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ALMOST COMPLEX STRUCTURES INDUCED
IN TANGENT BUNDLES

BY KENTARO YANO AND SHIGERU ISHIHARA

Introduction. The differential geometry of tangent bundles of Riemannian
manifolds has been studied by Sasaki [5]υ and the theory of affine connections in
tangent bundles of manifolds with affine connection by Ledger and one of the
present authors [3], [15].

Kobayashi and one of the present authors [13], [14] recently studied prolonga-
tion of tensor fields and connections to tangent bundles. They first developed the
general theory of prolongation of tensor fields and affine connections to tangent
bundles and then studied affine transformations in tangent bundles.

The main purpose of the present paper is to study the prolongation of the so-
called /-structure to tangent bundles and especially that of almost contact structure
in the light of the above mentioned papers by Kobayashi and one of the present
authors.

In Sections 1 and 2, we recall some results stated in [13] and [14] which are
indispensable in the subsequent sections.

In Section 3, we study the so-called /-structure and its prolongation to the
tangent bundle. To study the properties of the so-called /-structure, we introduce
a frame closely related to the /-structure. We study these in Section 4.

The last section is devoted to the study of prolongation of the so-called almost
contact structure which is an /-structure. The results obtained in this section are
closely related to those obtained recently by Tanno [9], [10].
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§ 1. Lifts of tensor fields.

We first recall definitions and properties of the vertical lift and the complete
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lift of a tensor field to tangent bundle for the later use (Yano and Kobayashi [13],
[14]). Let V be an ^-dimensional differentiate manifold2), and T(V) its tangent
bundle, the projection being denoted by π: T(V)^V. For a diίferentiable function
φ in F, the function π*φ induced from φ in T(V) is denoted by

(1. 1) φv=π*φ

and is called the vertical lift of the function φ. Any 1-form ω given in V is, in a
natural way, regarded as a function in T(V), which will be denoted by cω. If we
are given a vector field X in F, then we define a vector field Xv in T( F) by

(1.2) χr(cω) = (ω(X)r,

ω being an arbitrary 1-form in F.3 ) The vector field Xv thus defined is called the
vertical lift of the vector field X.

We define the vertical lifts of 1-forms dφ and ψdφ by

(1.3) (dφγ=d(φv) and (φdφ)v=φv(dφ)v

respectively, φ and ^ being arbitrary functions in F, and the vertical lift ωv of an
arbitrary 1-form ω given in F by4)

(1.4) ω^=(co i)
τW)F

in each open set π-λ{U), where U is a coordinate neighborhood with local coordi-
nates (xh) in F and α> is given by ω=ωidxι in U. It is easily verified that the
vertical lift ωv of the 1-form ω defined by (1.4) in each π~\U) is a global 1-form
in Γ(F).

When there is given a function φ in F, we put

(1. 5) φP=e(dφ)

in T(V), and call the function φ° thus defined in T(V) the complete lift of the
function 0. For a vector field X given in F, we define a vector field Xc in
7XF) by

(1.6) X°φP=(XφY>,

φ being an arbitrary function in V, and call XG the complete lift of the vector
field X 5 )

2) The manifolds, tensor fields and mappings we discuss are assumed to be dif-
ferentiable and of class C°°. The manifolds are assumed to be connected.

3) The 1-form ω being arbitrary in F, the function cω generates the ring of all func-
tions in T(V), so Xv(cω)=(ω(X))v defines a vector field X^ in T(V) (cf. [13]).

4) The indices A, i, j, k, I run over the range {1, 2, •••, n}.
5) The function φ being arbitrary in F, the function φc generates the ring of all

functions in T(V), so Xc<j>c=(Xφ)c defines a vector field χo in T(V) (cf. [13]).
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Given a 1-form ω in F, we define a 1-form ω° in T(V) by

(1.7)

X being an arbitrary vector field in F.6 ) The 1-form ω° thus defined in T(F) is
called the complete lift of the 1-form ω. Let F be a tensor field of type (1.1) in
F. Then we define in Γ(F) its vertical lift Fv and its complete lift Fc by

(1.8) FvXG=(FXγ and FGXG=(FX)G

respectively, X being an arbitrary vector field given in F. For a tensor field S of
type (1, 2) given in F, we define in T(V) its vertical lift S F and its complete lift
S° respectively by

(1.9) Sr(X°, YG) = (S(X, Y))v and SG(XG, YG)=(S(X, Y))G,

X and Y being arbitrary vector fields in F
We shall now give local representations of the lifts. Let (U, (xh)) be a coordi-

nate neighborhood of the differentiate manifold F, where (xh) is a system of local
coordinates defined in U. Let (yh) be the system of cartesian coordinates in each
tangent space ΓP( F) of F at P with respect to the natural frame djdxh, where P
is an arbitrary point belonging to U. Then, in the open set π~\U) of T(U) we
can introduce local coordinates (xh, yh), which are called the coordinates induced in
π-\U) from (xh) or simply induced coordinates in π~\U). Let there be given a
function φ(xk) in U. Then its vertical lift φv and its complete lift φ° are respec-
tively represented by

(1.10) φv: φ{xk) and φc: dφ(xk)

in π-1(ί7) with respect to the induced coordinates (xh, yh), where the symbol d
denotes the operator

If a vector field X has components Xh in U, then its vertical lift Xv and its
complete lift X° have respectively components of the form

/ 0 \ / Xh \
(1.11) Xv: and XG:

\Xh) \dXhl

in π-\U) with respect to the induced coordinates (xh, yh).

