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Summary.

Feller’s theory of recurrent events is a powerful tool for the study of regenera-
tive stochastic processes in discrete time. The concept of “regeneration” in a
stochastic process with continuous time parameter has been formulated in two
ways. One is the theory of “regenerative stochastic processes” developed by Smith
[10], and the other is the theory of “regenerative events” by Kingman [5], [6].

In this paper we consider the probabilities of an event in a stochastic process
containing a regenerative event. QOur cvent corresponds to the set .4 which is a
subset of the state space in Smith’s theory. However our difinition and discus-
sions are based on Kingman’s theory, and are applicable to the study of Markov
processes with a continuous state space.

It is shown that the fact that a process contains a regenerative event imposes
fairy strong conditions on the probabilities of an event.

Results obtained are compared with those in the papers [7], [9] by Kingman
about the transition probabilities of Markov chains with a countable state space.

§1. Introduction.

Feller’s theory of recurrent events is a powerful tool for the study of discretc
time parameter Markov chains [3], [4]. A continuous time analogue of Feller’s
theory was given by Kingman in [5], [6]. Kingman’s theory which is called the
theory of regenerative events, together with its extentions by himself, provides a
useful technique for continuous time parameter Markov processes with a countable

state space [9].

Kingman defines a regenerative event & on a probability space (2, &, P) to
be a family {E(®), >0} of F-measurable subsets of £, such that, whenever

(1) 0<t<tal <ty
we have
(2) P{E(t)E(t:) -+ E@)} =P{E@)}P{E({t.—1) - E(ts—1t)}.

This difinition is appropriate to the study of the transition probabilities
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E€-REGENERATIVE PHENOMENA 77

bu(t)=P{X,=i| X,=i},
in a Markov chain {X, >0} with stationary transition probabilities.

To deal with the off-diagonal elements ps;(£) (i3j) of the transition matrix,
Kingman defines delayed regenerative events and linked systems of regenerative
events as follows: A delayed regenerative event is a family {E®), t>0} of &-
measurable subsets of £ for which there exist p°% p on #>0 such that, for all
t, -+, Iy satisfying (1), we have

P{E)E(2:) - E(tn)} =p*(t0pta—1) - plts—1tr-1).
A linked system of N regenerative events is a system
902('9; 37) PM E‘L(t); Z:]-v 2y Tty -ZV; t>0),

where 2 is any set, & is a c-algebra of subsets of 2, P, is a (complete) probability
measure on 2, and Ey(¢) is a member of &, such that

(3) E®NEH=¢  (ixj, t>0)
and such that, whenever
k=1, do, i1, -, ix€{l,2, - N}, O0<ta<lts -+ <ty
we have
Pi{E(tDE(@) - Ey(tn)}
=P B, ()} P Ey(ta—1t) - By (Le—t)}.

(4)

Applying Kingman’s theories of delayed regenerative events and linked systems
of regenerative events we can obtain many properties of p;;(#) (i=5) such as the con-
tinuity of ps;(#), the local bounded variation and almost everywhere differentiability
of pi;(¢), the existence of the limit of p;;(¢) as t—co, and so on [6], [7], [8].

Under the definitions, these results about p;;(¢) (i3j) are consequences of the
fact that the state j is regenerative.

By the way, it will be also important to investigate what properties about
i) (i=7) stem from only the fact that the state i is regenerative.

The purpose of this paper is to give an answer to this question in a more
general setting. The results obtained in this paper are applicable to the study of
the transition probabilities of discontinuous Markov processes with a continuous
state space.

Let us consider a discrete time parameter stochastic process which contains a
recurrent event & in the sense of Feller [3],[4]. Let us denote by E(n) the event
that at time # & occurs, and A(xz) the event that at time # a certain phenomenon,
which will be denoted by the symbol 4, occurs. Moreover we suppose & and ./
to be disjunct, that is,

(5) En)n A(n)=¢.
Let U(x) be a field containing the w-sets E(n#) and A(x). If the phenomenon
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A is not pathological, from the definition of recurrent events, whenever
0 <np oo <y My
J(nx) € N(nw), k=1,2, -, i+7,
we shall have
P{J(n) J(n2) -+ (i) E (1) J(Ris1) -+ Ty -1) E (R145)}
=P{J(n) J(nz) -+ E(n)} P{J(Mi1—n3) -+ E(Rayj—n3)}.

