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ON FINITE MODIFICATIONS OF TWO- OR THREE-SHEETED
COVERING OPEN RIEMANN SURFACES

BY KIYOSHI NIINO

§ 1. Introduction.

1. Let 3K(7?) be the family of non-constant analytic functions meromorphic on
an open Riemann surface R. We denote by P(/) the number of exceptional values
of /€3RCR) and put P(#)=sup{P(/)|/€3HCff)}. The quantity P(R) was introduced
by Ozawa [6] in discussing the existence of analytic mappings between Riemann
surfaces.

2. In [10], Ozawa introduced the notion of a finite modification R of R and
obtained two interesting results on analytic mappings of R into R.

Let R and R be two ultrahyperelliptic surfaces defined by two equations
yz=G(z) and y2=G(z), where G(z) and G(z) are two entire functions having^ no
zero other than an infinite number of simple zeros respectively. If G(z) and G(z)
have the same zeros for \z ^r0 for a suitable r0, then we call R as a finite
modification of R (cf. Ozawa [6]). Let S be another ultrahyperelliptic surface and
8 be its finite modification.

In the present paper we shall consider the following two problems:
(A) What is P(R), if P(#)=4?
(B) When is there any analytic mapping of R (or R) into 8, if there exists

an analytic mapping of R into S?
We shall discuss the problem (A) in 4—6 and the problem (B) with respect to

R and S with P(7?)=P(S)=4 in 7-9.
In 10—12 we shall consider the similar problems (A), (B) for regularly branched

three-sheeted covering Riemann surfaces.

The author is grateful to Professor M. Ozawa for suggesting the above pro-
blems and his valuable advices.

§ 2. Lemma.

3. In order to discuss the problems (A) and (B), we shall use a lemma proved
in our previous paper [5], that is,

LEMMA A. Let a^(z\ aι(z\ •••, an(z) be meromorphic functions and Qι(z)y •••, gn(z)
be entire functions. Further suppose that

T(r,aj)=o(m(r,egv))
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and

T(r, a^=o(m(r, *"-")), /=0, 1, •••, n\ v=k, k+l, -, n,

outside a set of finite measure. If <Zι(z)^0 and the identity

holds, then we have

2)g0"(3) _|_ c§a§(z) = 0,

where Cι=l and cv, v=0,2, 3, •••,&—!, are suitable constants.

§3. Ultrahyperelliptic surfaces.

4. Picard's constant. Now we shall consider the problem (A). Let R be an
Ultrahyperelliptic surface with P(R)=k defined by the equation y* = G(z\ where
G(z) is an entire function having no zero other than an infinite number of simple
zeros. Then by virtue of Ozawa's theorem [7], we have

where F(z) is a suitable entire function and Π(z) is a non-constant entire func-
tion. Let R be a finite modification of R defined by the equation y2=G(z) with
G(z)=Q(z)G(z), where Q(z) has the following form:

J=ι j=ι Z — bj

where a3 and bj are mutually distinct constants and their moduli are less than r0.
First we shall prove the following theorems:

THEOREM 1. Let R be an Ultrahyperelliptic stir face and R be its finite modi-
fication. If P(R) — k, then we have P(R) = 2 or 3.

THEOREM 2. Let R be an Ultrahyperelliptic surface with P(R)-=Δ defined by
the equation y2 = G(z\ where G(z) satisfies the equation (4.1). If Π(z) is a poly-
nomial, then we have P(R) = 2 for its finite modification R.

5. Proof of Theorem 1. In order to prove P(R)=2 or 3, from Ozawa's theorem
[7], it is sufficient to show the impossibility of an identity of the form

(5.1)
P(z)=\IQ(z\ L(z)^ const., L(0)=0,

where L(z) is an entire function and J (z) is a meromorphic function which has zeros
and poles possibly at the multiple zeros of (eL— γ)(eL— δ) and Q(eπ—ά)(eπ—β). We
claim from the reasoning in [3] that

m(r, eH)^m(r, eL\
(5.2)

r, e*y)=o(m(r, e
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outside a set of finite measure. By differentiating both sides of (5. 1), setting
ζι=—(a+β), ζ2 = aβ, 9ι=— fr-H), η2 = γδ and eliminating/2, we obtain

(5.3)

Here we remark from (5.2) that all functions vH(z)JrμL(z), \v\^\μ\\ v,μ=±l,
±2, are not constants and further satisfy T(r,a)=o(m(r,eVH+μL)) outside a set of
finite measure, where a(z) is a meromorphic function satisfying T(r,a)=o(m(r,eH))
outside a set of finite measure.

