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ALMOST COMPLEX STRUCTURES INDUCED
IN TANGENT BUNDLES

By KENTARO YANO AND SHIGERU ISHIHARA

Introduction. The differential geometry of tangent bundles of Riemannian
manifolds has been studied by Sasaki [5]” and the theory of affine connections in
tangent bundles of manifolds with affine connection by Ledger and one of the
present authors [3], [15].

Kobayashi and one of the present authors [13], [14] recently studied prolonga-
tion of tensor fields and connections to tangent bundles. They first developed the
general theory of prolongation of tensor fields and affine connections to tangent
bundles and then studied affine transformations in tangent bundles.

The main purpose of the present paper is to study the prolongation of the so-
called f-structure to tangent bundles and especially that of almost contact structure
in the light of the above mentioned papers by Kobayashi and one of the present
authors.

In Sections 1 and 2, we recall some results stated in [13] and [14] which are
indispensable in the subsequent sections.

In Section 3, we study the so-called f-structure and its prolongation to the
tangent bundle. To study the properties of the so-called f-structure, we introduce
a frame closely related to the f-structure. We study these in Section 4.

The last section is devoted to the study of prolongation of the so-called almost
contact structure which is an f-structure. The results obtained in this section are
closely related to those obtained recently by Tanno [9], [10].
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§1. Lifts of tensor fields.

We first recall definitions and properties of the vertical lift and the complete
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2 KENTARO YANO AND SHIGERU ISHIHARA

lift of a tensor field to tangent bundle for the later use (Yano and Kobayashi [13],
[14]). Let V be an n-dimensional differentiable manifold®, and T(V) its tangent
bundle, the projection being denoted by =: T(V)—V. For a differentiable function
¢ in V, the function #n*¢ induced from ¢ in T(V) is denoted by

(L.1) ¥ =g

and is called the vertical lift of the function ¢. Any 1l-form @ given in V is, in a
natural way, regarded as a function in T'(V), which will be denoted by cw. If we
are given a vector field X in V, then we define a vector field XV in T(V) by

1.2) XY (tw)=(a(X))",

o being an arbitrary 1-form in V.» The vector field X7 thus defined is called the
vertical lift of the vector field X.
We define the vertical lifts of 1-forms d¢ and ¢d¢ by

1.3 @dp)’=d(¢*) and  (Pdg)Y=¢"(dp)"

respectively, ¢ and ¢ being arbitrary functions in V, and the vertical lift oV of an
arbitrary 1-form o given in V by?

1.4 " =(w:)"(dz")"

in each open set z~'(U), where U is a coordinate neighborhood with local coordi-
nates («*) in V and o is given by w=wdz* in U. It is easily verified that the
vertical lift ¥ of the 1-form o defined by (1.4) in each =~%(U) is a global 1-form
in (V).

When there is given a function ¢ in V, we put

(1.5) O=ddg)

in T(V), and call the function ¢¢ thus defined in 7(V) the complete lift of the
function ¢. For a vector field X given in V, we define a vector field X¢ in
(V) by

(1. 6) X¢9=(X¢)°,

¢ being an arbitrary function in V, and call X the complete lift of the vector
field X.»

2) The manifolds, tensor fields and mappings we discuss are assumed to be dif-
ferentiable and of class C~. The manifolds are assumed to be connected.

3) The l-form o being arbitrary in V, the function (w generates the ring of all func-
tions in T'(V), so XV(cw)=(w(X))" defines a vector field XV i T(V) (cf. [13]).

4) The indices 4, i, 1, k,/ run over the range {1, 2, .-+, n}.

5) The function ¢ being arbitrary mn V, the function ¢C¢ generates the ring of all
functions in T(V), so XC0¢C=(X¢)C defines a vector field X¢ in T(V) (cf. [13]).
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Given a 1-form o in V, we define a 1-form «® in T(V) by
1.7 0O(X%)=(0(X))°,

X being an arbitrary vector field in V.® The 1-form ¢ thus defined in 7(V) is
called the complete lift of the 1-form w. Let F be a tensor field of type (1.1) in
V. Then we define in T(V) its vertical lift FV and its complete lift FC by

(1.8 FYXC=(FX)Y and F°X°=(FX)°

respectively, X being an arbitrary vector field given in V. For a tensor field S of
type (1, 2) given in V, we define in T(V) its vertical lift S” and its complete lift
S¢ respectively by

(1.9 SY(XC, Y9)=(S(X, Y))” and SYXC Y9)=(S(X, V),

X and Y being arbitrary vector fields in V.

We shall now give local representations of the lifts. Let (U, (z*)) be a coordi-
nate neighborhood of the differentiable manifold V, where (z*) is a system of local
coordinates defined in U. Let (¥*) be the system of cartesian coordinates in each
tangent space T»(V) of V at P with respect to the natural frame 0/0z*, where P
is an arbitrary point belonging to U. Then, in the open set z~(U) of T(U) we
can introduce local coordinates (x*, ¥*), which are called the coordinates induced in
7=Y(U) from (z*) or simply induced coordinates in ==*(U). Let there be given a
function ¢(z*) in U. Then its vertical lift ¢V and its complete lift ¢¢ are respec-
tively represented by

(1. 10) & S and ¢ g(z)

in #~}(U) with respect to the induced coordinates (z", "), where the symbol @
denotes the operator

0

=y 6—x‘ .

If a vector field X has components X" in U, then its vertical lift XV and its
complete lift X¢ have respectively components of the form

0 X"
(1.11) X7 < > and  X¢: < )
X" ox"

in #z~}(U) with respect to the induced coordinates (z?, y").