But as Doob pointed out, it would be more logical to omit the condition that
the last term in the left side probability of (6) is £(#:.;). (See [1].)
Thus modifying the above, we make the following definition.

(6)

DerINiTION 1. A discrete time parameter & -vegenerative phenomenon J is a
family {A(n), n=1,2, .-} of F-measurable subsets of £, such that, whenever

() 0<t < <o <Ay <Py oo <My,
and
(8) J(nx)eW(ny), k=1,2, -, i-+j,

where U(n;) is a field containing E'(nx) and A(ni), we have
P{J(n) J(nz) -+ J(ni ) E(13) J(1311) -+ J(415)}
=P{J(n)J(nz) --- Ena)} P{J(ni1—m) - J(iyj—104)}.

It must be remarked that this definition implies that {E(n), n=1,2, -} is a
recurrent event in Kingman’s sense. Because if, for all &, J(zz)=FE(nz), (9) reduces
to the equation

(10) P{Em)En) -+ E(nm)} = P{E(n)} P{E(#2—1) -+ E(m—m1)},

by which Kingman defines a recurrent event.
If 4 is an &-regenerative phenomenon in Definition 1, define sequences
{pn}, 1Sz}, {an} and {w,} by

pa=P{En)}, Fa=P{EQ)EQ) --- E(n—1)E(n)},
an=P{A(n)}, w,=P{EWEQ2) -+ E(n—1)A()},

where E(k) denotes the complement of FE(k). Setting po=1, @e=0, fo=0, w,=0,
we have from (5) and (9)

(9)

11

12) An=Wn+ ) fr@n-r= D, Prthn_r 7n=0,1,2, ..
r=0 r=0
Equation (12) is equivalent to the power series relation
oo z ann ) o
(13) Wt = T = 3 a2 S waz® (2] <)
n=0 n=0

< =0
1— X fa2" "=
n=0
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The left hand equality of equation (12) is the so-called renewal equation. The sum
e w, may diverge, but in the case of convergence we have the following
theorem due to Feller [4].

TuEOREM A. [Feller] Suppose that {f.} is not periodic and that Y, w, is finite.
(a) If X fo=1, then

14) An—p™ 2 Wy where n= 2 nfn.

In particular, a,—0 if Y nf, diverges.
(b) If 3 fu<l, then the series

(15) L an={1=251a} 7 2 wn

converges.

§2. Continuous time parameter & -regenerative phenomena.

Let (2, F, P) be a probability space. By analogy with Definition 1, we define
continuous time parameter &-regenerative phenomena. Let E(#) and A(#) be &-
measurable disjoint subsets of 2, and U(#) be a field containing E(#) and A().

DEFINITION 2. A continuous time parameter & -rvegemerative phemnomenon J is
a family {A(#), £>0} of F-measurable subsets of 2, such that, whenever

16) 0<t<ta<l - <ty e <ty

and

an Jt)eUtn),  k=1,2, i+,
we have,

PUJ@) () -+ J(t)E@) J(tar) -+ Ji )}
=P{](tl) "'f(tz—l)E(ti)}P{f(tHl'_'tz) "'f(tnj—tz)}-

As in discrete time parameter case, notice that the family &={E(), >0} is a
regenerative event, since & satisfies (2). Moreover it is clear that conditional on
the occurrence of &, the past and future are independent, ie. & “regenerates”
the process. (See Proposition 1.) Thus we call a phenomenon .j satisfying the
above conditions & -regenerative.

Our main interest lies in the study of continuous time parameter & -regenera-
tive phenomena. Of prime importance is the functions

19) a(t)=P{A®)},
(20) p(BO)=P{E®)}.

DeriNiTION 3. These functions a(#) and p@) will be called the a-function and
the p-function of the continuous time parameter & -regenerative phenomenon 1.

(18)

For brebity, in the following, we shall use the term “ £-regenerative pheno-
menon ” in stead of “continuous time parameter & -regenerative event”,
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An &-regenerative phenomenon can easily be shown to have following three
elementary properties. Proposition 1 states that if & occurs, then the process
starts anew.

