane and the W-plane, respectively. Let pfepopk==4A* is a single-valued
function [3], [6]. However the rigidity in this sense is not the rigidity defined in
No. 1. Anyhow we have the following condition:

Dgoli*(w)=Dgl f:3+af1f2? —(”"=0)f2*F,
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where Dg=27(¢”—B)*+4A3%, Dr=27(e”—b)*+4a®. Hence
27(e™ " — By +4A*=[27(e” —b)*+4a®|[ fi*+af1 /2" — (" —b) f2*]%

Assume @¢=0. Then A=0 and vice versa. In this case we have ¢=0, A=0. Then
R and S are regularly branched three-sheeted. By an earlier result in [4] there exists
a suitable entire function j(w) satisfying either e"® — B=f(w)*(e”—b) or e"“—B
=f(w)*(e”—b)%. In the second case we have a contradiction by considering the set
of simple zeros. In the first case by [2] or [6]® we have A*(w)=aw+p, |a|=1.
Consider the sets of zeros of ¢“—b& and e™—e™#B, that is, {log b+2nxi}, {a™'(—f
+log B+2nri)}. These two sets must be coincide with each other. Hence

a(log b+2nx=i)+p=log B+ 2mmri.
Thus a==+1.
Assume ¢Ax0. If 27B?+4A%*=0 and 27b*>+4a*=0, then we have

e (e —2B) =276 (" — 2b)( [y +af1 f2— (e —D)f2).

By this equation we have A*(w)=aw+p, |¢|=1. Then by the same argument we
have a=+1. If 27B%+4A%*=0 and 27b%>--4a*=0, then

27eM W er" W 2 B)=[27(e"” — )P+ 4a°|[f 0+ a1 fot— (e — ) f T

By this equation we have Z*(w)=aw+pB. The set of zeros of (e*—b+21a*"23+/ 3)
(e¥—b—2ia*"?/34/ 3) coincides with that of e®*—2Be=f. Then |a|=2. This implics
that the distance of two successive zeros must be equal to z=. But this is not the
case unless b=0. This is a contradiction. If 27B2+4A%x0 and 27b>+44*=0, then

20(e7 — BY +4A°=21e"(e*— 2D f +afo (e —D) T

By this equation we have Z*(w)=aw+p. Consider the set of zeros of ¢”—2b. Then
la|=1/2. In order that the minimum distance of two zeros of (e™**— B)?*—4A%27
is equal to 2z, B must be equal to zero, which is a contradiction. If (2732+44A4%)
(270%+4a*)x0, then A2*(w)=aw++p, |«|=1. In this case we have a=+1.

Summing up these results we have the desired rigidity of ¢ with respect to pz
and ps. Indeed prp=prg, p=(2, w), ¢=(2, w’) imply w’=w-+2nzi and psp(p)="ps¢(q),
o(P)=(Z, W), o(@)=(Z, W’) imply W’'=W+2mzi. And further A*(w)=+w-+p im-
plies W/— W=+ (w’—w) and hence W’'— W=+2nri whenever w’—w=2nzi. This
is nothing but the rigidity of ¢ with respect to pr and ps.

THEOREM 3. Let R and S be three-sheeted surfaces defined by

v tay+b=e” and Y*+AY+ B=eX, Bb=x0,

1) In [5] we proved several estimations of the N-function of a composed function. In
these estimations we used the second fundamental theorem erronously. Main theorem
was proved 1n [2] correctly. In our present case we can use our estimations in [5]. Indeed
|lwj—wr| 227 for any two roots of ew—b=0.
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respectively. If there is a non-lrivial analytic mapping ¢ of R into S, then ¢ is
vigid in the semse of No. 1.
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