6) The vector field X being arbitrary in V, the vector field X¢ in T(V) spans the
set of all vector fields in 7T'(V), so a l-form €, tensor fields FV, F¢ of type (1.1) and
tensor fields SV, SC of type (l.2) are completely determined by (1.7), (1.8) and (1.9)
respectively (cf. [13]).
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If a 1-form @ has components w; in U, i.e. if o=wdz® in U, then its vertical
lift »¥ and its complete lift w® have respectively components of the form

1.12) @”: (w;, 0) and 0°: (0w, w;),
ie.
o"=wdzr* and 0°=(0w;)dxt +w;dy*

in =~Y(U) with respect to the induced coordinates (xz*, y").
If a tensor field F of type (1, 1) has components F;* in U, then its vertical lift
F7 and its complete lift F¢ have respectively components of the form

0 0\ F* 0
(1.13) F7: ( ) and FC: < )
Fr 0 oF Fi

in z~Y(U) with respect to the induced coordinates (z*, ¥*). Thus the complete lift
of the identity tensor field of V is the identity tensor field in T(V).

Taking account of the definitions of lifts or of their local representations
1. 10), (1.11), (1. 12) and (1. 13), we obtain the following formulas:

(P9 =¢"¢", (¢P)°=¢" ¢ +¢°¢",

($X)' =¢"X7, ($X)°=¢" XO+¢°X7,
(1.14)

($o0) =¢"o", (p0)°=¢" 0+ ¢%",

(XQo)=X"Qo", (XQu)’=X"QRw’+XRQw"
for any functions ¢, ¢, any vector field X and any 1-form o given in V;

X7¢v =0, XVgo=(Xe),
(1.15)
XV =(X9), XOgC=(X¢)°
for any function ¢ and any vector field X given in V;
¥ (X7")=0, 0"(X%)=(o(X))",
(1. 16)
o’ X")=((X)),  o%(X)=(o(X))°

for any vector field X and any 1-form o given in V;
(X7, Y"]=0,

.17 [X7, YoI=[X, Y7]=1X, YV,
(X9 Y9=1%, YJ°
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for any two vector fields X and Y given in V, and
FvX7=0, FeXV=(FX)",
1.18)
FVXCe=(FX)", FeXe=(FX)°

for any vector field X and any tensor field F of type (1,1) given in V.
Let there be given two tensor fields F and K of type (1,1) in V. Then we
find directly from the definition (1. 8) of complete lifts

(1.19) FOKC°=(FK)°.

Thus, if there are given a tensor field F of type (1, 1) and a polynomial @(¥) of a
variable #, then we get from (1.19)

(1. 20) (P(F))°=D(F©),
for example,
1.21) (F2+-D)°0=(F°y+1, (F*+F)=(Fo?+F¢,

where I denotes the identity tensor field of type (1, 1) in the corresponding mani-
fold V or T(V).
For a vector field X and a tensor field F* of type (1,1) given in T(V), the
Lie derivative gﬁ‘ of F with respect to X is defined by
X

(L. 22) (Y =[X, FT-F(X, 1],
X
z being an arbitrary vector field in 7'(V). Thus, putting X=x¢ V=Y¢ and
F=F¢, we obtain
(%FC)YC:[XC, FCYC]—Fo[X¢, Y]
X!
=(X, FY]-FLX, Y]°
:(ﬁF)CYO
X

by means of (1.17) and (1.18), where X and Y are vector fields in ¥ and F'is a
tensor field of type (1, 1) in V. The vector field Y being arbitrary, we find from
the equation above the following formula:

(1.23) LFC=(LF)°
xC X

for any vector field X and any tensor field F of type (1,1) in V. Similarly, we
obtain the following formula:

. 24) LFO=(LFY
xv X

for any vector field X and any tensor field F of type (1,1) in V.
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Let there be given a tensor field F of type (1,1) in V. Then its Nijenhuis
tensor N is by definition

(1. 25) N, Y)=[FX, FY]|-F[FX, Y]-F[X, FY]+F*[X, Y],

X and Y being arbitrary vector fields in V. Taking the complete lifts of both
sides of (1.25), and taking account of (1.9), (1.17) and (1. 18), we obtain

NC(XC’ YO') — [FCXC’ Va4 YC] _FC[FCXC, YC’] __FC[XC, a4 YC] _I_(FC)Z[XC, YC]

The right hand side of the equation above is nothing but the Nijenhuis tensor
N(XC¢ YO of the complete lift #¢ of F. Thus we have

A~

1. 26) NC¢=N,

where N denotes the Nijenhuis tensor of F¢.

It is easily seen that a tensor field K (vector field, 1-form, tensor field of
higher degree), which is not a function, vanishes identically in V if and only if its
vertical lift K7 or its complete lift K¢ does so in 7'(V). A function ¢ vanishes
identically in V if and only if its vertical lift ¢V does so in 7(V). A function
¢ is a constant in V if and only if its complete lift ¢¢ vanishes identically in
T(V). Let F be a tensor field of type (1,1) in V. Then its vertical lift F” is of
rank 7 and its complete lift F¢ is of rank 2 if and only if F is of rank 7.

Let there be given a distribution M in V and suppose that M is determined
by a projection tensor , i.e. that z is a tensor field of type (1,1) in V such that
m?*=m and mT(V)=M. The complete lift m¢ of the tensor field » is a projection
tensor in T(V), i.e.

(mO)*=m°

by virtue of (1.20). The distribution M¢ in T(V) determined by the projection
tensor mC is called the complete lift of the distribution M. It is easily verified by
means of (1.18) that the complete lift M¢ is spanned by all vector fields of the
type X7 and all vector fields of the type X¢ X being an arbitrary vector field
belonging to the distribution M. The distribution M is integrable if and only if
we have

1.27) IImX, mY]=0

for any vector fields X and Y in V, where /=I—m. Taking the complete lifts of
the both sides in (1. 27), we get

1.28) LImCX°, m°Y =0

for any vector fields X and Y in V. The two conditions (1.27) and (1.28) being
equivalent to each other, we have
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ProrosiTioN 1.1. The complete lift MC of a distribution M given in V is
integrable in T(V) if and only if M is integrable in V.