ProrositioN 1. Let B and D be any w-sets belonging to the smallest o-fields
generated by the sets {A®), E@), t< T}, and generated by the sets {A@), E(t), t> T},
respectively. Then we have for each T>0,

(21) P{B-E(T)-DYP{E(T)}=P{B-E(T)}P{E(T)-D}.

Proof. We can prove this proposition by the argument analogous to Kingman
[6]. So we shall omit the details.

ProposITION 2. Let A be an & -regenerative phenomenon. Then for any h>0,
{A(nh)y n=15 Zy }
is a discrete time parameter & -regemevative phenomenon.

Now Definition 2 imposes some regularity conditions on «-functions. For ex-
ample, we have

ProrosiTiON 3. For any s, t>0,
(22)  max [p(s)a(®), pa(s)]=a(t+s)=1—max [p(s){1—a@®)}, pBO{1—a(s)}].
Proof. From (18), we have, for #;<t,,
P{E(t)A(t)} = P{A(t:)} — P{E(t) A(tz)} =a(t)—p(t)alts—t),
PLEW)A(ty)) =1—p(t)—alts) +p(t)alts— ).
These lead to (22).

Let {X;, =0} be a Markov process on a continuous state space S. We assume
that X,=¢ a.e., and AcS, and that the transition probabilities

(& & A)=P{ X se Al X;=¢&}
are independent of s. Consider a phenomenon ./ defined by
At)={w; X;€ A} and E@)={w; X;=¢&}.

Then 4 is an & -regenerative phenomenon, since Definition 2 is satisfied. Hence we
can deal with Markov processes on a continuous state space.

and

§ 3. Standard phenomena.

In Kingman’s theory a regenerative event is called standard if
(23) pO=PEDO}-L  (-0)

and the class of all the p-functions of standard events is denoted by . We also
assume (23) for our phenomena.

DerFINITION 4, A standard phenomenon J is an & -regenerative phenomenon 4
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satisfying (23). Let .9 be the class of all the standard & -regenerative phenomena.

For later uses, we quote here some results from the theory of regenerative
events [6], [7].

TueoreMm B. [Kingman] If p(#)e P, then (i) p(t) is strictly positive and wuni-
formly continuous, in 0<t<co. Moreover (ii) p(t) is of bounded variation in every
finite interval, and is thus differentiable almost everywhere. (iii) The limit

1—p(t
(24) g=lim —-—f(—)

t—0

exists (it is possibly infinite), and if q<oco then

(25) p)ze
for all t>0. (@Gv) The limit

(26) G= tlirfol 0]
exists.

We begin with showing that e-functions of phenomena in % have similar
analytic properties as p-functions in <.

THEOREM 1. Let A€ 9. Then

(i) a@) of the phemomenon A is uniformly continuous in 0<t<co.

(ii) If for some t,, a(ty) is positive, then a(t) is strictly positive in t,=t< co.
Moveover if the limit (24) of the p-function of Jj is finite, then

27 at)y=a(ty)e~ ¢ (t=ty).
(iii) If g<oo, then a(t) satisfies the Lipschitz condition
(28) la(t:)—a(ts)| =1—exp (—qlti—1t:]) =qlti—1s].

Proof. (i) From (22) we have for any 4, >0,
—a@®){1—ph)} =a(t+h)—a@) =A—ph) (L—a@)).
Therefore
(29) la(t+n)—a(@®)| =1—ph).

From (23) it follows that a(#) is uniformly continuous in 0<#<oco.
(ii) This follows from (i), (iii) of Theorem B and (22).
(i) If g<oo,
(30) 1—ph)=1—e,
From (29) and (30), we obtain (28). Q.E.D.
Further analytical properties of a-functions, such as bounded variation, can be

proved, but we shall carry it out in Section 5 after deriving an important integral
formula in the next section,
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§4. The integral formula.

In this section we derive an integral formula which is the continuous time
analogue of the right hand equality of the equation (12). We proceed in several
steps.

