
KODAI MATH. SEM. REP.
20 (1968), 76-93

<5-REGENERATIVE PHENOMENA IN SOME
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Summary.

Feller's theory of recurrent events is a powerful tool for the study of regenera-
tive stochastic processes in discrete time. The concept of "regeneration" in a
stochastic process with continuous time parameter has been formulated in two
ways. One is the theory of " regenerative stochastic processes " developed by Smith
[10], and the other is the theory of " regenerative events" by Kingman [5], [6].

In this paper we consider the probabilities of an event in a stochastic process
containing a regenerative event. Our event corresponds to the set Jl which is a
subset of the state space in Smith's theory. However our difinition and discus-
sions are based on Kingman's theory, and are applicable to the study of Markov
processes with a continuous state space.

It is shown that the fact that a process contains a regenerative event imposes
fairy strong conditions on the probabilities of an event.

Results obtained are compared with those in the papers [7], [9] by Kingman
about the transition probabilities of Markov chains with a countable state space.

§ 1. Introduction.

Feller's theory of recurrent events is a powerful tool for the study of discrete
time parameter Markov chains [3], [4]. A continuous time analogue of Feller's
theory was given by Kingman in [5], [6]. Kingman's theory which is called the
theory of regenerative events, together with its extentions by himself, provides a
useful technique for continuous time parameter Markov processes with a countable
state space [9].

Kingman defines a regenerative event 8 on a probability space (Ω, £F, P) to
be a family {E(f)f t>0} of £F-measurable subsets of Ω, such that, whenever

(1)

we have

(2) P{E(f1)E{U)

This difinition is appropriate to the study of the transition probabilities
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^-REGENERATIVE PHENOMENA 77

pu(t)=P{Xt=i\X0=i},

in a Markov chain {Xt, ί>0} with stationary transition probabilities.

To deal with the off-diagonal elements p%j{t){i^j) of the transition matrix,
Kingman defines delayed regenerative events and linked systems of regenerative
events as follows: A delayed regenerative event is a family {E(t), t>0} of im-
measurable subsets of Ω for which there exist p°, p on t>0 such that, for all
tu-' Jjc satisfying (1), we have

P{E(h)E{t2) - E(tk)}=p\t1)p(t2-t1) -p(tk-t*-i).

A linked system of N regenerative events is a system

P=(β, £F, A, Et(f); ί = l , 2 , -,N; f>0),

where $ is any set, £F is a σ-algebra of subsets of Ω, P% is a (complete) probability
measure on Ω, and Ei(t) is a member of £F, such that

(3) Ei(f)ΠEj(t)=φ

and such that, whenever

&^1, io, fi, - , /*€{1, 2,...

we have

=P%0{E%1(f1)}P%1{E%t(t2-t1) ••• E % k { t k - t 1 ) } .

Applying Kingman's theories of delayed regenerative events and linked systems
of regenerative events we can obtain many properties of pij(t)(i^j) such as the con-
tinuity of pij(f), the local bounded variation and almost everywhere differentiability
of pij(f)> the existence of the limit of pijit) as £—>oo, and so on [6], [7], [8],

Under the definitions, these results about pij{t){i^j) are consequences of the
fact that the state j is regenerative.

By the way, it will be also important to investigate what properties about
Pij(f)(i±?j) stem from only the fact that the state i is regenerative.

The purpose of this paper is to give an answer to this question in a more
general setting. The results obtained in this paper are applicable to the study of
the transition probabilities of discontinuous Markov processes with a continuous
state space.

Let us consider a discrete time parameter stochastic process which contains a
recurrent event 8 in the sense of Feller [3], [4]. Let us denote by E(ή) the event
that at time n 8 occurs, and A(ή) the event that at time n a certain phenomenon,
which will be denoted by the symbol J{, occurs. Moreover we suppose 8 and Jί
to be disjunct, that is,

(5) E(n)Γ\A(ή)=φ.

Let U(n) be a field containing the ω-sets E(n) and A(ή). If the phenomenon
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JL is not pathological, from the definition of recurrent events, whenever

/(«*)€ U(«*), k=l,2,-,ί+j,

we shall have

(6)
=P{Kn1)Kn2)

But as Doob pointed out, it would be more logical to omit the condition that
the last term in the left side probability of (6) is E(nt+j). (See [1].)