6) The vector field X being arbitrary in F, the vector field Xc m T(V) spans the
set of all vector fields in T(V), so a 1-form ωc, tensor fields Fv, FG of type (1. 1) and
tensor fields Sv,Sc of type (1.2) are completely determined by (1.7), (1.8) and (1.9)
respectively (cf. [13]).
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If a 1-form ω has components ωt in U> i.e. if ω=ωidxί in U, then its vertical
lift ωv and its complete lift ωG have respectively components of the form

(1. 12) ωv: (ωi9 0) and ωG: (dωi9 ω*),

i.e.

ωv=ωίdxί and ωG=(dωί)dxί+ωidyz

in n-\U) with respect to the induced coordinates (#Λ, #ft).
If a tensor field F of type (1,1) has components Ff in U, then its vertical lift

Fv and its complete lift FG have respectively components of the form

/ 0 Ov / F / 0
(1.13) (

/ 0 Ov /F/ 0\
: ( and F°:

\Fih 0 / \9FiΛ FiV

in π-\U) with respect to the induced coordinates (#Λ, ̂ /Λ). Thus Λ̂̂  complete lift
of the identity tensor field of V is the identity tensor field in T( V).

Taking account of the definitions of lifts or of their local representations
(1.10), (1.11), (1.12) and (1.13), we obtain the following formulas:

(1.14)
(φω)v=φvωv, (φω)G=φvωG+φcωv,

(X(g)ω)v=Xv®ωv, (X®ώ)G=Xv® ωG+XG® ωv

for any functions φ, ψ, any vector field X and any 1-form ω given in V\

Xvφv=0, XvφG=(Xφ)v

y

(1.15)
X°φv=(Xφ)v, XGφG={Xφ)G

for any function φ and any vector field X given in V;

y ωG(XG)=(ω(X))G

for any vector field X and any 1-form ω given in F;

(1.17) [Xr, Y°]ψ[Xc, YV]=[X, YV,

[X°, YC]=[X, Y}°



ALMOST COMPLEX STRUCTURES

for any two vector fields X and Y given in F, and

FVXV=O,
(1.18)

FVXG=(FX)V, FGXG=(FX)G

for any vector field X and any tensor field F of type (1,1) given in F.
Let there be given two tensor fields F and K of type (1,1) in F. Then we

find directly from the definition (1. 8) of complete lifts

(1.19) FGKG=(FK)G.

Thus, if there are given a tensor field F of type (1,1) and a polynomial Φ(t) of a
variable t, then we get from (1.19)

(1.20) (Φ(F))G=Φ(FG),

for example,

(1.21) (F2+I)C=(F°)2+I, (F*+F)G=(FGy+FG,

where / denotes the identity tensor field of type (1,1) in the corresponding mani-
fold F o r T{V).

For a vector field X and a tensor field F of type (1,1) given in T(V), the
Lie derivative £F of F with respect to X is defined by

x

(1.22) (£F)Ϋ = [X, FΫ]-F[X, Ϋ],
X

Ϋ being an arbitrary vector field in T(V). Thus, putting X=XG, Ϋ=YG and

F=FG, we obtain

(£F°)YO=IXC,FCYO]-FG[X0, YG]
xc

by means of (1.17) and (1.18), where X and Y are vector fields in V and F is a
tensor field of type (1,1) in V. The vector field Y being arbitrary, we find from
the equation above the following formula:

(1.23) £FG=(£F)G

xc x

for any vector field X and any tensor field F of type (1,1) in V. Similarly, we
obtain the following formula:

(1.24) £FC=(£F)V

XV X

for any vector field X and any tensor field F of type (1,1) in F.
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Let there be given a tensor field F of type (1,1) in F. Then its Nijenhuis
tensor N is by definition

(1. 25) N(X, Y)=[FX, FY]-F[FX, Y]-F[X, FY]+F2[X, Y],

X and Y being arbitrary vector fields in F. Taking the complete lifts of both
sides of (1. 25), and taking account of (1. 9), (1.17) and (1.18), we obtain

NC(X°, YC) = [FCXC, FGYG]-FC[FCXC, YC]-FC[XC, FCYC]+(FC)2[XC, Y%

The right hand side of the equation above is nothing but the Nijenhuis tensor
N(X°, YG) of the complete lift F° of F. Thus we have

(1.26) NC=N,

where N denotes the Nijenhuis tensor of FG.
It is easily seen that a tensor field K (vector field, 1-form, tensor field of

higher degree), which is not a function, vanishes identically in F if and only if its
vertical lift Kv or its complete lift K° does so in 7\F). A function φ vanishes
identically in V if and only if its vertical lift φv does so in T(V). A function
φ is a constant in V if and only if its complete lift φ° vanishes identically in
T(V). Let F be a tensor field of type (1,1) in F. Then its vertical lift Fv is of
rank r and its complete lift F° is of rank 2r if and only if F is of rank r.

Let there be given a distribution M in V and suppose that M is determined
by a projection tensor my i.e. that m is a tensor field of type (1,1) in V such that
m2=m and mT{V)~M. The complete lift nf of the tensor field m is a projection
tensor in Γ(F), i.e.

