TANGENT BUNDLE OF A MANIFOLD WITH A NON-LINEAR CONNECTION

By Ayako Kandatu

The concept of a non-linear connection was introduced by Friesecke, and was later studied by Kawaguchi and others $[1,2,3,4,5,6]$. On the other hand, the geometry of tangent bundle of a Riemannian manifold has been studied by Sasaki and that of a Finslerian manifold by Yano and Davies [8, 9, 12].

In this paper, we shall study the geometry of the tangent bundle of a manifold with a non-linear connection. As is well known, a linear connection is by definition a mapping of $\mathfrak{X} \times \mathfrak{X}$ into \mathfrak{X}. Then, in $\S 1$ we define a non-linear connection as a mapping ∇ of $\mathfrak{X} \times \mathfrak{X}$ into \mathfrak{X}, where \mathfrak{X} is the totality of differentiable vector fields on the manifold. By studying vector fields on the tangent bundle, we shall show in $\S 2$ that there exists an almost complex structure in the tangent bundle of a manifold with a non-linear connection. In $\S 3$ we introduce the so-called adopted frame which is very useful for our discussions. $\S 4$ is devoted to the study of integrability conditions of a non-linear connection and of the almost complex structure determined by a non-linear connection. Since the tangent bundle of a manifold with a nonlinear connection admits an almost complex structure, we can define almost analytic vector fields on tangent bundle, which will be discussed in $\S 5$.

§1. Non-linear connection.

Let $\mathfrak{F}\left(M^{n}\right)$ be the set of all differentiable functions of class C^{∞} on an n dimensional differentiable manifold M^{n} of class C^{∞} and $\mathfrak{X}\left(M^{n}\right)$ the set of all differentiable vector fields of class C^{∞} on M^{n}.

Let us suppose that there is given a mapping $\nabla: \mathfrak{X}\left(M^{n}\right) \times \mathfrak{X}\left(M^{n}\right) \rightarrow \mathfrak{X}\left(M^{n}\right)$ satisfying the conditions: ${ }^{1)}$
(a) $\nabla_{Y+Z} X=\nabla_{Y} X+\nabla_{Z} X$,
(b) $\nabla_{f Y} X=f \nabla_{Y} X$,
(1.1)
(c) $\nabla_{Y}(f X)=(Y f) X+f \nabla_{Y} X$,
(d) $\quad\left(\nabla_{Y} X\right)_{p}=\left({ }_{\nabla}^{V} X\right)_{p}, \quad$ if $\quad X_{p}=0$,
(e) $\quad\left(\nabla_{Y}(X+\bar{X})\right)_{p}=\left(\nabla_{Y} X\right)_{p}+\left(\nabla_{Y} \bar{X}\right)_{p}, \quad$ if $\quad X_{p}+\bar{X}_{p}=0$,

Recerved January 24, 1966.

1) This definition was suggested by Professor S. Ishihara.
X, \bar{X}, Y and Z being arbitrary elements of $\mathfrak{X}\left(M^{n}\right)$ and f an arbitrary element of $\mathfrak{F}\left(M^{n}\right)$, where X_{p} denotes the value of a vector field X at a point p of M^{n}, and the symbol ∇° appearing in the equation (d) above denotes an arbitrary linear connection in M^{n}. We shall call such a mapping ∇ a non-linear connection in M^{n}. $\left(\dot{V}_{Y} X\right)_{p}$ does not depend on the linear connection $\stackrel{\circ}{V}$ involved if $X_{p}=0$.

As is well known [7], a linear connection D in M^{n} is by definition a mapping $D: \mathfrak{X}\left(M^{n}\right) \times \mathfrak{X}\left(M^{n}\right) \rightarrow \mathfrak{X}\left(M^{n}\right)$ which satisfies
(a) $D_{Y+Z} X=D_{Y} X+D_{Z} X$,
(b) $D_{f Y} X=f D_{Y} X$,
(c) $D_{Y}(f X)=(Y f) X+f D_{Y} X$,
(d) $D_{Y}(X+\bar{X})=D_{Y} X+D_{Y} \bar{X}$,
X, \bar{X}, Y and Z being arbitrary elements of $\mathfrak{X}\left(M^{n}\right)$ and f an arbitrary element of $\mathfrak{F}\left(M^{n}\right)$. Comparing (1.2) with (1.1), we see easily that a linear connection is a non-linear connection.