Let .4 be a standard & -regenerative phenomenon. Then from Proposition (13)
we can write, for any £>0, and |z|<1, setting p(0)=1 and «(0)=0,

i a(nh)z"= i p(nh)z"- i wa(R)Z"
n=0 n=0 n=0
where
wa(h)=P{EMR)EQ2h) - E(n—1)h)A(nh)}.
Let @ be any complex number with strictly positive real part, and put
Hu@)= 3 wali)e-om.
n=0
Then we have
BS anhye-rm=h S pak)e-om - Hy(0).
n=0 n=0
The left hand converges, as 2—0, to
s(@)= Swa(t)e‘”‘dt.
0
Hence it follows
s(@)

(31) Hy(0)— 70) (h—0),

where
0)= Smp(t)e‘“dt.
0

Now we introduce a measure 7, on [0, co) with mass w,(%) at x=n#k for each
n=1,2,---. Then

Hh(o)=S 052 (d).

[0, e

Let [x] denote the largest integer which does not exceed z. If there exists a
function M(x) such that

) S )= M () <o,
n=0

it follows that there exist a sequence {%,} (j=1,2,---), tending to zero, and a
measure 7 on [0, o) such that
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(33) Jeroen dmy—{eomctan) (o)
Then from (31) and (33), we have

50) _ 0z
(34) 2 _Sm _elda)

It is clear that r has no atom at x=0, since #7(0)—1, 0s(0)—0, as H—oco, by mono-
tone convergence principle we have

s S
0=tim 52— lim <f{0}+ SO e f(dx))_L{O}

where {0} is the mass of the measure r at x=0. If measures r;, 7, satisfy (33), then

Sme-mfl(dx)= S:e—ﬂxfz(dx).

0
Therefore r,=r,, that is, the measure 7 is unique. We now define for each =0,
K(z)=[0, z].
Summing up these, we have the following
LEMMA 1. If a finite-valued function M(x) satisfies (32), then therve exists a
unique ( finite or infinite) measure v with,
35) s(0)=r(0)gme‘”r(dx),
0

for all 0 in Re0>0. Or,

13
(36) a(t)=S P(E—38)dK(s).

0

Notice that K(#) may diverge as t—co, and that in the deduction of (36) we
used the continuity of a(¢) and p(#).

In the next step, we shall prove that for any & -regenerative phenomenon in
9, there exists a function M(x) satisfying (32). Following a theorem by Kingman
[6], we shall prove it.

TueoreMm C. [Kingman] Let p(t)e P. Then there exists a wunique measure p
on (0, col with

37 S(o J(l——e'x)y(dx)<oo

such that the Laplace transform v(0) of p(t) satisfies

1 —
7o)

for all 8 in Re0>0. And p(t) satisfies the Volterra equation

(38) o+ S@ (A=)
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(39) 1— ()= S Ht—3)p(s, colds.

Now we define a new & -regenerative phenomenon 4* by
(40) E*@)=E®), A*t)=E®)  (>0),
and w,*(%) by

wo*(h)=P{E*(B)E*@2h) --- EX((n—1)h) A*(nk)}.
Then from (11)

(D) wiB)=1— 32 fl)=w*h).

A0 Sl
_ Sm s p([%]h—s)d Vils)

where V(¢ is defined as follows:

(12) leads to

42)

to/n]
Va@®)= ; wi*(h).

On the other hand, from (39)

@ P

Since p(?) is strictly positive and continuous in 0=f<oo, it follows from (42) and
43)

(44) Va ([%:lk) = -‘gz}}p(—s)gj (s, oolds.

By the way, (37) of Theorem C implies
(45) g (s, oolds <co.
0

This completes the proof of
LEMMA 2. For any h>0, it satisfies

[z/r]

(46) 3 walh)= ® (s, co)ds.
n=0

TYER
min A(s) Jo
0sSs=z
Consider the phenomenon .4*. From (36) and (39) it is easily shown that for
almost all ¢, K*() is differentiable and dK*/dt=p(¢, oo] where K*(¢) denotes the

K(2) of _1* defined above,
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LemMMA 3. For any xi, x» with

O=z1=x,<00,

Z

@7 K(xg)—K(x1)§S " (s, colds

Z.

holds.
Proof. The continuity of a(¥) and (36) imply the continuity of K(z), hence
for any =i, x; with 0=z;=x,<co, we have
[z2/R]
K(z)—K(z)=1lim >, wa(h).
h

—0 n=[r1/R]+1

From (41),

Cea/n] tza/h)
48) lim 2 w.(W=lim 2, w.*®).

h—0 n=[x1/R]+1 h—0 n=[x1/R]1+1

Since K*(t) is a function of bounded variation and dK*/dt=pu(t, o] a.e., we have
(49) K (wa)— K*(z)) = S“#(s, colds.
Z1

Thus from (48) and (49), (47) is concluded.
We are now in the position to prove that K(#) is absolutely continuous.