In the first place assume that a1(z)=2f/(z)lf(z)+2Hf(z)-2L/(z)-P/(z)IP(z)^.
From (5. 2) and by the above remark we can apply lemma A to the identity (5. 3).
Therefore lemma A leads to

where cz, c, are constants and a2(z)=ζtf1(2f'(z)/f(z)-{-R'(z)-L'(z)-P'(z)/P(z)),
ao(z) = ζ2η2(2f'(z)lf(z)~P'(z)/P(z)). The above identity and the fact T(r,aj)
= o(m(rJe

N))(j=\J2) outside a set of finite measure offer m(r,eH+L)=o(m(r,eH))
outside a set of finite measure. Since >?2^0, writing the identity (5.3) in the form

the impossibility of BoreΓs identity gives

2f'(z)/f(z)-\-2H'(z-)-P'(z)/P(z)=Q, that is, f(z)2=dP(z)e~2mz\

where d is a non-zero constant, which contradicts the simplicity of zeros and poles
of P(z\

Next assume that afc)^. Then we get f(z)2= dP(z)e~2H^+2L^\ which is a
contradiction, because of the same reason. Thus we have proved theorem 1.

6. Proof of Theorem 2. By virtue of theorem 1 it is sufficient to prove
P(R)*3. We assume that P(8)=3. Then from Hiromi and Ozawa [3] G(z)
satisfies

(6.1)
Lι(0)=L2(0)=0,
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with three suitable entire functions F, LI and L2 and two constants βι and βz. By
substituting G(z) into (6.1) we obtain

(6.2)
=l-2

where f(z)=F(z)/F(z).
First we shall verify that Lι(z) and Lz(z) are polynomials. We denote the

right side term of (6.2) by 9(z). Then f0 = (l/2)(l+β1e
Ll-βze

Lz)+(i/2)^/~g' is a re-
gular function on R, and hence /0 belongs to %R(R). Its defining equation is

F(z90)=β1e
Ll and F(z,V)=faeL* show that /03=0,1, oo on P, that is, P(/0)=3. Let

Λf(r, 7?) be the quantity Λ/~(r, 36) defined by Selberg [11]. Then it is easily verified
that N(r, R)^m(r, e11). If one of Lι(z) and Lz(z) is not a polynomial, then we get

TYr n '7 ̂ c» ./ V,fθ)

because H(z} is a polynomial, which is the assumption of our theorem. This fact
yields P(/0)^2 by virtue of the Nevanlinna-Selberg theory [11], which contradicts
P(/0)=3. Therefore both of 1/1(2) and Lz(z) are polynomials.

Since H(z\ Lι(z) and Lz(z) are polynomials, the method by which Ozawa [9]
proved his theorem 3 implies that the identity (6.2) offers (i) Lι = L2, (ii) Li=2L2,
j92

2=160ι, (iii) 2Lι=L2, β1

2=16β2, (iv) Lι=-L2, 16 2̂=1. In these cases the
ultrahyperelliptic surface 7?ι defined by the equation yz=g(z) has P(7?ι)=4, while
the ultrahyperelliptic surface P2 defined by the equation y2=f2Q(eH—a)(eπ—β) has
P(^2)^3 by means of theorem 1. This is a contradiction, because we have
P(Rι)=P(Rz) from the identity (6.2). Therefore we have P(P)^3. Thus theorem
2 has been proved.