Thus modifying the above, we make the following definition.

DEFINITION 1. A discrete time parameter £-regenerative phenomenon J is a
family {A(n),n=l,2y •••} of £F-measurable subsets of Ω, such that, whenever

(7) 0<ni<n2< — <ni<ni+1

and

(8) J(nk)GU(nk),

where U(nk) is a field containing E(nk) and A(nk), we have

PUfaWth) -Kni-ί)E(niWni+1) ••• J(nUj)}
(9)

=P{J(n1)J(n2)... £(^)}P{/(rc ί + 1-^) •••/(*+,-*)}.

It must be remarked that this definition implies that {E(n\ n=l,2,~ } is a
recurrent event in Kingman's sense. Because if, for all k, J(nk)=E(nk), (9) reduces
to the equation

(10) P{E(nt)E(fh) - E(nm)}=P{E(n1)}P{E(n2-n1)... ^ w - ^ ) } ,

by which Kingman defines a recurrent event.
If cJί is an £-regenerative phenomenon in Definition 1, define sequences

{pn}, {/«}, {an} and {wn} by

Λ=^{£(»)}, fn=P{E{l)E{2)
(11) _ .

an=P{A(ή)}, wn=P{E(l)E{2)

where 5(^) denotes the complement of E(k). Setting po=l, ao=O, / 0 = 0 , ^ 0 = 0 ,
we have from (5) and (9)

(12) an = Wn+ Σfran-r= ΣPrWn-r » = 0, 1, 2, •".
r=0 r=0

Equation (12) is equivalent to the power series relation

Σ WnZn

(13) Σ amn= - ^ = ~ = Σ Pnzn- Σ ^nz
n (\z\<l).

n-0 -1 v-i J? ^n n=0 n=0

J- Z J JnZ
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The left hand equality of equation (12) is the so-called renewal equation. The sum
Σn=oWn may diverge, but in the case of convergence we have the following
theorem due to Feller [4].

THEOREM A. [Feller] Suppose that {fn} is not periodic and that Σ Wn is finite.

(a) // Σ / n = l , then

(14) an-^μ~λ Σ Wn ivhere μ~ Σ nfn-

In particular, an-*0 if Σ nfn diverges.
(b) If Σfn<l, then the series

(15) Σ an={l—Σfn}~ιΣ Wn

converges.

§2. Continuous time parameter £>-regenerative phenomena.

Let (42, £F, P) be a probability space. By analogy with Definition 1, we define
continuous time parameter 8 -regenerative phenomena. Let E(f) and A{t) be £F-
measurable disjoint subsets of Ω, and 11(0 be a field containing E(t) and A(t).

DEFINITION 2. A continuous time parameter 8 -regenerative phenomenon cJl is
a family {A(t), t>0} of £F-measurable subsets of Ω, such that, whenever

(16) 0<t1<t2<'"<ti<"'<tt+Jt

and

(17) Ktk)eU(tk), k=l, 2, •••, i+j,

we have,

P{RK
(18)

As in discrete time parameter case, notice that the family 8 = {E(t), t>0} is a
regenerative event, since 8 satisfies (2). Moreover it is clear that conditional on
the occurrence of 8, the past and future are independent, i.e. 8 " regenerates"
the process. (See Proposition 1.) Thus we call a phenomenon Jl satisfying the
above conditions 8 -regenerative.

Our main interest lies in the study of continuous time parameter (^-regenera-
tive phenomena. Of prime importance is the functions

(19) a(f)=P{A(t)},

(20) p(t)=P{E(t)}.

DEFINITION 3. These functions a(t) and p(t) will be called the a-function and
the p-function of the continuous time parameter 8 -regenerative phenomenon Jl.

For brebity, in the following, we shall use the term " 8 -regenerative pheno-
menon" in stead of "continuous time parameter 8-regenerative event",
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An 8 -regenerative phenomenon can easily be shown to have following three
elementary properties. Proposition 1 states that if 8 occurs, then the process
starts anew.