Now, we shall establish the local representation of a non-linear connection. Let us suppose that a non-linear connection ∇, which satisfies the conditions (1.1), is given in M^{n}. Let U be a coordinate neighbourhood of M^{n} with local coordinates (ξ^{h}) and $e_{i}=\partial / \partial \xi^{2}=\partial_{i}$ the natural frame corresponding to (ξ^{h}). Taking an arbitrary element X of $\mathfrak{X}\left(M^{n}\right)$, we may represent $\nabla_{e_{i}} X$ as

$$
\begin{equation*}
\nabla_{e_{i}} X=\left(\partial_{i} X^{h}+\Gamma_{i}^{h}(\xi, X)\right) e_{h} \tag{1.3}
\end{equation*}
$$

where we have put $X=X^{h} e_{h}$ in U. Then, we get n^{2}-functions $\Gamma_{i}{ }^{h}(\xi, X)$ depending on coordinates ξ^{h} of a point in U and a vector field X. Taking arbitrary elements X and Y of $\mathfrak{X}\left(M^{n}\right)$, we have

$$
\nabla_{F} X=Y^{i} \nabla_{e_{i}} X
$$

because of (a), (b) of (1.1), where we have put $Y=Y^{i} e_{i}$ in U. The equation above then reduces to

$$
(1.4)_{\mathrm{a}} \quad \quad \nabla_{Y} X=Y^{i}\left(\partial_{i} X^{h}+\Gamma_{i}{ }^{h}(\xi, X)\right) e_{h}
$$

Further, $\Gamma_{i}{ }^{h}(\xi, X)$ are functions depending only on the coordinates $\left(\xi^{h}\right)$ of the point p and the value X_{p} of the vector field X at p, that is,

$$
\begin{equation*}
\Gamma_{i}^{h}(\xi, X)_{p}=\Gamma_{i}{ }^{h}\left(\xi, \tilde{X_{1}}, \quad \text { if } \quad X_{p}=\tilde{X_{p}} .\right. \tag{1.4}
\end{equation*}
$$

In fact, if we assume

$$
X_{p}=\tilde{X}_{p}
$$

then, taking account of (1.3), we get

$$
\left(\nabla_{e_{i}}(X-\tilde{X})\right)_{p}=\left(\partial_{i}(X-\tilde{X})^{h}+\Gamma_{i}^{h}(\tilde{\xi}, X)-\Gamma_{i}^{h}(\xi, \tilde{X})\right)_{p} e_{n}
$$

because of (c) and (e) of (1.1). On the other hand, putting $X=X^{h} e_{h}, \tilde{X}=\tilde{X}^{h} e_{h}$ and $X_{p}=X_{p}^{h} e_{h}, \tilde{X}_{p}=\tilde{X}_{p}^{h} e_{h}$, we have from (d) of (1.1)

$$
\left(\nabla_{e_{i}}(X-\tilde{X})\right)_{p}=\left(\partial_{i}\left(X^{h}-\tilde{X}^{n}\right)\right)_{p} e_{h}, \quad \text { if } \quad X_{p}=\tilde{X}_{p} .
$$

Thus the equation above reduces to $(1.4)_{b}$.
Taking an arbitrary constant t, if we put $f=t$ in (c) of (1.1), we have

$$
\nabla_{e_{i}} t X=t \nabla_{e_{i}} X,
$$

which implies together with (1.3)

$$
\begin{equation*}
t \Gamma_{i}^{h}(\xi, X)=\Gamma_{i}^{h}(\xi, t X) \tag{1.4}
\end{equation*}
$$

The condition (1.4) ${ }_{b}$ shows that $\Gamma_{i}{ }^{h}$ are functions defined in the open set $\pi^{-1}(U)$ of the tangent bundle $T\left(M^{n}\right)$ and hence we may represent $\Gamma_{i}{ }^{h}$ as follows

$$
\Gamma_{i}^{h}(\sigma)=\Gamma_{i}^{h}\left(\xi^{k}, v^{k}\right),
$$

where $\left(\xi^{h}\right)$ are coordinates of the point $p=\pi(\sigma)$ belonging to U and $\left(v^{h}\right)$ are components of the tangent vector v with respect to the natural frame $\left(e_{i}\right), \pi$ being the projection $T\left(M^{n}\right) \rightarrow M^{n}$. The condition (1.4) means that the functions $\Gamma_{i}{ }^{h}\left(\xi^{k}, v^{k}\right)$ are homogeneous of degree 1 with respect to n-variables v^{k}. Hereafter in the present paper, we shall denote $\Gamma_{i}{ }^{h}\left(\xi^{k}, v^{k}\right)$ simply by $\Gamma_{i}{ }^{h}(\xi, v)$, which give the value of $\Gamma_{i}{ }^{h}$ at an element σ of $T\left(M^{n}\right)$, where $\pi(\sigma)=p$. The functions $\Gamma_{i}{ }^{h}$ thus defined in $\pi^{-1}(U)$ are called coefficients of the given non-linear connection \bar{V} with respect to local coordinates (ξ^{h}) in U.