(tnG)2=mG

by virtue of (1. 20). The distribution M° in T( V) determined by the projection
tensor nf is called the complete lift of the distribution M. It is easily verified by
means of (1.18) that the complete lift M° is spanned by all vector fields of the
type Xv and all vector fields of the type Xc, X being an arbitrary vector field
belonging to the distribution M. The distribution M is integrable if and only if
we have

(1.27) l[mX,mY]=Q

for any vector fields X and Y in F, where 1=1—m. Taking the complete lifts of
the both sides in (1. 27), we get

(1. 28) lc[mcXc, mGY°]=0

for any vector fields X and Y in F. The two conditions (1. 27) and (1. 28) being
equivalent to each other, we have
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PROPOSITION 1.1. The complete lift MG of a distribution M given in V is
integrable in T(V) if and only if M is integrable in F.

Let there be given a differentiable transformation

μ: V^V

and denote simply by

μ: T(V)^T(V)

the differential of the transformation μ: V-^-V. For a 1-form ω in V, we define a
1-form μω by

(μω)(X) = ω(μX),

X being an arbitrary vector field in V. If the differential of the transformation
μ: T(V)-^T(V) is denoted by

μ°: T(T(V))->T(T(V)),

then we get the following formulas:

(μXγ=μ°Xv, {μX)c=μcXc,
(1. 29)

μGωv, (μω)G=μcωc

for any vector field X and any 1-form ω given in F. If, for a tensor field F of
type (1,1) given in F, we define a tensor field μF by

(μF)(X)=μ~KF(μX)),

then we obtain

(1. 30) (μF)v = μcFv, (μF)c=μcFG.

The tensor field μF is that induced from the given F by the transformation
μ: V-+V.

§2. Almost complex structures.

Let F be a tensor field of type (1,1) in a differentiable manifold F. Then we
see, taking account of (1. 21), that

if and only if
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Thus we have

PROPOSITION 2.1. The complete lift FG of a tensor field F of type (1,1) given
in V is an almost complex structure in T(V) if and only if so is F in V. (Sato
[8], Yano and Kobayashi [13])

Taking account of (1. 26), we have

PROPOSITION 2. 2. The complete lift FG of an almost complex structure F
given in V is complex analytic in T(V) if and only if F is complex analytic in V.
(Yano and Kobayashi [13])

The equations (1. 23) and (1. 24) imply

PROPOSITION 2. 3. A vector field X is almost analytic in an almost complex
space V with an almost complex structure F if and only if the vertical lift Xv or
the complete lift XG is almost analytic with respect to the almost complex structure
FG in T(V). (Sato [8], Yano and Kobayashi [13])

We have from (1. 30)

PROPOSITION 2.4. In an almost complex space V with an almost complex
structure F, a transformation μ: V—*V preserves the structure F if and only if its
differential map μ\ T(V)-+T(V) preserves FG.

% 3. Λstructures.

Let there be given, in an ̂ -dimensional differentiable manifold V, a non-null
tensor field / of type (1,1) satisfying

(3.1) p+f=0.

We call such a structure / an f-structure of rank r, when the rank of / is con-
stant everywhere in V and is equal to r, r being necessarily even (Yano [11], [12]).
If we put

(3.2) l=-f\ m=f*+I,

then we have

(3.3) l+m=If I2=l, m2=m, lm=ml=0,

fl=lf=f, fm=mf=0.

These equations show that there exist in V two complementary distributions L
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and M corresponding to the projection tensors / and m respectively. When the
rank of f is r, L is r-dimensional and M (n—r)-dimensional.

We have obtained in [2] the following integrability conditions:

(A) A necessary and sufficient condition for the distribution M to be integrable
is that

(3.4) N(nιX,mY)=0

for any vector fields Xand F, Ndenoting the Nijenhuis tensor of the /-structure/.

(B) A necessary and sufficient condition for the distribution L to be integrable
is that

(3. 5) mN(X, F)=0

for any vector fields X and F in F
When the distribution L is integrable, the /-structure / operates as an almost

complex structure / ' in each integral manifold of L. When the distribution L is
integrable and the induced almost complex structure / ' is complex analytic in each
integral manifold of L, we say that the /-structure / is partially integrable.

(C) A necessary and sufficient condition for an /-structure f to be partially
integrable is that

(3. 6) N(IX, IY)=O

for any vector fields X and Y in F
We suppose now that there exist, in each coordinate neighborhood of F, local

coordinates, with respect to which the/-structure / has constant components:

where r==2m is the rank of / and Em denotes the unit mxm matrix. If this is
the case, we say that the /-structure / is integrable.

(D) A necessary and sufficient condition for an /-structure / to be integrable
is that

(3.7) N(X,Y)=0

for any vector fields X and Y in V.
Let F be a tensor field of type (1,1) in a differentiate manifold F. Then we

see, taking account of (1. 21), that the equation
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is equivalent to the equation

The rank of F° is 2r if and only if the rank of F is r. Thus we have

PROPOSITION 3.1. The complete lift F° of a tensor field F of type (1,1) given
in V is an f-structure in T{ V) if and only if so is F in V. When F is of rank r
in V, FG is of rank 2r in T(V). (Yano and Kobayashi [13])

Let / be an /-structure of rank r in V. Then the complete lifts 1° and m°
are complementary projection tensors in T{ V), where / and m are defined by (3. 2).
Thus there exist in T(V) two complementary distributions LF and Mc determined
by lG and m° respectively. The distributions LF and M° are respectively the com-
plete lifts of the distributions L and M. Denote by N and N the Nijenhuis tensors
of / and f° respectively. Then, by means of (1. 9), (1.18) and (1. 26), the con-
ditions (3. 4), (3. 5), (3. 6) and (3. 7) are respectively equivalent to the following
conditions:

(3. 4)' N (mc YG, m° Yc)=0,

(3.5/ mcN(X°, Γ°)=0,

(3.6)' N(PX°fl
cYc)=09

(3.7)' ft(X°, F°)=0,

X and Y being arbitrary vector fields in V. Therefore we obtain

PROPOSITION 3. 2. The complete lift f° of an f-structure f given in V satisfies
one of integrability conditions (A), (B), (C) and (D) in T(V) if and only if the
given f-structure f satisfies the corresponding integrability condition in V.