Let there be given a differentiable transformation
p VoV
and denote simply by
pr T(V)=T(V)

the differential of the transformation x: V—7V. For a 1-form o in V, we define a
1-form pw by

(1) (X)=o(pX),

X being an arbitrary vector field in V. If the differential of the transformation
p: T(V)—T(V) is denoted by

wor T(T(V)—T(T(V)),
then we get the following formulas:

(X)) =p°X",  (pX)P=p°XC,
(1. 29)

(pw)? =ploV, (pw)°=plw’

for any vector field X and any 1-form o given in V. 1If, for a tensor field F of
type (1, 1) given in V, we define a tensor field pF by

pF) (X)=p(F (X)),
then we obtain
(1. 30) (uF) =pCF?, (uF)o=pCFC.

The tensor field pF is that induced from the given F by the transformation
u: V=V,

§2. Almost complex structures.

Let I be a tensor field of type (1, 1) in a differentiable manifold V. Then we
see, taking account of (1.21), that

(FO?4-T=0

if and only if
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F24-1=0.
Thus we have

ProrosiTioN 2. 1. The complete lift FC of a tensor field F of type (1, 1) given
in Vis an almost complex structure in T(V) if and only if so is Fin V. (Satd
[8], Yano and Kobayashi [13])

Taking account of (1.26), we have

ProrosiTioN 2.2. The complete lift FC of an almost complex structure F
given in V is complex analytic in T(V) if and only if F is complex analytic in V.
(Yano and Kobayashi [13])

The equations (1.23) and (1. 24) imply

ProproSITION 2.3. A wvector field X is almost analytic in an almost complex
space 'V with an almost complex structure F if and only if the vertical lift XV or
the complete lift XC is almost analytic with respect to the almost complex structure
FC in T(V). (Sato [8], Yano and Kobayashi [13])

‘We have from (1. 30)

ProposiTION 2.4. In an almost complex space V with an almost complex
structure F, a transformation p. V—V preserves the structure F if and only if its
differential map p: T(V)—T(V) preserves F°.

§3. f-structures.

Let there be given, in an n-dimensional differentiable manifold V, a non-null
tensor field f of type (1, 1) satisfying

(CpY) Fi+r=0.

We call such a structure f an f-structure of rank 7, when the rank of f is con-
stant everywhere in ¥ and is equal to 7,  being necessarily even (Yano [11], [12]).
If we put

(3.2 I==r%  m=f*+],

then we have

3.3) I+m=1, 2=l mi=m, Im=ml=0,
f=lf=f,  fm=mf=0.

These equations show that there exist in V two complementary distributions L
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and M corresponding to the projection tensors / and m respectively. When the
rank of f is 7, L is 7-dimensional and M (#—r)-dimensional.
We have obtained in [2] the following integrability conditions:

(A) A necessary and sufficient condition for the distribution M to be integrable
is that

3.4 NmX, mY)=0
for any vector fields X and Y, N denoting the Nijenhuis tensor of the f-structure f.

(B) A necessary and sufficient condition for the distribution L to be integrable
is that

@3.5) mN(X, Y)=0

for any vector fields X and Y in V.

When the distribution L is integrable, the f-structure f operates as an almost
complex structure f/ in each integral manifold of L. When the distribution L is
integrable and the induced almost complex structure f’ is complex analytic in each
integral manifold of L, we say that the f-structure f is partially integrable.

(C) A necessary and sufficient condition for an f-structure f to be partially
integrable is that

3. 6) N(IX,1Y)=0

for any vector fields X and Y in V.
We suppose now that there exist, in each coordinate neighborhood of V, local
coordinates, with respect to which the f-structure f has constant components:

0 —E, O
f=|E. 0 0}
0 0 O

where r=2m is the rank of f and E, denotes the unit mXm matrix. If this is
the case, we say that the f-structure f is infegrable.

(D) A necessary and sufficient condition for an f-structure f to be integrable
is that

3.7 NX, Y)=0

for any vector fields X and Y in V.
Let F be a tensor field of type (1, 1) in a differentiable manifold V. Then we
see, taking account of (1.21), that the equation
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F*+F=0
is equivalent to the equation
(FOP+FC=0.
The rank of F¢ is 2r if and only if the rank of F is ». Thus we have

ProrosiTiON 3. 1. The complete lift FC of a tensor field F of type (1, 1) given
in V is an f-structure in T(V) if and only if so is F in V. When Fis of rank r
in V, FC is of rank 2v in T(V). (Yano and Kobayashi [13])

Let f be an f-structure of rank » in V. Then the complete lifts /¢ and m®
are complementary projection tensors in 7(V), where / and m are defined by (3. 2).
Thus there exist in 7(V) two complementary distributions L¢ and M¢ determined
by /¢ and mC respectively. The distributions L¢ and M¢ are respectively the com-
plete lifts of the distributions L and M. Denote by N and N the Nijenhuis tensors
of f and f¢ respectively. Then, by means of (1.9), (1.18) and (1.26), the con-
ditions (3.4), (3.5), (3.6) and (3.7) are respectively equivalent to the following

conditions:

3.4y Nmeye, meyey=0,
(3.5) meN (X¢, Y9)=0,
3. 6) N@exe, 1yey=,
3.7 N(Xxe, yo)=0,

X and Y being arbitrary vector fields in V. Therefore we obtain

PROPOSITION 3. 2. The complete lift f€ of an f-structure f given in V satisfies
one of integrability conditions (A), (B), (C) and D) in T(V) if and only if the
given f-structure f satisfies the corresponding integrability condition in V.