Let $U\left(\xi^{i}\right)$ and $U^{\prime}\left(\xi^{i^{\prime}}\right)$ be two intersecting coordinate neighbourhoods of M^{n}, and $\Gamma_{i}{ }^{h}(\xi, v)$ and $\Gamma_{i^{\prime}}{ }^{h^{\prime}}\left(\xi^{\prime}, v^{\prime}\right)$ coefficients of a non-linear connection in U and U^{\prime} respectively. To arbitrary X and Y belonging to \mathfrak{X} there corresponds an element $\nabla_{Y} X$ of \mathfrak{X}, that is,

$$
\nabla_{Y} X=Y^{i}\left(\partial_{i} X^{h}+\Gamma_{i}^{h}(\xi, X)\right) e_{h}=Y^{i^{\prime}}\left(\partial_{i^{\prime}} X^{h^{\prime}}+\Gamma_{i^{\prime}}{ }^{h^{\prime}}\left(\xi^{\prime}, X^{\prime}\right)\right) e_{h^{\prime}}
$$

where we have put $X=X^{i} e_{i}=X^{i^{i}} e_{i^{\prime}}$ and $Y=Y^{i} e_{i}=Y^{i^{i}} e_{i^{\prime}}$. Therefore, we have

$$
\begin{equation*}
\Gamma_{i},^{h^{\prime}}\left(\xi^{\prime}, X^{\prime}\right)=\Gamma_{i}{ }^{h} \frac{\partial \xi^{\imath}}{\partial \xi^{\imath}} \frac{\partial \xi^{h^{\prime}}}{\partial \xi^{h}}-\frac{\partial \xi^{\imath}}{\partial \xi^{\gamma^{\prime}}} \frac{\partial^{2} \xi^{h^{\prime}}}{\partial \xi^{i} \partial \xi^{\jmath}} X^{\nu}, \tag{1.4}
\end{equation*}
$$

which is the so-called transformation law of coefficients $\Gamma_{i}{ }^{h}$ of a non-linear connection corresponding to the coordinate transformation

$$
\xi^{h^{\prime}}=\xi^{h^{\prime}}\left(\xi^{1}, \cdots, \xi^{h}\right)
$$

in $U \cap U^{\prime}$.
Conversely we can show that the functions $\Gamma_{i}{ }^{h}$ defined in each open set $\pi^{-1}(U)$ determine a non-linear connection ∇ globally in M^{n}, if $\Gamma_{i}{ }^{h}$ satisfy the conditions $(1.4)_{\mathrm{a}},(1.4)_{\mathrm{b}},(1.4)_{\mathrm{c}}$ and $(1.4)_{\mathrm{d}}$.

We shall conclude this section by showing that a manifold with a non-linear
connection in our sense is a general affine space of paths and that any general affine space of paths admits naturally a non-linear connection. Let M^{n} be an n dimensional differentiable manifold in which a system of curves called a system of paths is given by a system of ordinary differential equations of the form

$$
\begin{equation*}
\frac{d^{2} \xi^{h}}{d t^{2}}+\Gamma^{h}(\xi, \dot{\xi})=0 ; \quad \dot{\xi}^{h}=\frac{d \xi^{h}}{d t} \tag{1.5}
\end{equation*}
$$

where $\Gamma^{h}(\xi, \dot{\xi})$ are functions of the $2 n$ independent variables ξ^{h} and $\dot{\xi}^{h}$, homogeneous of degree 2 with respect to $\dot{\xi}^{n}$ and t is a scalar parameter determined up to an affine transformation. Such a space is called a general affine space of paths [11].

In our manifold with a non-linear connection, we have

$$
\nabla_{\stackrel{\xi}{\xi}} \dot{\xi}=\left(\frac{d^{2} \xi^{h}}{d t^{2}}+\Gamma_{j}^{h}(\xi, \dot{\xi}) \dot{\xi}^{j}\right) e_{h}
$$

where we have put $\dot{\xi}=\dot{\xi}^{h} e_{n}$ which is the tangent vector of a curve $\xi^{n}=\xi^{n}(t)$ in the manifold. If we put

$$
\begin{equation*}
\Gamma^{h}=\Gamma_{j}{ }^{\prime} \dot{\xi^{\prime}}, \tag{1.6}
\end{equation*}
$$

our manifold becomes a general affine space of paths defined by differential equation (1.5) above, because the functions Γ^{h} defined above are homogeneous functions of degree 2 with respect to ξ^{h}.

