A REMARK ON ULTRAHYPERELLIPTIC SURFACES

By Mitsuru Ozawa

1. Let R be an ultrahyperelliptic surface of finite order and with $P(R)=4$. Let p denote its order, then R is defined by

$$
y^{2}=\left(e^{H}-\gamma\right)\left(e^{H}-\delta\right), \quad \gamma \delta(\gamma-\delta) \neq 0
$$

with $H(z)=\sum_{n=1}^{p} h_{n} z^{n}, h_{p} \neq 0$. [3]. Let S be another ultrahyperelliptic surface of nonzero finite order, that is,

$$
y^{2}=g(z) \equiv z^{s} \prod_{n=1}^{\infty} E\left(\frac{z}{a_{n}}, q\right)
$$

where $E(u, q)$ is the Weierstrass prime factor

$$
E(u, q)=(1-u) \exp \sum_{j=1}^{q} \frac{u^{j}}{j}
$$

and every a_{n} is a simple zero of $g(z)$ and $s=0$ or 1 .
Hiromi and Mutō [1] proved the following result: Assume there exists a nontrivial analytic mapping φ from R into S. Then $p=n \cdot r$, where r is the order of $g(z)$ and n is an integer.

The aim of the present paper is to prove the following
ThEOREM. If S is an ultrahyperelliptic surface of non-zero finite order into which there is a non-trivial analytic mapping from an ultrahyperelliptic surface R of finite order and with $P(R)=4$, then the order of S is a half of an integer.
2. Proof of theorem. For our purpose we need our previous result in [4], which asserts the existence of two functions $h(z)$ and $f(z)$ such that $f(z)$ is meromorphic in $|z|<\infty$ and $h(z)$ is a polynomial of degree n in the present situation [1] satisfying

$$
f(z)^{2}\left(e^{H}-\gamma\right)\left(e^{H}-\delta\right)=g \circ h(z) .
$$

Here put $h(z)=\sum_{m=0}^{n} h_{m}^{*} z^{m}$.
Received March 20, 1967.

Assume $n>2 p$. Then $h(z)-a_{\mu}=0$ has n roots $z_{\mu}, \cdots, z_{\mu_{n}}$ such that

$$
z_{\mu j}=\left(\frac{a_{\mu}-h_{0}^{*}}{h_{n}^{*}}\right)^{1 / n} e^{2 \pi i(j-1) / n}\left(1+\varepsilon^{*}\right), \quad \lim _{\mu \rightarrow \infty} \varepsilon^{*}=0 .
$$

If μ satisfies $\mu \geqq \mu_{0}$, then every corresponding root of $h(z)-a_{\mu}=0$ is simple. Hence this is the case for $g \circ h(z)=0$. Thus this root must be a root of $\left(e^{H}-\gamma\right)\left(e^{H}-\delta\right)=0$. On the other hand $H=\log \gamma+2 m \pi i$ (or $\log \delta+2 m \pi i$) has p roots for a positive $m \geqq m_{0}$ and p roots for a negative $m \leqq-m_{0}$

$$
\left(\frac{2 m \pi i}{h_{p}}\right)^{1 / p} e^{2 \pi i k / p}(1+\varepsilon), \quad \lim _{m \rightarrow \pm \infty} \varepsilon=0, \quad k=0,1, \cdots, p-1 .
$$

These roots with a fixed k have the same direction asymptotically for $n \rightarrow \infty$ and for $n \rightarrow-\infty$, respectively. Hence $n>2 p$ leads to a contradiction.

Next we need a number-theoretic lemma: Let $\left\{x_{j}\right\}$ be the set of points satis-

$$
\min \left\{x_{j}-\left[x_{j}\right],\left[x_{j}\right]+1-x_{j}\right\} .
$$

Then

$$
\Delta(n, p) \equiv \inf _{0 \leq x_{1} \leq 1} \max _{j} \delta\left(j, x_{1}\right) \geqq \Delta>0,
$$