Let there be given an f-structure f of rank » in V7 and assume that there
exist s (=n—7) vector fields &, &, -+, & spanning the distribution M at each point
of V. Then the set (f, &;) of an f-structure f and such vector fields &, is called
a framed f-structure™ (cf. Nakagawa [4]). It was proved in [1] and [4] that there
exists a natural almost complex structure F in the product space VX R® of the
given manifold 7 and the space R® of s real variables if there is given a framed
Sf-structure (f, &) in V. When the almost complex structure F'is complex analytic
in VxR’ we say that the given framed f-structure (f, &) is normal (c.f. Ishihara
[1], Nakagawa [4]). It is proved in [1] and [4] that a framed f-structure (f, &s) is

normal if and only if we have

7) The indices =, ¥, 2, #, v run over the range {1, 2, ---, s}.
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3.9 S(X, Y)=0

for any vector fields X and Y in V, S being a tensor field of type (1, 1) defined in
V by the equation

3.9 SX, Y)=NX, )+(X7*(Y)—- Y7 (X)—7*([X, Y])és

for any vector fields X and Y in V, where N is the Nijenhuis tensor of f and
7%, 7% -+, 3° are s covector fields in V satisfying

(3.10) 7°(fX)=0,  7°(€)=0y

for any vector field X in V. The tensor field S thus defined is uniquely determined
up to a linear transformation of &, with constant coefficients.

Let (f, &) be a framed f-structure in V. Then the complete lifts /¢, £,¢ and
the vertical lifts &,Y form a framed f-structure (f¢, &7, ;%) in T(V). The tensor
field S which is constructed from (f¢, &7, £,°) and corresponds to the tensor field S
defined by (3.9) is given by

S&, =N, 1)+ X @)=V (X)) =7 (X, Y)E-°

(3.11) N N o
+(Xp™(Y) =Y (X)) —5™(X, YD)

for any vector fields X and ¥ in 7(V), »” being the s covector fields satisfying
(3.10) in V, where N is the Nijenhuis tensor of f¢. Taking account of (l.6),
1.9), 1.14), (1.15), (1.16), (1.17), (1. 18) and (1. 26), we find from (3.9) and (3. 11)
the equation S(X¢, Y¢)=SC(X¢, Y¢) for any vector fields X and Y in V, ie.

(3.12) S=se.
Thus we have

PrROPOSITION 3. 3. Let there be given a framed f-structure (f, & z) in V. Then
(f9, &7, €,0) is a framed f-structure in T(V). The framed f-structure (f°, &7, £2°)
is normal in T(V) if and only if the framed f-structure (f, £z) is normal in V.

The framed f-structure (¢, &7, &,°) in Proposition 3.3 is called the complete
lift of the given framed f-structure (f, ).

§4. Frames and Lie groups.

Let there be given, in an #n-dimensional differentiable manifold ¥, s vector
fields &, &, -+-, & linearly independent at each point of V. Then there exists an
(n—s)-dimensional distribution M which is complementary to the distribution L
spanned by s given vector fields &,. Assuming such a distribution M to be fixed,
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we call the set (§;, M) of s vector fields &, and such a distribution M an s-frame
in V.

When an s-frame (65, M) is given in V, there exist s covector fields 7%, 72 -, 3
satisfying

@D 7°E)=0;,  7°(X)=0

S

for any vector field X belonging to the distribution M. Defining a tensor field J
of type (1,1) in T(V) by

“.2) T =6 @y —&.5@n"
which is of rank 2s everywhere in 7'(V), and taking account of (1.16), we find
as a consequence of (4.1)
@3 T=—(&®n")°
and hence
T*+T =0,

and consequently, we see that the tensor field 7 thus defined and the vector fields
&7, €2¢ form a framed f-structure (/, 5%, £;°) of rank 2s in 7'(V). Thus we have

ProposITION 4. 1. If there is given an s-frame (§z, M) in V, then there exists
a framed f-structure (], &7, §:°) of rank 2s in T(V), where ] is defined by (4.2).
If n=s, the structure J is an almost complex structure in T(V).

Let &, be other s vector fields such that®
“. 4 Eyp=aysy,

where the matrix (a¥%) is non-singular. Then for the new m-frame (£, M) the
corresponding s covector fields »®', which satisfy

7" (E)=0y,  77(X)=0
for any vector field X belonging to the distribution M, are given by
" =aZy,
where the matrix (¢%’) is the inverse of (a%). If we put
@.5) T /=87 @17 —£2°Q",

then we find as a consequence of (4. 2)

8) The indices «', ¥, 2, #', »' run over the range {1/, 2/, ---, s'}.
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Tr=T = (@)@ &y @n*—(a%)¥ (a5 6.5 Q"
—(@%)%(ay)°6.cQ@n"°,
which implies that the condition
7-7

is equivalent to the condition that the elements of the matrix (a%) are constant.
Thus we have

PROPOSITION 4. 2. Let there be given in V two s-frames (&, M) and (&,, M)
such that

Eq/’ =ag'$y,
the matrix (aY) being non-singular. Then the two f-structures 7 and 7 ! constructed
respectively of (&4, M) and (&, M) following (4.2) coincide with each other in T(V)
if and only if the elements of the matrix (@) ave constant.
If we take account of (1.16) and (1.17), we get as a consequence of (4. 2)
TX7=—@*(X)&sL,
4. 6) ~
J XO=0"(X))V &Y —((X))€.°,