Let there be given an /-structure / of rank r in V and assume that there
exist s (=n—r) vector fields ζi, f2, ••-,£« spanning the distribution M at each point
of V. Then the set (/, ξx) of an /-structure / and such vector fields ξx is called
a framed /-structure^ (cf. Nakagawa [4]). It was proved in [1] and [4] that there
exists a natural almost complex structure F in the product space VxRs of the
given manifold V and the space Rs of s real variables if there is given a framed
/-structure (/, ξx) in V. When the almost complex structure F is complex analytic
in Vx Rs

y we say that the given framed /-structure (/, ξx) is normal (cf. Ishihara
[1], Nakagawa [4]). It is proved in [1] and [4] that a framed /-structure (/, ξx) is
normal if and only if we have

7) T h e indices x, y, z, u, v r u n over the range {1, 2, ••-, s}.
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(3. 8) SCX, 30=0

for any vector fields X and Y in V,S being a tensor field of type (1,1) defined in
V by the equation

(3. 9) S(X, Y)=N(X, Y)+(Xηx{Y)- Yη*(X)-η%[X, Y]))ξx

for any vector fields X and Y in F, where N is the Nijenhuis tensor of / and
V1* V2y '">VS are s covector fields in V satisfying

(3. 10) η*<JX) = % rf{ξy) = δ*

for any vector field X in F. The tensor field S thus defined is uniquely determined
up to a linear transformation of ξx with constant coefficients.

Let (/, ξx) be a framed /-structure in V. Then the complete lifts f°, ξx° and
the vertical lifts ξx

v form a framed /-structure (/c, <?Λ ξx°) in T(F). The tensor
field S which is constructed from (fG, ξx

v, ξx°) and corresponds to the tensor field S
defined by (3. 9) is given by

§(X, Ϋ)=
(3.Π)

for any vector fields X and Ϋ in Γ(F), ηx being the 5 covector fields satisfying
(3.10) in F, where N is the Nijenhuis tensor of f°. Taking account of (1. 6),
(1. 9), (1.14), (1.15), (1.16), (1.17), (1.18) and (1. 26), we find from (3. 9) and (3.11)
the equation §(XG, YC)=SC(XG, Yc) for any vector fields X and Y in F, i.e.

(3.12) S=S°.

Thus we have

PROPOSITION 3. 3. Let there be given a framed f-structure (/, ξx) in F. Then
(f°, ξχv, ξχ°) is a framed f-structure in T(V). The framed f-structure (fG, ξx

v, ξx°)
is normal in T{ V) if and only if the framed f-structure (/, ξx) is normal in V.

The framed /-structure (/σ, ξ/, ξx

c) in Proposition 3. 3 is called the complete
lift of the given framed /-structure (/, ξx).

§ 4. Frames and Lie groups.

Let there be given, in an ^-dimensional differentiable manifold F, s vector
fields f i, f2, •••, ίs linearly independent at each point of F. Then there exists an
(n—s) -dimensional distribution M which is complementary to the distribution L
spanned by 5 given vector fields ξx. Assuming such a distribution M to be fixed,
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we call the set (ξx, M) of s vector fields ξx and such a distribution M an s-frame
in F.

When an s-frame (ξx, M) is given in F, there exist s covector fields η1, η2, •••, ηs

satisfying

(4.1) V*QSV)=*S, VX(X)=O

for any vector field X belonging to the distribution M Defining a tensor field /
of type (1,1) in T(V) by

(4. 2) 7=ξχv®η^-ξx

c®r]xc

which is of rank 2s everywhere in T( F), and taking account of (1.16), we find
as a consequence of (4.1)

(4.3) 72=

and hence

73+7=0,

and consequently, we see that the tensor field / thus defined and the vector fields

ςχv, ξχG form a framed/-structure (7, ζx

r, ζx

€) of rank 2s in T(F). Thus we have

PROPOSITION 4 .1 . If there is given an s-frame (ξx, M) in F, then there exists
a framed f-structure (/, ξx

v, ζx

G) of rank 2s in T(V), where J is defined by (4. 2).
If n=s, the structure J is an almost complex structure in T(V).

Let ζx, be other s vector fields such that8 )

(4.4) ζy>=alξy,

where the matrix (al) is non-singular. Then for the new w-frame (fyΊ M) the
corresponding s covector fields ηx\ which satisfy

for any vector field X belonging to the distribution M, are given by

where the matrix {α%') is the inverse of (αy

y,). If we put

(4.5) 7 / =f*<W ; ' F -^<W ; ' ί 7 ,

then we find as a consequence of (4. 2)

8) T h e indices x', y\ z\ u', v' r u n over the range {Γ, 2 r, •••, s'}.
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which implies that the condition

is equivalent to the condition that the elements of the matrix {a%) are constant.
Thus we have

PROPOSITION 4. 2. Let there be given in V two s-frames (ζyy M) and (ξr, M)
such that

ζyt ~ ayζy,

the matrix {a%>) being non-singular. Then the two f-structures J and Jf constructed
respectively of (ξy, M) and (ξr, M) following (4. 2) coincide with each other in T( V)
if and only if the elements of the matrix (av

yl) are constant.