if n is not a divisor of $2 p$.
This is easy to prove. First of all we should remark that $\delta\left(j, x_{1}\right)$ is a continuous function of x_{1} for every fixed j. Assume there exists a sequence $\left\{x_{1 \nu}\right\}$ for which $\max _{j} \delta\left(j, x_{1 \nu}\right) \rightarrow 0, x_{1 \nu} \rightarrow x_{1 \infty}$ as $\nu \rightarrow \infty$. This implies that for every $j \delta\left(j, x_{1 \nu}\right) \rightarrow 0$ as $\nu \rightarrow \infty$. Thus $\delta\left(j, x_{1 \infty}\right)=0$ for all j. Put $j=0$, then $x_{1 \infty}$ is equal to either 0 or 1 . Next put $j=1$, then $x_{1 \infty}+2 p / n$ is equal to an integer. Hence $2 p / n$ is an integer, which is a contradiction.

Assume that n is not a divisor of $2 p$. Now consider π / p as the unit length and $2 \pi / p-\left(\arg h_{p}\right) / p$ as the origin, that is, we shall consider the set of points $-\left(\arg h_{p}\right) / p+\pi / 2 p+k \pi / p$ as the set of integers. Now consider the set of $\left\{\arg z_{\mu_{j}}\right\}$ as the set of $\left\{x_{j}\right\}$. Hence by the above fact for every $\mu \geqq \mu_{0}$ there is an index $j(\mu)$ such that the difference between all integer points $-\left(\arg h_{p}\right) / p+\pi / 2 p+k \pi / p, k=0, \pm 1$, \cdots and $\arg z_{\mu_{j(\mu)}}$ is greater than $\Delta \pi / p-\varepsilon^{\prime}, \varepsilon^{\prime} \rightarrow 0$ as $\mu \rightarrow \infty$. This shows that there is a sequence of simple zeros of $h(z)-a_{\mu}$ which does not belong to the set of simple zeros of $\left(e^{H}-\gamma\right)\left(e^{H}-\delta\right)$. This is untenable.

By the above result and by $p=n \cdot r$ we have that $2 p / n=2 r$ must be a positive integer. This is nothing but the content of our theorem.
3. Examples. Let S be the surface defined by

$$
y^{2}=e^{z p / n}+e^{-z^{p / n}}
$$

where n is a divisor of $2 p$ but not of p. This is really an ultrahyperelliptic surface. Let R be the surface defined by

$$
y^{2}=e^{2 z^{p}}+1 .
$$

Then $P(R)=4$. In this case we have a functional equation

$$
f(z)^{2}\left(e^{2 z^{p}}+1\right)=e^{h(z)^{p / n}}+e^{-h(z)^{p / n}}
$$

with $f(z)=\exp \left(-z^{p}\right)$ and $h(z)=z^{h}$. This implies the existence of a non-trivial analytic mapping from R into S.

If p is an even integer, then there is another example of a non-trivial analytic mapping from $R: y^{2}=\exp \left(2 z^{p}\right)-1$ into $S: y^{2}=\left(\exp \left(z^{p / n}\right)-\exp \left(-z^{p / n}\right)\right) / z^{p / n}$, where n is a divisor of $2 p$ but not a divisor of p. Take $f(z)=z^{-p} \exp \left(-z^{p}\right), h(z)=z^{n}$. These examples show that our result is best possible.

If the order of S is a half integer and not an integer, then $P(S)=2$. [2]. If the order of S is a positive integer, then $P(S)=4$ or $P(S)=2$ if there is a nontrivial analytic mapping from R with $P(R)=4$ and of finite order to S. [5]. In this situation there is an example of $P(S)=2$.

References

[1] Hiromi, G., and H. Mutō, On the existence of analytic mappings, I. Kōdai Math Sem. Rep. 19 (1967), 236-244.
[2] Ozawa, M., On complex analytic mappings. Kōdai Math. Sem. Rep. 17 (1965), 93-102.
[3] Ozawa, M., On ultrahyperelliptic surfaces. Kōdai Math. Sem. Rep. 17 (1965), 103-108.
[4] Ozawa, M., On the existence of analytic mappings. Kōda1 Math. Sem. Rep. 17 (1965), 191-197.
[5] Ozawa, M., On an ultrahyperelliptic surface whose Picard's constant is three. Kōdai Math. Sem. Rep. 19 (1967), 245-256.