Conversely, if there is given such a system of paths, we put

$$
\begin{equation*}
\Gamma_{i}{ }^{h}(\xi, \eta)=\frac{1}{2} \frac{\partial \Gamma^{h}}{\partial \eta^{2}}(\xi, \eta) ; \quad \dot{\xi}^{j}=\eta^{j} \tag{1.7}
\end{equation*}
$$

then these functions $\Gamma_{i}{ }^{h}$ are homogeneous functions of degree 1 with respect to $\dot{\xi}^{h}$. We see easily that such functions define a non-linear connection V globally in M^{n}.

$\S 2$ Vectors and almost complex structure in $\boldsymbol{T}\left(\boldsymbol{M}^{n}\right)$.

Let M^{n} be an n-dimensional differentiable manifold with a non-linear connection, and $T\left(M^{n}\right)$ its tangent bundle. Let U be a coordinate neighbourhood of M^{n} and $\left(\xi^{n}\right)$ local coordinates defined in U. Then, the open set $\pi^{-1}(U)$ is a coordinate neighbourhood of $T\left(M^{n}\right)$ and $\left(\xi^{h}, \eta^{h}\right)$ are local coordinates in $\pi^{-1}(U), \pi$ being the bnndle projection: $T\left(M^{n}\right) \rightarrow M^{n}$ where, for a point σ having local coordinates (ξ^{h}, η^{h}) in $\pi^{-1}(U)$, the point $p=\pi(\sigma)$ has local coordinates (ξ^{h}) in U and $\left(\eta^{h}\right)$ are linear coordinates in the fibre $F_{p}=\pi^{-1}(p)$ with respect to the natural frame $\partial / \partial \xi^{h}$.

To the transformation of local coordinates in $U(\xi) \cap U^{\prime}\left(\xi^{\prime}\right) \neq \phi$

$$
\begin{equation*}
\xi^{h^{\prime}}=\xi^{h^{\prime}}\left(\xi^{1}, \cdots, \xi^{n}\right), \tag{2.1}
\end{equation*}
$$

there corresponds a transformation of local coordinates in $\pi^{-1}(U) \cap \pi^{-1}\left(U^{\prime}\right) \neq \phi$

$$
\begin{equation*}
\xi^{h^{\prime}}=\hat{\xi}^{h^{\prime}}\left(\xi^{1}, \cdots, \xi^{n}\right), \quad \eta^{h^{\prime}}=\eta^{h} \frac{\partial \xi^{h^{\prime}}}{\partial \xi^{h}} \tag{2.2}
\end{equation*}
$$

If we put

$$
\eta^{h^{\prime}}=\xi^{h^{h^{\prime}}}=\xi^{(n+h)^{\prime}}, \quad \eta^{h}=\xi^{h^{*}}=\xi^{n+h},
$$

then we may rewrite (2.2) as

$$
\begin{equation*}
\xi^{A^{\prime}}=\xi^{A^{\prime}}\left(\xi^{B}\right)=\hat{\xi}^{A^{\prime}}\left(\xi, \xi^{*}\right), \tag{2.3}
\end{equation*}
$$

where $A, B, C=1,2, \cdots, 2 n$. The Jacobian matrix of the transformation (2.3) is given by

$$
\left(\frac{\partial \xi^{A^{\prime}}}{\partial \xi^{A}}\right)=\left(\begin{array}{cc}
\frac{\partial \xi^{h^{\prime}}}{\partial \xi^{h}} & 0 \tag{2.4}\\
\frac{\hat{\sigma}^{2} \xi^{h^{\prime}}}{\partial \xi^{h} \partial \xi^{\prime}} \eta^{\prime} & \frac{\partial \xi^{h^{\prime}}}{\partial \xi^{h}}
\end{array}\right)
$$

Because of (2.4) the transformation of components of an arbitrary vector V at a point σ belonging to $\pi^{-1}(U) \cap \pi^{-1}\left(U^{\prime}\right)$ is given by

$$
\binom{V^{h^{\prime}}}{V^{h^{\prime \prime}}}=\binom{\frac{\partial \xi^{h^{\prime}}}{\partial \xi^{h}} V^{h}}{\frac{\partial^{2} \xi^{h^{\prime}}}{\partial \xi^{h} \partial \xi^{\prime}} \eta^{j} V^{h}+\frac{\partial \xi^{h^{\prime}}}{\partial \xi^{h}} V^{h^{*}}}
$$

where we have put $V=V^{A} \partial_{A}=V^{A^{\prime}} \partial_{A^{\prime}}$ at $\sigma \in \pi^{-1}(U) \cap \pi^{-1}\left(U^{\prime}\right)$.
Let v be a vector field on M^{n}. We may consider the following three vector fields ' $X,{ }^{\prime \prime} X$ and \bar{X} of $T\left(M^{n}\right)$:
(a) $\quad X$ has the components $\left({ }^{\prime} X^{4}\right)$ at $\sigma(\xi, \eta)$ of $T\left(M^{n}\right)$, where

$$
\left({ }^{\prime} X^{A}\right)=\binom{v^{h}(\xi)}{-\Gamma_{j}^{h}(\xi, \eta) v^{j}(\xi)},
$$