PROPOSITION 1. Let B and D be any ω-sets belonging to the smallest σ-fields
generated by the sets {A(f), E(t), t<T), and generated by the sets {A(t), E(t), t>T},
respectively. Then we have for each T>0,

(21) P{B-E(T) D}P{E(T)}=P{BΈ(T)}P{E(T)'D}.

Proof. We can prove this proposition by the argument analogous to Kingman
[6]. So we shall omit the details.

PROPOSITION 2. Let A be an 8-regenerative phenomenon. Then for any h>0,

{A{nh\ n=l,2, •••}

is a discrete time parameter 8 -regenerative phenomenon.

Now Definition 2 imposes some regularity conditions on ^-functions. For ex-
ample, we have

PROPOSITION 3. For any s, t>0,

(22) max [p(s)a(t\ p(f)a(s)]^a(t+s)^l-mzx [p(s){l~a(t)}, p(t){ί -

Proof. From (18), we have, for ti<t2,

P{E(t1)A(t2)}=P{A(t2)} -
and

These lead to (22).

Let {Xtj t^O} be a Markov process on a continuous state space S. We assume
that X0=ξ a.e., and AaS, and that the transition probabilities

P(t; ξ, A)=

are independent of s. Consider a phenomenon Jl defined by

A(t)={ω;Xt€A} and E(t)={ω; Xt=ξ}.

Then Jl is an 8 -regenerative phenomenon, since Definition 2 is satisfied. Hence we
can deal with Markov processes on a continuous state space.

§ 3. Standard phenomena.

In Kingman's theory a regenerative event is called standard if

(23) p(t)=P{E(t)}->l (f->0)

and the class of all the ^-functions of standard events is denoted by <P. We also
assume (23) for our phenomena.

DEFINITION 4, A standard phenomenon Jl is an 8 -regenerative phenomenon Jl
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satisfying (23). Let M be the class of all the standard 8 -regenerative phenomena.

For later uses, we quote here some results from the theory of regenerative
events [6], [7].

THEOREM B. [Kingman] If p(t)e£E>, then ( i ) pit) is strictly positive and uni-
formly continuous, in 0<^<co. Moreover (ii) pif) is of bounded variation in every
finite interval, and is thus differentiable almost everywhere, (iii) The limit

(24) * = l h n

exists {it is possibly infinite), and if #<oo then

(25) p(t)^e-^

for all t>0. (iv) The limit

(26) ώ= Urn p(t)

exists.

We begin with showing that ^-functions of phenomena in M have similar
analytic properties as ^-functions in <p.

THEOREM 1. Let JIGJC. Then

( i ) ait) of the phenomenon Jl is uniformly continuous in 0<£<oo.
(ii) If for some t0, a(t0) is positive, then ait) is strictly positive in ίo^^<°°.

Moreover if the limit (24) of the p-f unction of Jl is finite, then

(27) a(t)^a(to)e-q^-^

(iii) If q<oo, then ait) satisfies the Lipschitz condition

(28) \a{t1)-a{t2)\^l-^.^{--q\t1-h\)^q\t1~U

Proof ( i ) From (22) we have for any h, t>0,

Therefore

(29) \a(t+h)-a(t)\^l-p(h).

From (23) it follows that a(t) is uniformly continuous in 0<Ύ<oo.
(ii) This follows from ( i) , (iii) of Theorem B and (22).
(iii) If q<oo,

(30) l

From (29) and (30), we obtain (28). Q.E.D.

Further analytical properties of ^-functions, such as bounded variation, can be
proved, but we shall carry it out in Section 5 after deriving an important integral
formula in the next section.
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§ 4. The integral formula.

In this section we derive an integral formula which is the continuous time
analogue of the right hand equality of the equation (12). We proceed in several
steps.

Let J b e a standard 8 -regenerative phenomenon. Then from Proposition (13)
we can write, for any h>0, and \z\<l9 setting p(0)==l and a(0)=0,

Σ a(nh)zn= Σ Pinh)zn- Σ ™n(h)zn

n=0 n=0 n—0

where

wn(h)=P{E(h)E(2h) ••• E((n-l)h)A(nh)}.