If we take account of (1.16) and (1.17), we get as a consequence of (4. 2)

(4. 6)

X being arbitrary vector field in V. Especially, we find

(4.7) 7 f , F = - ? Λ 7ξχc=ξχv

and

(4.8) 7Xv=0, 7X°=O

for any vector field X belonging to the distribution M.

The Nijenhuis tensor H of the tensor field / is by definition

H(x, Y)=UX,JY]-7UX, r]-/[z, JY]+J2[x,

which reduces to

(4. 9) ff(X, Ϋ)=[JX, JΫ]-JUt Ϋ]-7lX, JΫ]-(ξχ

by virtue of (4.3), where X and Ϋ are arbitrary vector fields in Γ(F). If we
take account of (1.14), (1.16), (1.17), (4. 6), (4. 7) and (4. 8), we obtain from (4. 9)
the following formulas for any vector fields X and Y belonging to the distribution
Mm V:
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H(Xr, Yv) = 0,

H{X°, YC)=-(V*([X, Y])ξx)°,

V, ξv

r)=~{η%[X, ξ,Wξχo,

(4.10)
H(X°, f/)=-(^([X, ξ

H{X°, ξυ

ΰ)=-(vx([X, ξ

H(ξyV, £/) = [£„ ξ,]C-2

Taking account of the integrability condition (3. 6), we see that the /-structure
/ is partially integrable if and only if

#(£/, f/)=0, H(ξy

v, I2

σ)=θ, H{ξy

c, ξ.°)=0.

As a direct consequence of (4.10), we see that the condition above is equivalent to
the condition

(4.11) [f»,ej=O.

Thus we have

PROPOSITION 4. 3. The f-structure J defined by (4. 2) is partially integrable in
T(V) if and only if there exist, in each coordinate neighborhood of V, local coor-
dinates (xh) such that

The /-structure / is integrable if and only if we have ^ = 0 , which is equi-
valent, by virtue of (4.10), to the conditions

(4.12) ηx([X, F])=0, if([X,ξv])=0, |&,ej=O

for any vector fields X and Y belonging to the distribution M. It is easily verified
that the conditions (4.12) are equivalent to the conditions

(4.13) <fy*=0, [£,,ej=O,



ALMOST COMPLEX STRUCTURES 15

which are, by virtue of (4.1), equivalent again to the condition that there exists,
in each coordinate neighborhood of V, a system of local coordinates (xh) such that

ζl~ dx* ' *2~ dx2 ' ' " ' ξs dxs '
(4.14)

7ix=dx\ rf=dx\ .-, η'=dxs.

When there exist, in each coordinate neighborhood of V, local coordinates (xh)
satisfying (4. 14), we say that the given s-frame (ξx, M) is integrable. Summing
up, we have

PROPOSITION 4. 4. The f-stucture J defined by (4. 2) is integrable in T( V) if
and only if the given s-frame (ζx, M) is integrable in V.

Taking account of (1.17), (4.2), (4.6), (4.7) and (4.8), we have from the
definition (1. 22) of Lie derivative the following formulas for any vector field X
in V:

(£ 7)Yv=0, (Γ 7)Y°=(vx(lX, YWξ*G,
XV XV

(4.15)
(£ / ) ί / = - [X, ξyY, (£ J )ξvC = {VX{[X, ξyWξ*°,
XV XV

Y being an arbitrary vector field belonging to the distribution M in V. Similarly,
we obtain the following formulas for any vector field X in V:

xc

XG

(4 16)
(JC J)ξyV=-[X, ξy]°
xo

(£ J)ξyc = [X, ξvV- y

Y being an arbitrary vector field belonging to the distribution M in V.

According to the formula (4.15), the condition £ 7 = 0 is equivalent to the
XV

conditions [X, ξy]=0, ηx([X> F])=0 for any vector field Fbelonging to M, which are
equivalent again to the conditions

(4.17) £ξy=0, £V

X=O.

According to the formula (4. 16), the condition £ 7 = 0 is equivalent to the

conditions

[X,ξy]=C/ξx, V*([X,Y])=0

for any vector field Y belonging to M, where Cv

x are constant. This condition is
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equivalent to the conditions

(4.18) £ξv=Cy*ξx, £ηx= -Cy

xη\

Cy

x being constant. Summing up, we have

PROPOSITION 4. 5. Let there be given an s-frame (ξx, M) in V. Then the
vertical lift Xv of a vector field X given in V satisfies the condition

J2/=0,
XV

in T(V) if and only if the conditions

are satisfied in V. The complete lift XG of a vector field X given in V satisfies
the condition

r 7 ,
xc

in T(V) if and only if the conditions
nt —.n χ£ o-x — n x^y

are satisfied with constants Cy

x in F, where J is defined by (4. 2).