7. Analytic mappings. Now we shall consider the problem (B) in the case

Let R and S be two ultrahyperelliptic surfaces with P(P)=P(S)=4 and defined
by two equations y2=G(z) and u2=g(ιv\ where G and g are two entire functions
having no zero other than an infinite number of simple zeros respectively. Then
we may assume that G(z) satisfies the equation (4. 1) and g(w) satisfies the follow-
ing equation:

(7.1)
L(w)^ const., L(0) = 0,

with two suitable entire functions / and L and two constants γ and δ.
And let R and S be finite modifications of R and S, respectively, defined by

two equations y2=Q(z)G(z) and u2=--q(w)g(w), with Q(z) given by (4.2) and

(7.2) q(w)= ft (w-dj) fl —^— ,
~~
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where d3 and e3 are mutually distinct constants and their moduli are less than r0.
Then we shall prove the following theorem:

THEOREM 3. There exists an analytic mapping φ of R into S if and only if
there exist an entire functions h(z) and a meromorphic function f*(z) satisfying
one of the following conditions

(a) H(z)=L*h(z)-L°h(Q), f*(z?=q»h(z\

γ δ δ γ
~a~~β~β OT ~a~~β~6

and σ+τ=1 or 2 in (7.2) when h(z] is transcendental, or σ+τ=1. when h(z) a
polynomial.

By virtue of this theorem, Ozawa [10] and Hiromi and Ozawa [3], we easily get

COROLLARY 1. There is no analytic mapping of R into R.

COROLLARY 2. If there is an analytic mapping of R into 3, then there exists
an analytic mapping of R into S whose projection is the same h(z).

From the proof of theorem 3 given in 8 we can deduce a perfect condition for
the existence of an analytic mapping of R into 3. Therefore we state, without proof,

THEOREM 4. There exists an analytic mapping φ of R into S if and only if
there exist an entire function h(z) and a meromorphic function f*(z) satisfying one
of the following conditions

(a) H(z)=L h(z)-L W), f*(z)z=q°h(z)IQ(z),

γ δ δ γ
~a~~β~e OY ~a~~β

and σj

rτ=l or 2 in (7.2) when h(z) is transcendental.

Similarly we easily get

COROLLARY 3. // there is an analytic mapping of R into S, then there exists
an analytic mapping R into S whose projection is the same h(z\

8. Proof of Theorem 3. Assume that there exists an analytic mapping of R
into S. Then by means of Ozawa's theorem [8] there exist an entire function h(z)
and a meromorphic function f ( z ) such that
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where f ( z ) has zeros and poles possibly at the multiple zeros of q°h(eLofl~γ)(eL°h—δ)
and (eH—a)(eπ—β). Therefore we see that

m(r, eH)^m(r, eL°π\
(8.2)

T(r,f'lf)=o(m(r, eH}}=

outside a set of finite measure. Compare (8. 1) and (8. 2) with (5. 1) and (5. 2), and
this case can be similarly treated as in the process of our proof of theorem 1.
Hence according to the reasoning of 5 it is sufficient to consider the following two
cases (I) and (II):

(I) m(r, eH+L°h)=o(m(r, eH)) outside a set of finite measure, and

(8. 3) f(z)2=dqoh(z)e-2J^z\

where d is a non-zero constant.
(II) f(z)2 = dq°h(z)e-2H^+2L'h^ with a non-zero constant d.
First we shall prove σ -fr=l or 2 in (7.2). We assume that σ+r^3 and h(z)

is a transcendental entire function. Then the relations (8. 3) and (II) imply that
every root of equations h(z)=dj or e3 must be of even multiplicity whenever it
esists. Hence θ(djy Λ)^l/2 and Θ(ey, A)^l/2 hold. Therefore by assumption
*+r^3, we have Σσ@(dj, h)+Σr&(ej, /<0^(3/2), which contradicts the Nevanlinna
ramification relation for h: Σ<%?, /O^l [1,4].

Next we assume that </-f r^2 and k(z) is a polynomial and d and e are two
distinct elements of the set {dj, e}} in (7.2). Then the relations (8. 3) and (II)
offer that there exist two polynomial hι(z) and hz(z) such that h(z)—d=hL(z)z and
h(z)—e=h2(z)2. Eliminating h(z) we obtain (hι(z)—hz(z)) (hι(z)+hz(z))=e—d*Q, which
implies a contradictory fact that hι(z) and hz(z) are constants.