(b) " X has the components $\left({ }^{\prime \prime} X^{A}\right)$ at $\sigma(\xi, \eta)$ of $T\left(M^{n}\right)$, where

$$
\begin{equation*}
\left(\prime^{\prime} X^{A}\right)=\binom{0}{v^{n}(\xi)}, \tag{2.5}
\end{equation*}
$$

(c) \bar{X} has the components $\left(\bar{X}^{A}\right)$ at $\sigma(\xi, \eta)$ of $T\left(M^{n}\right)$, where

$$
\left(\bar{X}^{A}\right)=\binom{v^{h}(\xi)}{\eta^{j} \partial_{j} v^{h}(\xi)} .
$$

We shall call (a), (b) and (c) the horizontal, vertical and complete lifts of $v[12]$.

Consider the set of values, at a point $\sigma \in T\left(M^{n}\right)$, of horizontal lifts of all vector fields in M^{n}. Obviously, such a set of vectors determines an n-dimensional subspace H_{σ} of tangent space at each point σ of $T\left(M^{n}\right)$. Such a subspace H_{σ} is spanned by a basis $\left(B_{i}\right)$:

$$
\begin{equation*}
\left(B_{i}^{A}\right)=\binom{\delta_{i}^{h}}{-\Gamma_{i}{ }^{h}}, \tag{2.6}
\end{equation*}
$$

where B_{i} is the horizontal lift of local vector field e_{i} on M^{n}. We shall call I_{σ} the horizontal plane at σ.

Consequently we get a distribution

$$
H: \sigma \rightarrow H_{\sigma},
$$

and we shall call H the horizontal plane field or the horizontal distribution.
It is evident that the set of values, at a point $\sigma \in T\left(M^{n}\right)$, of vertical lifts of all vector fields in M^{n} determines the tangent space of fibre F_{p} and such subspace $T_{o}\left(F_{p}\right)$ is spanned by a basis $\left(C_{i^{*}}\right)$:

$$
\begin{equation*}
\left(C_{i^{*}}{ }^{4}\right)=\binom{0}{\hat{\partial}_{i}^{h}}, \tag{2.7}
\end{equation*}
$$

where $C_{i^{*}}$ is the vertical lift of local vector field e_{i} on M^{n}.
Consequently we get a integral distribution $\sigma \rightarrow T_{\sigma}\left(F_{p}\right)$ which is complementary to the horizontal distribution H.

Thus the tangent space $T_{\sigma}\left(T\left(M^{n}\right)\right)$ of $T\left(M^{n}\right)$ at σ is a direct sum:

$$
\begin{equation*}
T_{o}\left(T\left(M^{n}\right)\right)=H_{\sigma}+T_{o}\left(F_{p}\right), \tag{2.8}
\end{equation*}
$$

where $p=\pi(\sigma)$.
Equation (2.8) shows that an arbitrary vector field X of $T\left(M^{v}\right)$ can be written uniquely as follows

$$
\begin{equation*}
X=\prime X+{ }^{\prime \prime} X, \tag{2.9}
\end{equation*}
$$

where ${ }^{\prime} X_{\sigma} \in H_{\sigma}$ and ${ }^{\prime \prime} X_{\sigma} \in T_{\sigma}\left(F_{p}\right)$. A vector field X is said to be horizontal if

$$
\begin{equation*}
X=' X, \tag{2.10}
\end{equation*}
$$

and to be vertical if

$$
\begin{equation*}
X={ }^{\prime \prime} X \tag{2.11}
\end{equation*}
$$

By making use of the functions $\Gamma_{i}{ }^{h}(\xi, \eta)$ defined in each $\pi^{-1}(U) \subset T\left(M^{n}\right)$, which are the coefficients of the given non-linear connection, we may show that such $T\left(M^{n}\right)$ admits an almost complex structure [10]. If we define $(2 n)^{2}$-functions $F_{B}^{A}(\xi, \eta)$ on $T\left(M^{n}\right)$ as follows:

$$
\left(F_{B}^{A}(\xi, \eta)\right)=\left(\begin{array}{cc}
\Gamma_{i}^{h}(\xi, \eta) & \delta_{i}^{h} \tag{2.12}\\
-\delta_{i}^{h}-\Gamma_{i}^{a}(\xi, \eta) \Gamma_{a}^{h}(\xi, \eta) & -\Gamma_{i}^{h}(\xi, \eta)
\end{array}\right)
$$

then we can easily verify that

$$
\begin{equation*}
F_{B}^{A} F_{C}{ }^{B}=-\delta_{C}^{A} . \tag{2.13}
\end{equation*}
$$