As is well known, there exists in a Lie group G n left invariant vector fields
?i, ?2, •••, fn, which form a basis of the Lie algebra of G, if dim G—n. Thus,
according to Proposition 4.1, there exists, in the tangent bundle T(G) of G, an
almost complex structure / corresponding to the ^-frame (£*) (x=l, 2, •••, ή). The
almost complex structure / thus introduced in T(G) does not depend on the choice
of the base (ξx) of the Lie algebra of G because of Proposition 4.2. Taking
account of Proposition 4. 4, we see that the almost complex structure J is complex
analytic in T(G) if and only if the Lie group G is abelian. Thus we have

PROPOSITION 4. 6. There exists canonically an almost complex structure J in
the tangent bundle T{G) of any Lie group G. The almost complex structure J is
complex analytic if and only if the Lie group G is abelian.

According to Proposition 4. 5, we have directly

PROPOSITION 4. 7. For any left invariant vector field X given in a Lie group
G, its complete lift X° is almost analytic in Tip) with respect to the almost com-
plex structure J mentioned in Proposition 4. 6. For a left invariant vector field X
given in G, its vertical lift Xv is almost analytic in T(G) with respect to the
almost complex structure J if and only if X belongs to the center of the Lie
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algebra of G.

As a corollary to Proposition 4. 7, we have

PROPOSITION 4. 8. Let G be an abelian Lie group. Then, for any left in-
variant vector field X in G, its vertical lift Xv and its complete lift Xc are
analytic in T(G) with respect to the complex structure J mentioned in Proposition
4. 6. The tangent bundle T{G) of any abelian Lie group G is a homogeneous com-
plex space.

Given an element a of a Lie group G, we denote by L(ά) and R(a) respec-
tively the left and the right translations of G, which correspond to the element a
of G. Take a base (ζx) of the Lie algebra of G. The n vector fields ξx being left
invariant, we have

L(a)ξx=ξx,
fay=1,2, •••, n)

R(a)ξx=Cx

y(a)ξy

for any element a of G, where Cy

x(ά) are constants determined by a. Thus, taking
account of Proposition 4. 2 and following notations given in § 1, we have

PROPOSITION 4. 9. Let G be a Lie group. Then, for any element a of G, the
corresponding transformations L(a)G and R(ά)° of T(T(G)) leave invariant the
almost complex structure J mentioned in Proposition 4. 6.

§ 5. Almost contact structures and framed /"-structures.

Let there be given, in an ^-dimensional differentiate manifold V, a tensor
field / of type (1.1), a vector field ξ and a covector field η satisfying

(5.1)

for any vector field X in V. Then n is necessarily odd. We call a structure
defined by the set (/, ?, rj) of such tensor fields /, ξ and η an almost contact struc-
ture (c.f. Sasaki [6]). Taking account of (5.1), we see easily that

/3+/=0

and that / is of rank n—1 everywhere in V. Thus the set (/, ξ) is a framed f-
structure in V. Conversely, if there is given an /-structure / of rank n—1 in an
^-dimensional differentiate manifold F, V being assumed to be orientable, then
there exists an almost contact structure (/, ξ, η) in V. When the framed /-
structure (/, ξ) is normal, the given almost contact structure (/, ξ, ή) is said to be
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normal (c.f. Sasaki and Hatakeyama [7]).
If there is given an almost contact structure (/, ξ, η) in V, then the tensor

field S(X, Y) constructed by (3. 9) from the framed /-structure (/, ξ) reduces to

(5. 2) S(X, Y)=N(X, Y)+{Xη{Y)- Yη(X)-η([X, Y\))ξ

for any vector fields X and Y in V, where N denotes the Nijenhuis tensor of /
(c.f. Sasaki and Hatakeyama [7]). The almost contact structure (/, ξ, rj) is normal
if and only if we have S=0 (c.f. Sasaki and Hatakeyama [7]).

If we introduce a tensor field Si of type (0, 2), a tensor field S2 of type (1,1)
and a covector field S3 by the formulas

S^X, Y)=(fX)V(Y)-(fY)v(X)-v([fX, Y] + [X,fY})

={£η)Y-(£η)X,

(5.3)
= (£f)X,

)-V{[ξ, X])

respectively, X and Y being arbitrary vector fields in V, then we see the well
known fact that Si, S2 and S3 vanish identically in V if S vanishes identically in
V (Sasaki and Hatakeyama [7]).

We find directly from (5. 2) and (5. 3) the following formulas:

S(X, Y)=[fX,fY]-f[fX, Y]-f[X,fY]-[X, Y],

S1(X, Y)^-v{[fX, Y] + [X,fY]),
(5.4)

S{X)[ξfX]-m X],

X and Y being arbitrary vector fields satisfying η(X)=0 and η(Y)=0 in V;

S(X,ξ)=f[ί,fX] + [ξ,X],
(5.5)

X being an arbitrary vector field satisfying η(X)=0 in V, and

(5.6) S2(f)=0, S3(f)=0.