Now we shall get the former conditions in our theorem.
Case (I). Putting ζλ=-(a+β\ ζ2 = «/3, J?1=-(r+o), 17,, = ̂  the identity (8.1)

reduces to

-^^ ̂
Hence the impossibility of BoreΓs identity implies

d=ηz, ζ,d-ηιe

π+L°h=ΰ and ζ2d-e2Hl2L°h=0.

Accordingly the function H(z)+L°h(z) must be the constant L°Λ(0). Then we
have (α+/3)^-(7-+<5)^oΛCO) and aβγδ=e2L°/iW. These relations yield aγ=βδ=eL°hW

or ad=βγ=eL°h^. Thus we attain to the case (b) in our theorem.
Case (II). Substituting f ( z f into (8. 1), the identity (8. 1) reduces to

Π __J^2HC«) + 2L /ι(2)_|_ )n ι β2/f(2)+Z,«7i(«)

(8.4)

-^ζι̂

Since ^2 ̂ =0, lemma A gives

(8. 5)
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where c\ and c2 are constants. If cιC2(l—d)^Q, then writing the identity (8.5) in
the form ηze

ZH-2L°li+Cι(l—d)e2H=c2dζ2, and using lemma 1 in [3], we have

CιΊj2e
ZH-2L ll+C2'c1(l—d)e2II=Q, that is, c1^2e~2Lak-i-c2

fc1(l~d)=Ui

where c\ and c2 are two constants which do not vanish simultaneously. This
contradicts L °h(z)-^ const. If Cι = c2 = 0, then the identity (8.5) is clearly impossible
because of τ?2^0. If c2=0 and cι(l—d)*Q, then the identity (8.5) reduces to
272+0(1—d)eZL'h=Q, which is untenable. If c2^0 and d(l—d) = Q, then the function
H(z)—L°h(z) must be constant — L°A(0). Then the identity (8.4) reduces to

(l-φβ4^ΛCOV*(*>+θ7ιβL Λ W ^

By virtue of the impossibility of BoreΓs identity we obtain

d=l, J7ι = ζιέ?L β Λ C O> and η2 = ζ2e
2L°hW.

Thus we attain the case (a) in our theorem.
The sufficiency part is evident by Ozawa's theorem [8]. Thus we have proved

theorem 3.

9. Remark. Our theorem 3 is best possible. This fact is derived from the
sharpness of the Nevanlinna ramification relation. Let R, S and S be three ultra-
hyperelliptic surfaces defined by the three equations y2=(esιnz—a)(esmz—β),
u2 = (ew-a)(ew-β) and u2 = (w-l) (tυ+l) (ew - a) (ew - β\ with non-zero distinct
constants a and β, respectively. Then it is clear that P(#)=P(S)=4 and P(S)=2.
And we have (i cos z)2=(sin z—l)(sin 2+1). Therefore we claim that there exists
an analytic mapping of R into S whose projection is h(z)=sm z and that simul-
taneously there exists an analytic mapping of R into S whose projection is also
h(z)=sin z.

Further the sharpness of theorem 3 is clear when h(z) is a polynomial.

§ 4. Regularly branched three-sheeted covering Riemann surfaces.

Now we shall discuss the similar problems as (A), (B) in the case of regularly
branched three-sheeted covering Riemann surfaces.

10. Picard's constant. Let R be a regularly branched three-sheeted covering
Riemann surface with P(R)=6 defined by the equation y*=G(z\ where G(z) is an
entire function whose zeros are infinite in number and each is of multiplicity ^2.
Then by a characterization of R with P(R)=6 [2], we can put

F(
(10.1)

#(

with two entire functions F(z) and-If (z) and two constants α and β. Let R be a
finite modification of R defined by the equation y*=G(z) with G(z)=Q(z)G(z),
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where Q(z) has the following form:

(10.2) fl(g-*j)' 'Π (y \γ, > **^ = 1 w 2,
.7=1 .7=1 \Z~Oj) J

where a3 and b3 are mutually distinct constants and their moduli are less than rυ.
Now we shall prove the following theorem:

THEOREM 5. Let R be a regularly branched three-sheeted covering Riemann
surface and R be its finite modification. Then P(R) = 6 implies P(P)^4.