LEMMA 4. K() is absolutely continuous and theve is a measurable function
u(t) such that for all t>0

(50) O=u(?)=p(2, oo],

and

(51) K@®)= St w(s)ds.
0

Proof. (45) implies that for any ¢>0, there is a positive number § with
3
(52) S (s, colds <e.
0
Let Ii=[a, by), I,=[as, bs), -+ In=[ax, bx) be disjoint intervals in [0, co) with
23 (br—ar) <.
k=1
Because of the monotonicity of u(s, co] with respect to s, and Lemma 3, we have
n )
3 IKG)—K@)=| uts, olds.
b=1

This and (52) mean that K () is absolutely continuous in #=0. For almost all #£>0
(50) holds, since for almost all £>0
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dK () — i K@t+h)—K@) —1 S‘*" (s, oo]
a i % =), h

Therefore we can take #(f) such that (50) holds for all #>>0. Hence the proof is
complete.

0

fIA

ds=u(t, oo].

Combining Lemma 1, 2 and 4, we have the following main

THEOREM 2. Let Je€ 9. Then there is a wmeasurable function u(t) which is
unique except for the values of Lebesgue measure zero of t such that

(53) O=u(t)=u(t, ool
and
64) alt)= S; Dt—s)u(s)ds

for all t=0. Thus the Laplace transform s@@) of a(t) is written as follows:
(55) S(0)=r@)u*(0)
where Re 0>0 and

0

u*(0)=g 9% u(z)d.

§5. Analytic properties of a-functions.

Kingman obtained the following result in [8].
TaEOREM D. [Kingman] Let p(¢) in P have
(56) @&=lim p(¢)>0.

t—oo

Then p(t) has totally bounded variation on (0, co].

THEOREM 3. Let A€ 9. Then the a-function of J is of bounded variation
n every finite interval, and is thus differventiable almost everywhere in t>0. More-
over if the p-function of A satisfies (56), then a(t) has totally bounded variation
on (0, o).

Proof. Let I=(0,¢], I—s=(—s, t—s] (s<t) and Var (f,I) be the variation of
the function f in I. Then from (54), it follows
t
(57 Var (e, 1 )éS Var (p, I—s)u(s)ds.
0

By Theorem B (ii), Var(p, I) is finite. Hence the right hand of (57) is finitc.
Moreover if the limit & is positive, then clearly lim,..K(z)=K(co) is finite. Now
(57) shows for any interval I=(0, ¢]

Var (e, I)<Var (p, [)K(co0).

Applying theorem D, we have the assertions to be proved.
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We can easily show that the differentiabilities of a(f) and K@) at #=0 are
equivalent. If these are differentiable, then a’(0)=K’(0)=gq=limp—o 2 *(1—p(h)),
since p(#)—1 as #—0 and (36) holds. If so, then we shall have to ask under what
conditions «’(0) exists. It suffices to consider the case in which «(?) is strictly
positive in #>0. Otherwise the derivative «’(0) exists and is equal to zero because
of Theorem 1 (ii).

THEOREM 4. Let Ae€ Y. Assume that the a-function of A is strictly positive
in 0<t<oo, If
(58) P{A{t+0)|A@®)}—1 (6—0),
holds umiformly in t wear the origin, and the limit gq=lim,-oh *(1—p(h)) is finite,
then o' (0) exists and finite.

Proof. a(nh)=P{Anh)}= ﬂg P{EWR)EQ2h) -+ E(uh)AQh-+h)A(nh)}
=P{AWAnR)} + nil P{E(h) --- E(vh)} P{A(R)A(nh—vh)}
v=0

= Z;]: {60 Y a(h)PLA(mh—vh)| A(R)}.

From (58), for any >0, there exists a #,(¢) such that, whenever ni2=t, then we
have
1—{pH)}"
——=—a(h).