X being arbitrary vector field in V. Especially, we find

(4- 7) 75:01/:_510, 7$x0=‘§zv
and
4. 8) JXv=0, TX°=0

for any vector field X belonging to the distribution M.
The Nijenhuis tensor A of the tensor field J is by definition

HX, H=[TX, TN-T 17X, "1-T (X, T V147X, 1,
which reduces to
. 9) AX, H=[TX, TN1-T 1T X, 1T (X, T ¥1—(Eor7)°0X, ¥

by virtue of (4.3), where X and ¥ are arbitrary vector fields in T(V). If we
take account of (1.14), (1.16), (1.17), (4.6), 4.7) and (4.8), we obtain from (4.9)
the following formulas for any vector fields X and Y belonging to the distribution
Min V.
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Hxv, Y7)=0,

HXY, YO)=—G"(X, Y])'E,

H(X, YO)=—@1"(IX, Y]).),

HXY, &) =—0"([X, £,))7&0,

A(X7, 89=—0"(X, &))",

H(XC, &7)=—"(X, &),

H(XC, &% =—@"(IX, &),

&7, e=[8), £1°—20"([€,, £:]))7E:°,
HEy, 65=—[¢, &1 — (7€), &,
H(,0, 80)=n"([y, &1V EC— (" (6 £D)OES.

4.10)

Taking account of the integrability condition (3. 6), we see that the f-structure
J is partially integrable if and only if

ey, en=0, Heyr, e9=0, HEp, &9=0.

As a direct consequence of (4. 10), we see that the condition above is equivalent to
the condition

(4.11) [£y, £:1=0.
Thus we have

PrOPOSITION 4. 3. The f-structure 7 defined by (4. 2) is partially integrable in
T(V) if and only if there exist, in each coorvdinate meighborhood of V, local coor-
dinates (z*) such that

) 0 0
fi= o) G5, o b=

The f-structure J is integrable if and only if we have H=0, which is equi-
valent, by virtue of (4. 10), to the conditions

(4.12) 7°(1X, YD=0, 7°([X, D=0, [&, &]1=0

for any vector fields X and Y belonging to the distribution M. It is easily verified
that the conditions (4. 12) are equivalent to the conditions

(4. 13) d7]x=0y [51/1 EZ]':O)
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which are, by virtue of (4.1), equivalent again to the condition that there exists,
in each coordinate neighborhood of V, a system of local coordinates (z*) such that

d d ]
81=W, 52:5?3 Yy SS—W’
4. 14)
P=dz', P=dz?, -, P’=dz’.

When there exist, in each coordinate neighborhood of 7V, local coordinates (z")
satisfying (4. 14), we say that the given s-frame (&;, M) is integrable. Summing
up, we have

ProrosiTioN 4.4. The f-stucture 7 defined by (4.2) is integrable in T(V) if
and only if the giwen s-frame (£, M) is integrable in V.

Taking account of (1.17), (4.2), (4.6), 4.7) and (4.8), we have from the
definition (1. 22) of Lie derivative the following formulas for any vector field X
in V:
L Hyr=0, (L Y =("(IX, Y])"&5,
xv ¥V

(4. 15) - ~
(55 &) =—IX, &1, (;(CV] 6= ([X, §,D))7€.%,

Y being an arbitrary vector field belonging to the distribution M in V. Similarly,
we obtain the following formulas for any vector field X in V:

L DY =0(X, YDVES,
xC

L THYo=(X, YI)VEY -7 (X, YD),
xc

. 16) 5
(X£0 D&Y ==X, &EI°+07(X, ED)VELS,

£ D0 =1X, &7 — 07X, &) &+ (X, E])%°,

Y being an arbitrary vector field belonging to the distribution M in V.
According to the formula (4.15), the condition L£T=0 is equivalent to the
XV

conditions [X, &,]=0, »°([X, Y])=0 for any vector field Y belonging to M, which are
equivalent again to the conditions

.17 £&,=0,  L£y°=0.
X X

According to the formula (4.16), the condition £07 =0 is equivalent to the
X
conditions

[X Ey]:cyxsx» Wx([X, YD=0

for any vector field Y belonging to M, where C,” are constant. This condition is
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equivalent to the conditions
4. 18) L£6=C%,  Lr"=—C/7’,
C,” being constant. Summing up, we have

ProrosiTION 4.5. Let there be given an s-frame (Ez, M) in V. Then the
vertical lift XV of a vector field X given in V satisfies the condition

L' .7=0’
xv
mn T(V) if and only if the conditions
L£&,=0, L9°=0
pe X

are satisfied in V. The complete lift X° of a wvector field X given in V satisfies
the condition

£7 =0,

xC

in T(V) if and only if the conditions
— x 1‘= .Y
:chy Cy 52" 45’7] CZI Ui
arve satisfied with constants C,° in V, where T is defined by (4. 2).

As is well known, there exists in a Lie group G # left invariant vector fields
&y, &, +++, &4, which form a basis of the Lie algebra of G, if dim G=#x. Thus,
according to Proposition 4;1, there exists, in the tangent bundle 7(G) of G, an
almost complex structure J corresponding to the n-frame (§;) (z=1, 2, ---, ). The
almost complex structure 7 thus introduced in 7(G) does not depend on the choice
of the base (§,) of the Lie algebra of G because of Proposition 4“./2. Taking
account of Proposition 4.4, we see that the almost complex structure / is complex
analytic in 7(G) if and only if the Lie group G is abelian. Thus we have

PROPOSITION 4. 6. There exists canonically an almost complex structure T in
the tangent bundle T(G) of amy Lie group G. The almost complex structure J is
complex analytic if and only if the Lie group G is abelian.