Let θ be any complex number with strictly positive real part, and put

71 = 0

Then we have

h Σ a(nh)e-°nh=h Σ P{nh)e~θnh Hh{β).

The left hand converges, as A—>0, to

s(β)= [\{t)e~etdt.
Jo

Hence it follows

(31)

where

Now we introduce a measure τh on [0, oo) with mass wn(h) at x=nh for each
w=l,2, —. Then

Hh(fi)=[ e-θxτh(dx).
JCO.OO)

Let [x] denote the largest integer which does not exceed x. If there exists a
function M(x) such that

Zχ/tϊ]

n=0

it follows that there exist a sequence \h3) ( i = l , 2, •••), tending to zero, and a
measure τ on [0, oo) such that
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(33) Jβ-'*τΛ/ίfe)

Then from (31) and (33), we have

(34) M
Λy)

It is clear that τ has no atom at x=0, since Θr1β)—Λ, 0s{0)—>0, as 0—>oo, by mono-
tone convergence principle we have

Jo

where τ{0} is the mass of the measure τ at x=0. If measures τlf τ2 satisfy (33), then

e-βa!τ1(dx)= [

o Jo

Therefore τ1=τ2, that is, the measure τ is unique. We now define for each x^O,

K(x)=τ[0,x].

Summing up these, we have the following

LEMMA 1. // a finite-valued function M(x) satisfies (32), then there exists a
unique {finite or infinite) measure τ with,

(35) s(θ)

for all 0 in Re#>0. Or,

(36) ait)^ pit-s)dK{s).

J
Notice that Kit) may diverge as f-»oo, and that in the deduction of (36) we

used the continuity of a{t) and p(t).
In the next step, we shall prove that for any <£?-regenerative phenomenon in

J£, there exists a function M{x) satisfying (32). Following a theorem by Kingman
[6], we shall prove it.

THEOREM C. [Kingman] Let pit)€ζB. Then there exists a unique measure μ
on (0, co] with

(37) \ (l-e-*)μ(dx)<oo
J(0,oo]

such that the Laplace transform riβ) of pit) satisfies

(38) -L=#
np)

for all θ in Re/9>0. And p{t) satisfies the Volterra equation
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(39) 1-P(t)= Γ p(t-s)μ(s, oo]ds.
Jo

Now we define a new Q -regenerative phenomenon JF by

(40) E*(f)=E(f), A*it)=E(t) (f>0),

and wn*(h) by

Wn*(h)-=P{E*{h)E*(2h) ••• E*((n-l)h)A*(nh)}.

Then from (11)

(41) wn(h)^l- Σ fi(h)=wn*(h).

(12) leads to

(42)

= Ϊ
J [o, ί

where Vn(t) is defined as follows:

ίx/hl

Vh(t)= Σ

On the other hand, from (39)

( 4 3 )

Since pit) is strictly positive and continuous in 0^£<oo, it follows from (42) and
(43)

Vh (\^f\h) ^ • 1 , N Γ μ(s, oo]ds.
V L A J / mm A s ) J o ^

(44)

By the way, (37) of Theorem C implies

(45) \ μ(s, oo]ds<C°°.

Jo

This completes the proof of

LEMMA 2. For any h>0, it satisfies
ix/hl 1

( 4 6 ) " / r x ^

Consider the phenomenon Jl*. From (36) and (39) it is easily shown that for
almost all t, K*(f) is differentiate and dK*/dt=μ(t, oo] where K*(f) denotes the
K(f) of <Jί* defined above,
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LEMMA 3. For any xίy x2 with

S X2

μ(s, oo]ds
XI

holds.

Proof. The continuity of ait) and (36) imply the continuity of K(x), hence
for any xu x2 with 0^xί^x2<co) we have

#(tf2)-#(tfi)=lim

From (41),

(48) lim ^Σ wn(h)^\ιm ^Σ «>»*(*).

Since K*(t) is a function of bounded variation and dK*/dt=μ(t, oo] a.e., we have

(49) K*(x2)—K*(xχ)= \ μ(s, oo]Js.