11. Proof of Theorem 5. Let R and R be two regularly branched three-
sheeted covering Riemann surfaces defined by two equations yz = G(z) and

y*=Q(z)G(z) with G(z) satisfying (10.1) and Q(z) given by (10.2). In order to
prove P(P)^4, by virtue of theorem 1 and theorem 2 in [2], it is sufficient to
show the impossibility of an identity of the form

-γ) (eL^ ~δ)2,
(11. 1)

t., L(0)=0,

where γ and δ are two constants, L(z) is an entire function and f ( z ) is a mero-
morphic function which has zeros and poles possibly at the zeros of multiplicity
^3 of (eL—γ)(eL—d)2 and Q(eH— a)(eH— β)'2. We can easily see from the reasoning
in [5] that the identity (11. 1) offers

m(r, eH)-^m(r, eL),
(11.2)

T(r,f'/f)=o(m(r, eπ))=o(m(r, eL))

outside a set of finite measure. By differentiating the both side of (11. 1) and
setting Cι=-(α+2£), ζ2

and eliminating /3, we obtain

(11. 3)

According to the reasoning in [5, p. 243-246] (cf. 5 in this paper), we can
derive 3f/(z)/f(z) i-3H/(z)~3L/(z)~P\z)IP(z)~Q from the coefficient of e*π+*L in
(11.3), or 3f'(z)lf(z)+3H'(z)-P'(z)IP(z)~0 from the coefficient of e™ in (11.3).
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Hence we attain a contradictory fact that f(zf=dP(z)e~ZH^^L^ or /(<03

H^ with a non-zero constant d. Q.E.D.

12. Analytic mappings. We shall consider the similar problem (B) in the
case P(R)=P(S)=6.

Let R and S be two regularly branched three-sheeted covering Riemann
surfaces with P(R)=P(S)=6 defined by two equations y*=G(z) and us=g(w),
respectively, where G and g are two entire functions whose zeros are infinite in
number and each is of multiplicity ^2. Then we may assume that G(z) satisfies
the equation (10. 1) and g(w) satisfies the following equation

(12.1)
L(0)=0,

with two suitable entire functions / and L and two constants γ and δ.
And let R and S be two finite modification of R and S, respectively, defined

by two equations yz=Q(z)G(z) and u2=q(w)g(w\ with Q(z) given by (10.2) and

(12.2) q(w)= Π (w-dtf> fl 7 - ̂ ,̂ *„ ̂  = 1 or 2, σ+τ^l,
j=ι j=ι (W — β j ) J

where d3 and #., are mutually distinct constants and their moduli are less than r0.
Then we similarly have the following theorems:

THEOREM 3'. There exists an analytic mapping of R into S if and only if
(7+τ=l in (12.2) there exist an entire function h(z) and a meromorphic function
f*(z) satisfying one of the following conditions

(a)

_ — _ _ _ _.χ,L /t(ϋ; nr — _ .—

a ~ β a~ β~

( b) H(z)=-L°/ι(z)+L°/ι(Q), f*(z)3 =

aγ=βδ=eL°hW or aδ=βγ = eL'hW.

COROLLARY lx. There is no analytic mapping of R into R.

COROLLARY 27. If there is an analytic mapping of R into S, then there exists
an analytic mapping of R into S whose projection is the same h(z).

It is clear that our theorem 3' is best possible.
These theorem and corollaries can be deduced from the process of 4— 8 and of

our previous paper [5, p. 247-249]. Therefore we refrain the proofs of theorem 3r

and corollaries V and 2r.
Similarly we can state the theorem 4r and corollary 3r corresponding to theorem

4 and corollary 3, respectively.
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