- "
Meanwhile every standard regenerative event can be regarded as separable. Then
it follows

a(nh)z(1—e)

(59) at)=(1—e) 1_;_“ Tm “(}f‘) .

h—0

Consequently Timy_o(a(#)/%) is finite. Dividing both side of (59) by ¢, and letting
t—0, we have

im 29 =1 —"(]f) :
e 7—0

§6. Limit probability.

We shall now examine the limiting behaviour as #—oco of e-function of &-
regenerative phenomena in 4. Theorem B (iv) asserts that any p-function in @
has the limit éd=Ilim;—.p(#). But Theorem A for the discrete time parameter case
suggests that ae-function has not always the limit &=1lim;. @(?). A sufficient
condition for the limit to exist is a condition corresponding to the finiteness of the

sum Jiwan.
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THEOREM 5. Let €Y.
(1) If © is a finite measure, or K(co)=lim,—K(x) is finite, then

(60) a(t)—m')-K(oo):cBS:u(s)ds
where ®@=1im; .. p(?).
(i) And if
\, Bae <o,
then
61 S:a(t)dtzK(OO)- S:p(t)dt<oo.

Proof. Applying the dominated convergence principle to (36) and (54), we
obtain (i). Taking 6—0 in (55) leads to (ii).
Let 2>0 be fixed, then we have from (22)
(m+1h h h
S a(t)dt=S a(nh—i-u)du;a(nh)g pu)du=a(nh)B, say,
0 [1]

nh
o du

o D(n)
where from Theorem B (i), 0< B, C<oo. And so

th a()dt= Sh a(nh—u)du ga(nh)s =a(nh)C, say,

(n—-1)h

B é;o a(nh)éSja(t)dtéCﬂé a(nh).

This yields the first part of the following theorem.

THEOREM 6. Let e 9. Then

(1) Jea@)dt comverges if and only if, for all h>0, Y5..a(nh) converges.

(ii) If [ep)dt diverges, then either a(t)=0 in 0<t<oco or [Ya(t)dt diverges.

(iii) In the last case, with probability one, the phemnomenon A occurs after an
arbitrary time.

Proof. (ii) can easily be derived from monotone convergence principle.

(iii) In view of Proposition 2 and (i) of this theorem, it suffices to consider the
second assertion of (ii) in the discrete case. If [Pp(f)dt=co, then for a fixed posi-
tive & Yg.p(nh)=co. This means that with probability one & occurs at »n4 for
infinitely many ». Recalling that if & occurs, then with a positive probability, .4
occurs, we obtain the required result.

Some results concerning the rate at which the p-function converges as {—co
have been obtained by Kingman [2].

TuaeoreM E. [Kingman] Let p(f)e P.
(i) The limit
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62) B=—lim ¢7* log p(¢)
t—c0
exists and is finite and non-negative. For all t=0,
63 poyse™, gz
(ii) If [ept)dt=c0, limmep(t)=0 and for all a>0,
= Pl+a) _
€4 Ty ="

then, for all a>0,

. pl+ta)
(65) im = -
(iii) Suppose that the limit G=1im,..p(t) is positive. Then
(66) p@)=a+0(e™*)

holds for some B>0 if and only if there exists a 2>0 such that
S e**u(dx)> o0
@, )

where p is the measure of Theorem C.
Easy calculations prove the analogous theorem about a(#).
THEOREM 7. Let € Y.
(i) If the limit B of (62) is positive and for some y>0

Swe””dK ()< o0,

0
then a(t) satisfies for some y>0
(67) a@)=0(™),  (t—oo).
(i) If
[s0at=co, timp=0,  Keeo)<eo,

t—oo

and for all a>0

— pita) _
lim =27==1,
then we have
alt) _
@ lm Sy =K
and for all m>0
69) Jim 24EmM

t—oo a(t )
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i) If

(70) d=lim p(#)>0,

for some p>0

(71 pt)=0+0(e™")

and for some >0

(72) Sme”dK(xKoo,

then there exists a y>0 such that
(3 at)=a+0(e™)
where @=lim;-.a(t).

Proof. (i) From (36), (63) and the assumption, we have (67) with y=min (5, v).

(ii) Fatou’s lemma and (65) lead to (68). (69) is derived from (68) and (65).