Since we have directly from the above definitions

$$
\begin{equation*}
F_{B^{A}} B_{i}^{B}=-C_{i^{*}}^{A} \quad \text { and } \quad F_{B^{A}} C_{i^{*}}^{B}=B_{i^{A}}^{A} \tag{2.14}
\end{equation*}
$$

we can easily verify that the matrix $\left(F_{B}{ }^{A}\right)$ defined in each neighbourhood $\pi^{-1}(U)$ determines globally a tensor field of type $(1,1)$ in $T\left(M^{n}\right)$. The tensor field F thus determined by $\left(F_{B}{ }^{A}\right)$ is an almost complex structure in $T\left(M^{n}\right)$, because of (2.13). Thus we have

Theorem 2.1 [10]. If there is given a non-linear connection in M^{n}, then there exists an almost complex structure F in the tangent bundle $T\left(M^{n}\right)$ of M^{n}.

§ 3. Adapted frame [12].

Let us denote $2 n$-vector fields on $\pi^{-1}(U)$

$$
\begin{equation*}
\left(A_{\alpha}\right)=\left(B_{i}, C_{i^{*}}\right) \quad(\alpha, \beta, \gamma=1, \cdots, 2 n), \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(B_{i}^{A}\right)=\binom{\delta_{i}^{h}}{-\Gamma_{i}^{h}}, \quad\left(C_{i^{*}}{ }^{A}\right)=\binom{0}{\delta_{i}^{h}} . \tag{3.2}
\end{equation*}
$$

Such a system $\left(A_{\alpha}\right)$ is called the adapted frame associated with coordinates (ξ^{n}) defined in U.

We also denote by

$$
\begin{equation*}
\left(A^{\alpha}{ }_{A}\right)=\left(B^{h}{ }_{A}, C^{h^{*}}{ }_{A}\right) \tag{3.3}
\end{equation*}
$$

the matrix inverse to the matrix $\left(B_{\imath}{ }^{4}, C_{i^{*}}{ }^{A}\right)$. Then we have

$$
\begin{equation*}
A_{\alpha}{ }^{4} A^{\alpha}{ }_{B}=\delta_{B}^{A}, \quad A_{\alpha}{ }^{4} A^{\beta} A=\delta_{\alpha}^{\beta} \tag{3.4}
\end{equation*}
$$

or
(3. 5)

$$
\left\{\begin{array}{l}
B_{j}{ }^{A} B^{{ }_{j}}{ }_{B}+C_{j^{*}}{ }^{A} C^{j^{*}}{ }_{B}=\delta_{B}^{A}, \\
B_{j}{ }^{A} C^{h^{*}}{ }_{A}=C_{j^{*}}{ }^{A} B^{h}{ }_{A}=0, \\
B_{j}{ }^{A} B^{h}{ }_{A}=C_{j,}{ }^{A} C^{h^{*}}{ }_{A}=\delta_{j}^{h}
\end{array}\right.
$$

Because of (3.2) and (3.5) we have

$$
\begin{equation*}
\left(B^{h}{ }_{A}\right)=\left(\delta_{i}^{h}, 0\right), \quad\left(C^{h^{*}}{ }_{A}\right)=\left(\Gamma_{i}^{h}, \delta_{i}^{h}\right) \tag{3.6}
\end{equation*}
$$

If components of a tangent vector V of $T\left(M^{n}\right)$ at a point σ are V^{A}, then the components with respect to the adapted frame are $V^{\alpha}=V^{A} A^{\alpha}{ }_{A}$, that is:

$$
V=V^{A} \partial_{A}=V^{\alpha} A_{\alpha} .
$$

We see that the components of any horizontal vector field X are given by

$$
\begin{equation*}
\left(X^{\alpha}\right)=\binom{X^{h}}{0} \tag{3.7}
\end{equation*}
$$

with respect to this frame, and those of any vertical vector field X are given by

$$
\begin{equation*}
\left(X^{\alpha}\right)=\binom{0}{X^{h^{*}}} . \tag{3.8}
\end{equation*}
$$