Taking account of (1.14), (1.16), (1.18) and (1.19), we find from (5.1)
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(joγ =-/+f(g)/+^(χ)f,

(5.7) fcξv - 0 , fGζ° =0, ηv(f°X)=0, 7}c(fGX)=0,

Vv(tv)=O, vv(ξ°)=l9 yc(ξv) = 1 , ηc(ξ°) =0

for any vector field X in T(V).
If we now define a tensor field / of type (1,1) in T( V) by

(5.8) 7=/ σ +£ τ W r -£W 7 ,

then we find

P=-I

as a direct consequence of (5. 7) and (5. 8). Therefore the tensor field / defined by
(5.8) is an almost complex structure in T(V). The almost complex structure /
has components of the form

with respect to the induced local coordinates (xh,yh) in π-\U)dT(V)f where//,
ξh and η3 denote respectively the components of /, ζ and η with respect to local
coordinates (xh) defined in a coordinate neighborhood U of V (c.f. § 1). Thus we
have

PROPOSITION 5.1. There exists in T{V) an almost complex structure J defined
by (5. 8), if there is given an almost contact structure (/, f, rj) in V. (Tanno [9],
[10])

Taking account of (1.16) and (1.18), we get from (5. 8) the following formulas:

(5.10)

X being an arbitrary vector field in F. Especially, we find

(5.11)

X being an arbitrary vector field satisfying η(X)=0 in V.
The Nijenhuis tensor H of the almost complex structure / is by definition

=tfx, 7Ϋ]-7UX, Ϋ]-7IX, 7Ϋ]-
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for any vector fields X and Ϋ in T(F). Thus, taking account of (1.17), (1.18),
(5.4), (5. 5), (5.7), (5. 8) and (5.11), we obtain the following formulas for any
vector fields X and Y satisfying y(X)=0 and η(Y)=0 in V:

H(XV, FF)=0,

v

y Yv)=(S(Xy Yψ-iS^X, Y)yξ°9

(5.12) _

ξ°) =0.

As a direct consequence of (5.12), we see that the condition //=0 is equivalent
to the conditions

, F)=o, Si(x, y)=o,
(5.13)

S(X, f)=0,

for any vector fields X and Y satisfying η(X)=0 and ^(F)=0 in F. However,
we have S(ξ, ξ)=0 and Si(f, f)=0 because of the skew-symmetry of S and Si.
Thus, taking account of (5. 6), we see that the conditions (5.13) are equivalent to
the conditions

S=0, Si=0, S2=0, S3=0,

which are again equivalent to the condition

S=0,

because S=0 implies Si=0, S2=0, S3=0. Summing up, we have

PROPOSITION 5. 2. The almost complex structure J defined by (5. 8) is complex
analytic in T( V) if and only if the given almost contact structure (/, ξ, η) is
normal in V. (Tanno [10])

Let there be given an almost contact structure (/, ζ, rj) in V. Then the tensor
fields fc,ξv,ξc

r form in T(V) a framed /-structure (f°,ξv,ξ°) of rank 2Λ-2, if
dim V=n. Thus, taking account of Proposition 3. 3, we have
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PROPOSITION 5. 3. Let (/, <?, η) be an almost contact structure in F. Then the
framed f-structure (fG, ξv, ξ°) is normal in T{ V) if and only if the given almost
contact structure (/, ξ, η) is normal in V.

Propositions 5. 2 and 5. 3 imply immediately that the following two conditions
(a) and (b) are equivalent to each other:

(a) The almost complex structure / in T( V) defined by (5. 8) is complex
analytic;

(b) The framed /-structure (fG, ξv, ξG) is normal in T( F), when there is given
an almost contact structure (/, ξ, rj) in F

Given an almost contact structure (/, ζ, rj) in F, a necessary and sufficient
condition for the /-structure / in F to be integrable is that there exist in each
coordinate neighborhood of F local coordinates with respect to which the tensor
fields /, ζ and η have respectively components of the form

(5.14) (//)=

c being a certain function in V and Em denoting the unit mxm matrix, where
m=(n—T)l2, n=άim F On the other hand, we see, by means of Proposition 3. 3,
that a necessary and sufficient condition for the /-structure f° to be integrable in
T(V) is that the /-structure / is integrable in F. Thus we have

PROPOSITION 5. 4. Let (/, ξ, ή) be an almost contact structure in V. Then the
f-structure f° in T( V) is integrable if and only if the given tensor fields /, ξ and
η have respectively components given in (5.14) with respect to a suitable local
coordinates in each coordinate neighborhood of F.

Let μ: V-+V be a differentiate transformation of an ^-dimensional manifold
F with an almost contact structure (/, £, η). Then, taking account of (1. 29) and
(1. 30), we obtain

(5.15) μcϊ==(μf)G-{-(μξ)v(8)(μv)v-(μξ)c®(μr])c,

where / is the almost complex structure defined in T(V) by (5.8). Denoting by
/ / , ξh and fj3 the components of μf, μζ and μη respectively and taking account of
(5. 9), we see that the condition

(5.16) μc7=J

is expressed by
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(5. 17)

with respect to induced local coordinates (xh, yh) in T(V), where / / , ξh and -η3 are
the components of /, ξ and η respectively. From (5.17) it follows

which implies together with η(ξ)=l and (μη)(μξ) = l that

(5.18) ξh=aξ\ Vj=a-ιη3

hold with a non-zero function a. From (5.17) we get

which imply together with (5.18)

(5.19) / / + t f ( 3 ύ τ 1 ) ^ Λ = / Λ

Substracting these two equations, we obtain

which implies da=0. That is, the function a is necessarily a constant c. There-
fore, we find from (5.18) and (5.19)

i.e.

with a constant c. Summing up we have

PROPOSITION 5.5. Let μ: V-*V be a differentiate transformation of a dif-
ferentiable manifold V with an almost contact structure (/, ζ, η). The differential
map μ: T(V)—*T(V) preserves the almost complex structure J defined by (5.8) if
and only if the conditions
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μf=f> μξ=cξ, μη = c~1'η

are satisfied with a non-zero constant c in V. (Tanno [10])

Let X be a vector field in F. Then, taking account of the definition (1. 22)
of Lie derivative and (5. 8), we find the following formulas for any vector field
X'm V:

(£J)Yv=0,
XV

(£ J)YG =((£f)Y)v-((£y)(Y))vζG,
XV X X

(5. 20)

XV*

XV*

J being defined by (5.8) and Y being an arbitrary vector field satisfying ??(F)=0
in F. By a similar device, we get the following formulas for any vector field
Xin F:

(£I)YV =
XG

(£J)YG =
XG

(5. 21)
(£JW =

XG

XG

J being defined by (5. 8) and Y being an arbitrary vector field satisfying η(Y)=0
in F.