According to Proposition 4.5, we have directly

ProPOSITION 4.7. For any left invariant vector field X given in a Lie group
G, its complete lift XC is almost analytic in T(G) with rvespect to the almost com-
plex structure T mentioned in Proposition 4.6. For a left invariant vector field X
given in G, its vertical lLift XV is almost analytic in T(G) with respect to the
almost complex structure f if and only if X belongs to the center of the Lie
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algebra of G.
As a corollary to Proposition 4.7, we have

ProrosITION 4.8. Let G be an abelian Lie group. Then, for any left in-
variant vector field X in G, its vertical lift XV and its complete lift XC are
analytic in T(G) with respect to the complex structure 7 mentioned in Proposition
4.6. The tangent bundle T(G) of any abelian Lie group G is a homogeneous com-
Dlex space.

Given an element « of a Lie group G, we denote by L(a) and R(a) respec-
tively the left and the right translations of G, which correspond to the element «
of G. Take a base (§,;) of the Lie algebra of G. The n vector fields &, being left
invariant, we have

L(a)¢s=Ea,
R(@)z=Co"()y

(.’13, y=1, 2’ % n)

for any element « of G, where C,%(«) are constants determined by «. Thus, taking
account of Proposition 4.2 and following notations given in §1, we have

ProrosiTiON 4.9. Let G be a Lie group. Then, for any element a of G, the
corresponding transformations L(a)° and R(@)° of T(T(G)) leave invariant the
almost complex structure | mentioned in Proposition 4. 6.

§5. Almost contact structures and framed F-structures.

Let there be given, in an #n-dimensional differentiable manifold V, a tensor
field f of type (1. 1), a vector field £ and a covector field » satisfying

[i=—I+£Qm, f&=0,
2(fX)=0, 7(€)=1

6.1

for any vector field X in V. Then % is necessarily odd. We call a structure
defined by the set (f, &, y) of such tensor fields f, & and » an almost contact struc-
ture (c.f. Sasaki [6]). Taking account of (5.1), we see easily that

Pof=0

and that f is of rank #—1 everywhere in V. Thus the set (f, &) is a framed f-
structure in V. Conversely, if there is given an f-structure f of rank #—1 in an
n-dimensional differentiable manifold ¥V, V being assumed to be orientable, then
there exists an almost contact structure (f;&,7) in V. When the framed f-
structure (f, &) is normal, the given almost contact structure (f, ¢, ) is said to be
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normal (c.f. Sasaki and Hatakeyama [7]).
If there is given an almost contact structure (f, &, ») in V, then the tensor
field S(X, Y) constructed by (3.9) from the framed f-structure (f, &) reduces to

(6.2 S, Y)=NX, V)+Xn(Y)—Yn(X)—9(X, Y])§

for any vector fields X and Y in V, where N denotes the Nijenhuis tensor of f
(cf. Sasaki and Hatakeyama [7]). The almost contact structure (f, &, ) is normal
if and only if we have S=0 (c.f. Sasaki and Hatakeyama [7]).

If we introduce a tensor field S; of type (0, 2), a tensor field S; of type (1, 1)
and a covector field S; by the formulas

SX, V=X —(fY X)) —n([fX, YI+[X, YD
2(55:7)) Y— (fg nX,
S X)=[§, rX1-rI§, X1
=(,€C NX,

(5.3)

SyX)=(EMXN—([&, X1

=X
respectively, X and Y being arbitrary vector fields in V, then we see the well
known fact that S;, S: and S; vanish identically in V if S vanishes identically in

V (Sasaki and Hatakeyama [71).
We find directly from (5. 2) and (5. 3) the following formulas:

SX, Y)=[fX, fY1-fIfX, YI-fIX, fY]-[X, Y],
SIX, V)=—n(fX, YI+IX, /YD,
SAX)=[¢, FX1-rI§, X},
S(X)=—x([§, XD),
X and Y being arbitrary vector fields satisfying »(X)=0 and »(¥)=0 in V;
S(X, & =rI¢& rX1+§ X],
SiX, &)=n([§, FXD),

(.4

(5.5)

X being an arbitrary vector field satisfying »(X)=0 in ¥, and

(5. 6) S3(§)=0, Ss(6)=0.
Taking account of (1.14), (1.16), (1.18) and (1. 19), we find from (5. 1)
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(f =—I+£"Q1°+E°Qr”,
6.7 fogr =0, [0 =0, p(fR)=0, 7°(f°5H=0,
7(EN)=0, '¢E9)=1 %€ =1, 7°¢%) =0

for any vector field X in (V). -
If we now define a tensor field / of type (1,1) in (V) by

~

(5.8 J=fC+E"Q@n" —E°Qn°,
then we find
Tr=—1

as a direct consequence of (5.7) and (5.8). Therefore the tensor field 7 defined bZ
(5. 8) is an almost complex structure in 7°(V). The almost complex structure J
has components of the form

( S —@ypEt —n;E" )
of o —(0n;) (06")+9,&"  fi—n;05"

with respect to the induced local coordinates (x*, y*) in ==Y (U)c T(V), where f,*,
& and 7, denote respectively the components of f, & and 7 with respect to local
coordinates (z") defined in a coordinate neighborhood U of V (c.f. §1). Thus we
have

ProrosiTION 5.1. There exists in T(V) an almost complex structure 7 defined
by (5.8), if there is given an almost contact structure (f, &, 7)) in V. (Tanno [9],

(101

Taking account of (1.16) and (1. 18), we get from (5. 8) the following formulas:

6.10 TX7=(f Xy —(m(X))ee,
' T X0=(fX)0+@(X)VEY — (p(X))°EC,

X being an arbitrary vector field in V. Especially, we find

TxXv=(rxy, TX=(fX),
(5.11) ~ ~
Jev =—¢0, Jeo =g,

X being an arbitrary vector field satisfying »(X)=0 in V. N
The Nijenhuis tensor H of the almost complex structure J is by definition