Thus from (48) and (49), (47) is concluded.

We are now in the position to prove that Kit) is absolutely continuous.

LEMMA 4. Kit) is absolutely continuous and there is a measurable function
uif) such that for all t>0

(50) 0^u(f)^μ(t, oo],

and

(51) K(f)=^ u{s)ds.
Jo

Proof. (45) implies that for any ε>0, there is a positive number δ with

(52) [' μ(s,oo]ds<e.
Jo

Let Ii=[au bx), I2=[a2,b2), -- In=[an,bn) be disjoint intervals in [0, oo) with

Σ Φk-ak)<δ.
k=l

Because of the monotonicity of μ(s, oo] with respect to s, and Lemma 3, we have

μ(s,co]ds.

This and (52) mean that Kit) is absolutely continuous in t^O. For almost all t>0
(50) holds, since for almost all t>0
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^ dK(t) K(t+h)-K(t) ^Λ.
0 ^ = l i m ^ li

K(t+h)-K(t) ^Λ. fί+ftjι(£ !oo]
= lim j ^ lim \ -ί—-, ds=μ(t, oo],

Λ | 0 ^ ΛiO J ί A

Therefore we can take ^(0 such that (50) holds for all />0. Hence the proof is
complete.

Combining Lemma 1, 2 and 4, we have the following main

THEOREM 2. Let JL^M- Then there is a measurable function u(t) which is
unique except for the values of Lebesgue measure zero of t such that

(53) 0^u(t)^μ(t,oo]

and

(54) a(t)=^ p(t-s)u(s)ds

Jo

for all t^O. Thus the Laplace transform s(θ) of a{t) is written as follows:

(55) s(fl)

where Re#>0 and

§ 5. Analytic properties of α-functions.

Kingman obtained the following result in [8].

THEOREM D. [Kingman] Let p(t) in ζB have

(56) ώ=lim/<f)>0.
ί—»oo

Then p(t) has totally bounded variation on (0, oo].

THEOREM 3. Let Jl€JC. Then the a-function of Jl is of bounded variation
in every finite interval, and is thus differentiable almost everywhere in t>0. More-
over if the p-function of Jί satisfies (56), then a{t) has totally bounded variation
on (0, oo).

Proof. Let /=(0, t], I-s=(-s,t-s] (s<t) and Var(/,/) be the variation of
the function / in /. Then from (54), it follows

(57) Var (a, 1)^ Γ Var (p, I-s)u(s)ds.
Jo

By Theorem B (ii), Var (p, I) is finite. Hence the right hand of (57) is finite.
Moreover if the limit ώ is positive, then clearly \imx->ooK(x)=K(oo) is finite. Now
(57) shows for any interval I=(0,t]

Var (a, /)< Var (p, I)K(oo).

Applying theorem D, we have the assertions to be proved.
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We can easily show that the differentiabilities of a(t) and K(t) at /=0 are
equivalent. If these are differentiable, then a'(O)=K'(Q)^q = limh-+oh~1O-—p{h))}

since p(t)-+l as t-^0 and (36) holds. If so, then we shall have to ask under what
conditions a'(Q) exists. It suffices to consider the case in which a(t) is strictly
positive in t>0. Otherwise the derivative a'φ) exists and is equal to zero because
of Theorem 1 (ii).

THEOREM 4. Let JLsjζ. Assume that the a-function of A is strictly positive
in 0<t<oo. If

(58) P{A(t+S)\A(f)}-+l (δ-0),

holds uniformly in t near the origin, and the limit q=\im.h^h~\l—p{h)) is finite,
then a'(0) exists and finite.

Proof a(nh)=P{A(nh)}^ Σ P{E(h)E(2h) ••• E(vh)A(vh+h)A(nh)}

=P{A(h)A{nh)} + "j] P{E(h) ••• E(yh)}P{A{h)A(nh-vh)}

= *Σ {Pih)Ya{h)P{A(nh-vh)\A{h)}

From (58), for any ε>0, there exists a to(ε) such that, whenever nh^t0, then we
have

Meanwhile every standard regenerative event can be regarded as separable. Then
it follows

(59)
q Λ-O h

Consequently Ίΐmh->Q(a(h)/h) is finite. Dividing both side of (59) by t, and letting
0, we have

a{t)
lim

-•0 t ="£$ h "

§6. Limit probability.