As a consequence of (5. 20), we see that the condition
£1=0

XV

is equivalent to the conditions

(5.22) £/=0, £f=0,
XX

From (5. 21) it follows that the condition

£7=0
xc
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is equivalent to the conditions

(5.23) £/=0, £ξ=cξ, £y=-cV,
X X X

c being a constant. Thus we have

PROPOSITION 5. 6. Let there be given an almost contact structure (/, ξ, η) in
V. Then the vertical lift Xv of a vector field X given in V is almost analytic
with respect to the almost complex structure J in T( V), J being the almost complex
structure defined by (5. 8), if and only if the conditions

£/=0, ££=0, £r]=0
X X X

are satisfied in V. (Tanno [10])

PROPOSITION 5. 7. Under the same assumption as in Proposition 5. 6, the com-
plete lift X° of a vector field X is almost analytic with respect to the almost com-
plex structure J in T(V)y if and only if the conditions

£/=0, £ξ=cξ, £η=-cη
X X X

are satisfied with a constant c in V. (Tanno [10])

Proposition 5. 7 is a direct consequence of Proposition 5. 5.
Let there be given a framed /-structure (/, ξx) of rank r in an ̂ -dimensional

differentiate manifold V (c.f. § 3). Then, taking account of the fact m=ζx(g)ηx,
we find from (3. 2) and (3.10)

(5.24) / 2 = - / + f * ( g ) ^ ,

η*(fX)=0, VX(ίy) = δ$

for any vector field X in VP If we put s=n—r and define 5 tensor fields Sa/
of type (0, 2), 5 tensor fields S^y of type (1,1), s2 covector fields S ( 3 ) / and s(s—1)/2
vector fields Sωyz respectively by the following formulas:

S(1)*(X, Y) = (fX)V*(Y)-(fY)η*(X)-η%lfX, Y] + [X,fY]),

Swy(X) = [ζy,fX]-f[ξy,Xl
(5. 25)

S*{X)ξ(*(X))-v*{[ξv, X]),

9) T h e indices x, y, zt u, v r u n over the range {1, 2, •••, s}, where s—n—r.
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where X and Y are arbitrary vector fields in F, then we see that the tensor fields
SαΛ S(2)2/, S(3)/, S^yz vanish identically in V if the tensor field S defined by (3. 9)
vanishes identically in V (c.f. Ishihara [1], Nakagawa [4]).

If we now define a tensor field J of type (1,1) in V by

(5.26) J=fc+ξx

v®ηxv-ξ*c®ηXG,

then we find

by making use of the formulas

f%c=0,

which are direct consequences of (5. 24), where X is an arbitrary vector field in
T(V). Therefore the tensor field 7 defined by (5.26) is an almost complex struc-
ture in T(V). Thus we have

PROPOSITION 5. 8. There exists in T( V) an almost complex structure J defined
by (5. 26) if there is given a framed f-structure (/, ξx) in V.

Denoting by ίί the Nijenhuis tensor of the almost complex structure / defined
by (5.26), we have, by a similar device as that used to get (5.12), formulas
expressing ft in terms of tensor fields S, Sw

x, S(2)y, S ( 3 ) /, Sc^yz. Consequently,
we have

PROPOSITION 5.9. The almost complex structure J in T(V) defined by (5.26)
is complex analytic if and only if the given framed f-structure (/, ξx) is normal in V.

By a similar method as that used to get Propositions 5. 5, 5. 6 and 5.7, we
have respectively

PROPOSITION 5.10. Let μ: V->V be a differentiable transformation of V with
a framed f-structure (/,£*). The differential map μ: T(V)-*T(V) preserves the
almost complex structure J defined by (5. 26) if and only if the conditions
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are satisfied in F, where the matrix (Cy

x) is non-singular and constant and the
matrix (By

x) is the inverse of (Cy

x).

PROPOSITION 5.11. Let there be given a framed f-structure (/, ξx) in V. Then
the vertical lift Xv of a vector field X given in V is almost analytic with respect
to the almost complex structure J defined by (5. 26) in T(V) if and only if the conditions

£/=0,
X

are satisfied in F.

PROPOSITION 5.12. Under the same assumptions as in Proposition 5.11, the
complete lift XG of a vector field X given in V is almost analytic with respect to
the almost complex structure J in T(V) if and only if the conditions

£ / , £ξvvξX9 y yη
XX X

are satisfied with constants Cy

x in V.

Proposition 5.12 is a corollary to Proposition 5.10. Propositions 5.1, 5.2, 5.5,
5.6 and 5.7 are respectively obtained as corollaries to Propositions 5.8, 5.9, 5.10,
5.11 and 5.12.
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