L
:!z
|
s
R
PR
::z
|
,_\_:l
PR
~
=2
|
>
::z

HZX, =X
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for any vector fields X and ¥ in T(V). Thus, taking account of (1.17), (1.18),
(5.4), (6.5), 6.7), (6.8) and (5.11), we obtain the following formulas for any
vector fields X and Y satisfying 7(X)=0 and »(¥Y)=0 in V-

Hxv, y7)=0,
HXY, Y")=(SX, V)" —(Su(X, Y)"E,
H(Xe, YO =(S(X, V)°+(Si(X, V)& —(SuX, V)’
512 Ii(XV, £) =(Su(X))+(S(X))7¢C,
H(X7, &) =(S«X))+(S(X, ) +(Ss(X))E —(Si(X, )7 +(Su(X))°€C,
Axe, &) =(S(X, 9)'—(SuX, &),
H(Xe, 89 =(S(X, §)7—(S«X) +S:u(X, O — {(Su(X, ) —(S{X)V}£C,
Her, e =o0.

As a direct consequence of (5. 12), we see that the condition H=0is equivalent
to the conditions

S(X, Y)=0, S«(X, Y)=0, Si(X)=0,  Si(X)=0,
(5. 13)
S(X, §)=0,  S«(X, §)=0

for any vector fields X and Y satisfying 7(X)=0 and 7(Y)=0 in V. However,
we have S(§, &)=0 and S;(¢, £)=0 because of the skew-symmetry of S and Si.
Thus, taking account of (5.6), we see that the conditions (5. 13) are equivalent to
the conditions

which are again equivalent to the condition
S=0,
because S=0 implies S;=0, S;=0, S;=0. Summing up, we have

PROPOSITION 5. 2. The almost complex structure 7 defined by (5.8)is complex
analytic in T(V) if and only if the given almost conmtact structure (f,§,7) is
normal in V. (Tanno [10])

Let there be given an almost contact structure (f; &, ») in V. Then the tensor
fields f¢, &7, &° form in T(V) a framed f-structure (f9, &%, &%) of rank 2n—2, if
dim V=#. Thus, taking account of Proposition 3.3, we have
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ProrosiTiON 5.3. Let (f, & 7) be an almost contact structure in V. Then the
framed f-structure (f°, &Y, &) is normal in T(V) if and only if the given almost
contact structure (f, &, n) is normal in V.

Propositions 5.2 and 5. 3 imply immediately that the following two conditions
(a) and (b) are equivalent to each other:

(@) The almost complex structure 7 in T(V) defined by (5.8) is complex
analytic; .

(b) The framed f-structure (1€, &7, £¢) is normal in 7'(V), when there is given
an almost contact structure (f, &, ) in V.

Given an almost contact structure (f, &, %) in V, a necessary and sufficient
condition for the f-structure f in V to be integrable is that there exist in each
coordinate neighborhood of V local coordinates with respect to which the tensor
fields f, & and 7 have respectively components of the form

0 —En 0 0
(5.14) UM=|Exn 0 0} Em=[0] )=0 0,
0 0 O c

¢ being a certain function in V and E, denoting the unit m Xm matrix, where
m=(n—1)/2, n=dim V. On the other hand, we see, by means of Proposition 3.3,
that a necessary and sufficient condition for the f-structure f¢ to be integrable in
T(V) is that the f-structure f is integrable in V. Thus we have

ProprosiTION 5.4. Let (f, &, ) be an almost contact structuve in V. Then the
f-structure f¢ in T(V) is integrable if and only if the given tensor fields f, & and
y have respectively components given in (5.14) with respect to a suitable local
coordinates in each coordinate neighborhood of V.

Let p: V—7V be a differentiable transformation of an »-dimensional manifold

V with an almost contact structure (f, &, ). Then, taking account of (1.29) and
(1. 30), we obtain

(5. 15) 107 = () @ ()’ — (p)° R (y)°,
where f is the almost complex structure defined in 7°(V) by (5.8). Denoting by

f & and 7, the components of gf, & and py respectively and taking account of
(5. 9), we see that the condition

(. 16) wT =7

is expressed by
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< Fir —@g)E —7E" )
af *—(07,) (9EM) -7 ;6" F i —7(08"
5. 17)
B ( £t —@n)&" —7E" )
of  —(7;) (96" 47,6 S —n;(05")

with respect to induced local coordinates (z*, y*) in T(V), where f,*, & and 7, are
the components of f, & and » respectively. From (5. 17) it follows

7iEh=1;E",
which implies together with 7(§)=1 and (uy) (#£)=1 that
(5.18) Eh=qat", 7,=a 'y,
hold with a non-zero function @. From (5.17) we get
Fr—@gpér=rl—@n)En,  Fr—7,08")=f"—n, "),
which imply together with (5. 18)
(6. 19) Fit+a@amgr=£t,  Flrtat@aymEh=1"
Substracting these two equations, we obtain
a(@a—)=a*(0a),

which implies da=0. That is, the function @ is necessarily a constant ¢. There-
fore, we find from (5. 18) and (5. 19)

f_fh':fjh’ éh:'c'sh’ 7,=c"'n,

ie.

with a constant ¢. Summing up we have

ProrosiTION 5.5. Let p: V—V be a differentiable transformation of a dif-
ferentiable manifold V with an almost contact structure (f, &, ZZ)' The diffevential
map p: T(V)—=T(V) preserves the almost complex structure | defined by (5.8) if

and only if the conditions
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uf=f, pE=c§, mp=c'y
are satisfied with a non-zero constant ¢ in V. (Tanno [10])

Let X be a vector field in V. Then, taking account of the definition (1. 22)
of Lie derivative and (5. 8), we find the following formulas for any vector field
Xin V:

£ HYr =0,
xv
L DY =(LNHYY —(Ln(Y)TE,
(5. 20 ~
& e =—(L8y,
xv X
(LTI =(LN~(LDENE,

7 being defined by (5.8) and Y being an arbitrary vector field satisfying n(¥Y)=0
in V. By a similar device, we get the following formulas for any vector field
Xin V:

L DY =NV ~(LnN(Y)E,
(L DY =(£NY)+(LNIXE — (LAY,
(6.2D) ~
(LD =(LNHIY ~LX, &'~ (LNENTE,
xC X X

(£ 760 =(LNOHIX, & +(EMENE —(LDENE,

7 being defined by (5.8) and Y being an arbitrary vector field satisfying 7(Y)=0
in V.
As a consequence of (5. 20), we see that the condition

£7=0
XV
is equivalent to the conditions
(5. 22) L£1=0, L£E=0, L£27=0.
X X X

From (5. 21) it follows that the condition

£7=0

xC
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is equivalent to the conditions

(5.23) Lf=0, LE=c, Lyp=—cy,
X X X

¢ being a constant. Thus we have

PRrROPOSITION 5.6. Let there be given an almost comlact structure (f, &, 7)) in
V. Then the vertical lift XV of a wvector J’ield X given in V is almost analytic
with respect o the almost complex structure J in T(V), 7 being the almost complex
structure defined by (5.8), if and only if the conditions

L1f=0, L£6=0, L9=0
X X X
are satisfied in V. (Tanno [10])

ProroSITION 5.7. Under the same assumption as in Proposition 5.6, the com-
plete lift X°¢ o£ a vector field X is almost analytic with vespect to the almost com-
plex structure | in T(V), if and only if the conditions

L£7=0,  L&=c§,  Ly=—0cy
are satisfied with a constant ¢ in V. (Tanno [10])

Proposition 5.7 is a direct consequence of Proposition 5. 5.

Let there be given a framed f-structure (f, £;) of rank 7 in an #z-dimensional
differentiable manifold V (c.f. §3). Then, taking account of the fact m=£&,Q7%
we find from (3. 2) and (3. 10)

(5. 24) [i=—I+&Q7",
7"(fX)=0,  7°§)=07

for any vector field X in V.® If we put s=n—r and define s tensor fields S¢,”
of type (0, 2), s tensor fields Se,y, of type (1, 1), s* covector fields Se),” and s(s—1)/2
vector fields Sy, respectively by the following formulas:

Sy (X, Y)=UX)"(Y)—(fY)n"(X)=y"([FX, Y]+1X fYD),
Sen(X)=[&y, FX1—S &y, X1,
Sy (X)=&(n" (X)) —9"([&y, X]),
Scoyye=[&y, &,

(5. 25)

9) The indices =, ¥, 2, #, v run over the range {1, 2, .., s}, where s=n—r7.
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where X and Y are arbitrary vector fields in V, then we see that the tensor fields
Swy®, Sy Sayy®y Scoyyz vanish identically in V if the tensor field S defined by (3.9)
vanishes identically in V (c.f. Ishihara [1], Nakagawa [4]).

If we now define a tensor field J of type (1,1) in V by

(5. 26) 7= FO+E RN —E,5RnC,

then we find

R
I
|
~

by making use of the formulas

(fO)=—I+&" Q7" +£:.5Qn™,

£,¥ =0, £96,0=0,
" (fX)=0, 2"(f¢X)=0,

77 (&%) =0, 7 (E,)=05,
7707 )=05 770(,%) =0,

which are direct consequences of~(5. 24), where X is an arbitrary vector field in
T(V). Therefore the tensor field J defined by (5. 26) is an almost complex struc-
ture in T(V). Thus we have

ProrosITION 5. 8. There exists in T(V) an almost complex structure f defined
by (5. 26) if there is given a framed f-structure (f, &s) in V.

Denoting by H the Nijenhuis tensor of the almost complex structure 7 defined
by (5. 26), we have, by a similar device as that used to get (5.12), formulas
expressing H in terms of tensor fields S, Su)% Scayy Sceyy® Scoyyee  Consequently,
we have

PROPOSITION 5.9. The almost complex structure ] in T(V) defined by (5.26)
is complex analytic if and only if the given framed f-structure (f, &) is normal in V.

By a similar method as that used to get Propositions 5.5, 5.6 and 5.7, we
have respectively

ProprosiTiON 5.10. Let p: V—V be a differentiable transformation of V with
a framed f-structure (f, A’g}). The differential map p: T(V)—T(V) preserves the
almost complex structure | defined by (5.26) if and only if the condilions
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w=f, pey=Cy"€s, pn"=B," 7"

are satisfied in 'V, where the matrix (C,") is non-singular and constant and the
matrix (By") is the inverse of (C,”).

ProrosiTION 5.11. Let there be given a framed f-structure (f, éz)in V. Then
the vertical lift XV of a vector_ field X given in V is almost analytic with respect
to the almost complex structure | defined by (5. 26) in T(V') if and only if the conditions

Lf=0, L£&,=0, L9°=0
X X X
are satisfied in V.

PROPOSITION 5.12. Under the same assumptions as in Proposition 5. 11, the
complete lift XC of a vector ,ﬁveld X given in V is almost analytic with respect to
the almost complex structure | in T(V) if and only if the conditions

L1=0, onz/:nyfz» Ly*=—C,""
X X X
are satisfied with constants C,° in V.

Proposition 5.12 is a corollary to Proposition 5.10. Propositions 5.1, 5.2, 5.5,
5.6 and 5.7 are respectively obtained as corollaries to Propositions 5.8, 5.9, 5.10,
5.11 and 5.12.
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