We shall now examine the limiting behaviour as t—>oo of a-ίunction of S-
regenerative phenomena in JC. Theorem B (iv) asserts that any ^-function in £P
has the limit ώ~limt^oop(t). But Theorem A for the discrete time parameter case
suggests that ^-function has not always the limit ά = liniί-oo a(t). A sufficient
condition for the limit to exist is a condition corresponding to the finiteness of the
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T H E O R E M 5. Let JlεJC.

( i ) If T is a finite measure, or K(oo)=\imx^ooK(x) is finite, then

(60) a(t)->ώ K(oo)=ώ[°°u(s)ds
Jo

where ώ=Yιmt->oop(t).
( i i ) And if

\ p{t)dt<oo,
Jo

then

(61) [">a(f)dt=K(oo). [p(t)dt<oo.
J J

Proof. Applying the dominated convergence principle to (36) and (54), we
obtain (i). Taking θ-*0 in (55) leads to (ii).

Let h>0 be fixed, then we have from (22)

+l)ft, nh nh

a(t)dt=\ a(nh-j-u)du^a(nh)\ p(u)du=a(nh)B, say,
Jo Jo

nh nh nh ^ ^

a(t)dt=\ a(nh—u)du^a(nh)\ . N =a{nh)C, say,
(Λ-l)Λ Jθ Jθ P(W)

where from Theorem B (i), 0 < £ , C<oo. And so

B Σ [ Σ
n—Q Jo n=0

This yields the first part of the following theorem.

T H E O R E M 6. Let JίQM. Then
( i ) $ta(t)dt converges if and only if, for all h>0, Σn=o^(.nh) converges.
( i i) // f?p(f)dt diverges, then either a(t)=Q in 0<t<oo or $™a{t)dt diverges.
(iii) In the last case, with probability one, the phenomenon A occurs after an

arbitrary time.

Proof, (ii) can easily be derived from monotone convergence principle.
(iii) In view of Proposition 2 and (i) of this theorem, it suffices to consider the

second assertion of (ii) in the discrete case. If f?p(t)dt=oo, then for a fixed posi-
tive h Σn=oP(nh)=oo. This means that with probability one 8 occurs at nh for
infinitely many n. Recalling that if 8 occurs, then λvith a positive probability, Jί
occurs, we obtain the required result.

Some results concerning the rate at which the ^-function converges as t—*oo
have been obtained by Kingman [2].

T H E O R E M E. [Kingman] Let

( i ) The limit
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(62) β=-\imt-1\ogp(t)

exists and is finite and non-negative. For all t^O,

(63) ffl£e-β<, q^β.

(ii) // !?p(t)dt=oo, limt->oop(t)=0 and for all a>0,

(64)

then, for all <z>0,

(65, "

(iii) Suppose that the limit ω=.X\mt-+<x>p(t) is positive. Then

(66) p{t)=ώ+O{e-^)

holds for some β>0 if and only if there exists a λ>0 such that

where μ is the measure of Theorem C.

Easy calculations prove the analogous theorem about ait).

THEOREM 7. Let JlsJC.

( i ) If the limit β of (62) is positive and for some ^>0

evχdK(x)<oo,
o

then a{t) satisfies for some ^>0

(67) ait)=O{e-n), (f-*oo).

(ϋ) If

[°°p(t)dt=oof \imp(t)=0, X"(oo)<oo,
Jθ ί^oo

and for all a>0

pit+a)

then we have

(68) lim

and for all m>0
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(iϋ) If

(70)

for some p>0

(71)

and for some δ>0

(72)

TΛKASIII YAMΛE

ώ=limp(t)>0,
ί—>oo

Pit)=ω+O(e-pt)

\ eSxdK(x)<oo,
Jo

then there exists a γ>0 such that

(73) a(t)=ά+O{e-n)

where ά=\imt^ooa(t).