We also see that the components of any complete lift \bar{X} of a vector field v on M^{n} are given by

$$
\begin{equation*}
\left(\bar{X}^{\alpha}\right)=\binom{v^{h}}{\eta^{j} \hat{V}_{j} v^{h}}, \tag{3.9}
\end{equation*}
$$

where we have put

$$
\hat{\nabla}_{j} v^{h}=\partial_{j} v^{h}+\left(\partial_{j^{*}} \Gamma_{a}{ }^{h}\right) v^{a} .
$$

Since the components of the almost complex structure F with respect to the adapted frame is given by

$$
F_{\beta^{\alpha}}^{\alpha}=A^{\alpha}{ }_{A} F_{B}{ }^{A} A_{\beta}{ }^{B},
$$

we have from (2.12), (3.2) and (3.6)

$$
\left(F_{\beta^{\alpha}}\right)=\left(\begin{array}{cc}
0 & \delta_{j}^{h} \tag{3.10}\\
-\hat{\partial}_{j}^{h} & 0
\end{array}\right) .
$$

Similarly we can find that the so-called Nijenhuis tensor N of the almost complex structure F which is defined in every $\pi^{-1}(U(\xi, \eta))$ by

$$
\begin{equation*}
N_{C B}^{A}=F_{C}^{D}\left(\partial_{D} F_{B}^{A}-\partial_{B} F_{D}^{A}\right)-F_{B}^{D}\left(\partial_{D} F_{C^{A}}--\partial_{C} F_{D}{ }^{A}\right) \tag{3.11}
\end{equation*}
$$

has the following components $N_{i, \beta^{\alpha}}$ with respect to the adapted frame:

$$
\begin{align*}
& N_{r \beta^{\alpha}}=F_{r}{ }^{e}\left(A_{s} F_{\beta^{\alpha}}-A_{\beta} F_{\varepsilon}{ }^{\alpha}\right)-F_{\beta}{ }^{e}\left(A_{s} F_{r}{ }^{\alpha}-A_{r} F_{\varepsilon}{ }^{\alpha}\right) \\
& -\Omega_{\gamma \beta}{ }^{\alpha}-F_{\beta}{ }^{\circ} F_{\nu}{ }^{\alpha} \Omega_{\gamma \gamma^{\nu}}{ }^{\nu}-F_{\gamma}{ }^{\circ} F_{\nu}{ }_{\nu}{ }^{\alpha} \Omega_{\partial \beta^{2}}{ }^{\nu}+F_{\gamma}{ }^{\circ} F_{\beta}{ }^{\sigma} \Omega_{\partial o \delta}{ }^{\alpha}, \tag{3.12}
\end{align*}
$$

where we have put

$$
\begin{equation*}
\Omega_{\gamma \beta}{ }^{\alpha} A_{\alpha}=A_{\gamma} A_{\beta}-A_{\beta} A_{\gamma} \tag{3.13}
\end{equation*}
$$

or

$$
\begin{equation*}
\Omega_{r \beta^{\alpha}}=A^{\alpha}{ }_{A}\left(A_{r} A_{\beta}{ }^{A}-A_{\beta} A_{\gamma}^{A}\right) \tag{3.14}
\end{equation*}
$$

Finally, if X is a tangent vector field on $T\left(M^{n}\right)$, then the components of $\mathcal{C}_{X} F_{C^{B}}$ with respect to the adapted frame are given by

$$
\begin{equation*}
\left(\mathcal{X}_{X} F\right)_{\beta}^{\alpha}=-F_{\beta^{e}} A_{\varepsilon} X^{\alpha}+F_{\varepsilon}^{\alpha} A_{\beta} X^{c}+X^{c}\left(\Omega_{c \delta}{ }^{\alpha} F_{\beta}{ }^{\delta}-\Omega_{\varepsilon \beta}{ }^{\circ} F_{\delta}^{\alpha}{ }^{\alpha}\right) . \tag{3.15}
\end{equation*}
$$

§ 4. Integrability conditions [10, 12].