(iii) When &>0, K(co) is finite. Hence the limit a=lim;,..a(?) exists
(Theorem 5 (i)).

Therefore we can write

t oo
la(t)—&lég Ip(t—s)—a”)IdK(s)—l-cBS AK(s).
0 t
From (71), it follows for some M >0
13 oo
|a(t)—d|§8 Me#dK (s)+ a”)e“”‘S e dK(s).
0 I3

Thus setting min (p, 6)=y, from (72) we have (73).

§7. Further remarks.

ReMARK 1. Let 4 be a standard & -regenerative phenomenon, and let {Zy(w),
t>0} be the stochastic process defined by

Z{w)=0 if  weE(),
=1 if w€A(D),
=2 if wel—{E®OUA®}=C@).
For any ¢>0, >0, we have, from (18),

P{Z(0)% Zin(@)y = P{EQEt+h)} +P{E@GEQ-+h)}
+P{A®)CE-+h)} +P{C)A(t+ 1))
=pO)+p-+1)—2p0)p(h)+a(l)-1-alt-- 1)
—2P{A@AE+R)} —P{AGE{+R)} —Dpb)a(h).
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If for each #>0 such that P{A®)}>0,
(74) P{A({#+0)|A(®)}—1 (6—0),

then the above probability tends to zero as 4—0. Therefore the process Z; is con-
tinuous in probability. It follows from a well-known theorem by Doob [2] that
there exists a measurable, separable process {Z*(w), >0} defined on the pro-
bability space £, such that

PiZMw)=Zw)}=1  ¢>0).
Clearly, the families {E*(¢), £>0} and {A*®), >0}, defined by
EXt)={w; Z*0)=0},  A*O)={w; ZH(0)=1},
satisfy Definition 2, and
pO=p*@)=P{E*D)},
a)y=a*)=P{A*®)}.

Let us say that two &-regenerative phenomena 4; and _J, are p-equivalent if, for
all £>0,

Di(&)=px(2)
a(t)=axs(?).

and

Moreover, let us say that two & -regenerative phenomena J; and 1. are equivalent
if, for all #>0,

P{ENOAEX(8)} =0,
P{A\()4Ax(22)} =0,

where 4 denotes the symmetric difference of sets. Two equivalent & -regenerative
phenomena are necessarily p-equivalent, but the converse is false. Then we have
the following

ProposiTION 4. Let A€ 9. Suppose that A satisfies (74) in each t>0 such
that a(t)>0. Then there exists a measurable and separable standard & -regenera-
tive phenomenon A* which is equivalent to i, hence is also p-equivalent to .

ReMARK 2. In his papers [7], [9], Kingman classified the theorems about Markov
chains with transition probabilities p;;(#) into three types. We can roughly say
that his classification is as follows:

Type 1. Those results which can be deduced from the fact that the state j is
regenerative. For example, we can list up the following analytical properties of
D).

1) The continuity of p4(¢), and the existence of pf;(0).
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2) The local bounded variation and almost everywhere differentiability of
Dus(B).

3) The existence of the limit of ps;(f) as t—co.

Type 2. Those results which are not of Type 1 but which follow from the
fact that the state i and the state j are both regenerative.

4) The continuity of p;;(#).

5) The existence and finiteness of p};(0) for i=:j.

6) The last exit decomposition

(5) pij<t)=S:pa(t—sm(s)ds.

Type 3. Those results which cannot be deduced from either of the above
facts.
7) The continuous differentiability of p;;(¢).
8) The Austin-Ornstein theorem that p;;(¢) is either strictly positive or iden-
tically zero.
Applying our theorems to Markov chains, we can conclude that the following
results about p;;(¢#) can be deduced from the fact that the state i is regenerative.
4) The continuity of ps;(#) for i=j.
2) The local bounded variation and almost everywhere differentiability of
pij(t) for ZﬂF].
6) The last exit decomposition (75).
These show that in Markov chains the fact that the state i is regenerative
imposes fairly strong regularity conditions on p;;(f). However, it seems that 3)
and 5) require the state j to be regenerative.

In conclusion the author expresses his gratitude to Prof. H. Morimura whose
guidance and advice throughout the preparation of this paper were invaluable.
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