Proof (i) From (36), (63) and the assumption, we have (67) with ^=min( i8, v).
(ii) Fatou's lemma and (65) lead to (68). (69) is derived from (68) and (65).
(iii) When ώ>0, Kipo) is finite. Hence the limit ά=\\m.t-,ooa{t) exists

(Theorem 5 (i)).
Therefore we can write

\a{t)-ά\^X \p(t-s)-ώ\dK(s)+ώ[°°dK(s).
Jo Jί

From (71), it follows for some M>0

\a(t)-ά\^[ Me-p«-s>dK(s) + ώe-δt[°°eδsdK(s).
Jo Jί

Thus setting min(p,d)=r, from (72) we have (73).

§ 7. Further remarks.

REMARK 1. Let Jί be a standard £-regenerative phenomenon, and let {Zt(ω),
t>0} be the stochastic process defined by

Zt(ω)=0 if ω£E(t),

= 1 if ωQA(t),

=2 if ωeΩ-{E(f)UA(f)}=C(t).

For any £>0, h>0, we have, from (18),

} =P{E(t)E{t+h)} +P{E(t)E(t+h)}

+P{A(t)C(t+h)} +P{C(t)A(t+h)}

-2P{A(t)A(t+h)} -P{A(t)E(t+h)} -p(t)a(h).
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If for each t>0 such that P{A(t)}>0,

(74) P{A(t+δ)\A(t)}->l (5-0),

then the above probability tends to zero as h->0. Therefore the process Zt is con-
tinuous in probability. It follows from a well-known theorem by Doob [2] that
there exists a measurable, separable process {Zt*(ω), t>0} defined on the pro-
bability space Ω, such that

P{Zt*(ω)=Zt(ω)}=l

Clearly, the families {E*(t), t>0} and {Λ*(0, t>0}> defined by

satisfy Definition 2, and

Let us say that two 8 -regenerative phenomena Jίi and Jl2 are ^-equivalent if, for
all f>0,

Pi(t)=p2(t)
and

«l(ί) = Λ2tf)-

Moreover, let us say that two 8 -regenerative phenomena Jίλ and Jί2 are equivalent
if, for all f>0,

P{A1(t)JA2(t2)}=0}

where Δ denotes the symmetric difference of sets. Two equivalent 8 -regenerative
phenomena are necessarily ^-equivalent, but the converse is false. Then we have
the following

PROPOSITION 4. Let JlGJC. Suppose that A satisfies (74) in each t>0 such
that a(t)yθ. Then there exists a measurable and separable standard 8-regenera-
tive phenomenon JL* which is equivalent to Jl, hence is also p-equivalent to Jl.

REMARK 2. In his papers [7], [9], Kingman classified the theorems about Markov
chains with transition probabilities pij{t) into three types. We can roughly say
that his classification is as follows:

Type 1. Those results which can be deduced from the fact that the state j is
regenerative. For example, we can list up the following analytical properties of

1) The continuity of pu(t), and the existence of p'u(0).
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2) The local bounded variation and almost everywhere differentiability of

Λ/00.
3) The existence of the limit of pi3(t) as t-+oo.
Type 2. Those results which are not of Type 1 but which follow from the

fact that the state i and the state j are both regenerative.
4) The continuity of pφ).
5) The existence and finiteness of Plj(Q) for
6) The last exit decomposition

(75) Pij(t)=\ Pu(t-s)gij(s)ds.
Jo

Type 3. Those results which cannot be deduced from either of the above
facts.

7) The continuous differentiability of pijif).
8) The Austin-Ornstein theorem that pijif) is either strictly positive or iden-

tically zero.

Applying our theorems to Markov chains, we can conclude that the following
results about pijif) can be deduced from the fact that the state i is regenerative.

4) The continuity of pi jit) for i^j.
2) The local bounded variation and almost everywhere differentiability of

pijif) for i^j.
6) The last exit decomposition (75).
These show that in Markov chains the fact that the state i is regenerative

imposes fairly strong regularity conditions on pijif). However, it seems that 3)
and 5) require the state j to be regenerative.

In conclusion the author expresses his gratitude to Prof. H. Morimura whose
guidance and advice throughout the preparation of this paper were invaluable.
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