We shall consider a condition for the horizontal distribution H in $T\left(M^{n}\right)$ to be integrable. As is well known [7], a necessary and sufficient condition for H to be integrable is that

$$
\begin{equation*}
B_{j} B_{i}-B_{i} B_{j}=\Omega_{j i}{ }^{h} B_{h} \tag{4.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\Omega_{j i^{h^{*}}}=0 \tag{4.2}
\end{equation*}
$$

for the local basis $B_{i}=B_{i}{ }^{4} \partial_{A}$ of H. On the other hand, because of (3.2), (3.6) and (3.14) we can show that the non-vanishing components of $\Omega_{\gamma \beta}{ }^{\alpha}$ are written as

$$
\left\{\begin{array}{l}
\Omega_{j i^{*}}=-\Omega_{i j} h^{*}=-R_{j i^{2}}, \tag{4.3}\\
\Omega_{j+i^{*}}=-\Omega_{2 j^{*}}, \\
h^{*}=-\partial_{j *} \Gamma_{i}{ }^{h},
\end{array}\right.
$$

where we have put

$$
\left\{\begin{align*}
R_{j i}{ }^{h} & =\partial_{j} \Gamma_{i}^{h}-\partial_{i} \Gamma_{j}^{h}-\Gamma_{j}^{k} \partial_{k^{*}} \Gamma_{i}^{h}+\Gamma_{i}^{k} \partial_{k *} \Gamma_{j}^{h}, \tag{4.4}\\
\partial_{j} & =\partial / \partial \xi^{j} \quad \text { and } \quad \partial_{j^{*}}=\partial / \partial \eta^{j} .
\end{align*}\right.
$$

Thus we have
Theorem 4.1. A necessary and sufficient condition for the horizontal distribution H in $T\left(M^{n}\right)$ to be integrable is

$$
R_{j i}{ }^{h}=0 .
$$

An almost complex structure is said to be integrable if the Nijenhuis tensor vanishes identically. Making use of (3.2), (3.6), (3.10), (3.12) and (4.3), the components of $N_{r \beta^{\alpha}}$ may be written as

$$
\left\{\begin{array}{l}
N_{j i}=-N_{j i^{2}} h^{*}=-N_{j i i^{*}}=-N_{j * i^{*}}=T_{j i}{ }^{h}, \tag{4.5}\\
N_{j i^{*}}=N_{j i i^{*}}=N_{j i}{ }^{h^{*}}=-N_{j * i} i^{*^{*}}=R_{j i},
\end{array}\right.
$$

where we have put

$$
\begin{equation*}
T_{j i^{h}}{ }^{h}=\partial_{i^{+}} \Gamma_{j^{h}}{ }^{h}-\partial_{j} \cdot \Gamma_{i^{h}} . \tag{4.6}
\end{equation*}
$$

Thus we get
Theorem 4.2. A necessary and sufficient condition for the almost complex structure defined by (2.12) to be integrable is that

$$
\begin{equation*}
T_{j i} i^{h}=0 \quad \text { and } \quad R_{j i}{ }^{h}=0 . \tag{4.7}
\end{equation*}
$$

If we put
(4. 8)

$$
\frac{\partial I_{j}^{\prime}{ }^{h}}{\partial \eta^{2}}=\Gamma_{j}{ }^{h}{ }_{\imath}
$$

then the conditions (4.7) can be replaced by

$$
\begin{equation*}
\Gamma_{j}{ }^{h}{ }_{\imath}=\Gamma_{i}{ }^{h}, \quad \text { and } \quad R_{j i a}{ }^{h} \eta^{a}=0, \tag{4.9}
\end{equation*}
$$

where we have put
85. Almost analytic vector fields [10, 12].

Since $T\left(M^{n}\right)$ with a non-linear connection admits an almost complx structure, we may discuss almost analytic vector fields on $T\left(M^{n}\right)$.

Let X be an arbitrary vector field on $T\left(M^{n}\right)$. By the use of (3.15), (3. 2), (3. 6) and (4.3), we have, for various types of components $(\underset{X}{\mathcal{S}} F)_{\beta^{\alpha}}$
or
where we have put

Let X be an arbitrary horizontal vector field on $T\left(M^{n}\right)$. The components $X^{h^{*}}$ being
zero, we have

$$
\left\{\begin{array}{l}
(\underset{X}{\mathcal{L}} F)_{j^{h}}=-(\underset{X}{\mathcal{L}} F)_{\jmath^{*}}^{h^{*}}=\partial_{j^{*}} X^{h}+X^{a} R_{a \jmath}^{h}=\nabla_{\jmath *} X^{h}+X^{a} R_{a j}^{h} \tag{5.4}\\
\left(\mathcal{X}_{X} F\right)_{\jmath^{*}}=(\underset{X}{\mathcal{L}} F)_{j^{*}}=-\left(\partial_{\jmath} X^{h}-\Gamma_{j}^{a} \partial_{a^{*}} X^{h}+X^{a} \partial_{\jmath^{*}} \Gamma_{a}^{h}\right)=-\hat{\nabla}_{\jmath} X^{h}
\end{array}\right.
$$

Especially, if X is an arbitrary horizontal lift of a vector field v on M^{n}, then (5.1) are replaced by

$$
\left\{\begin{array}{l}
\text { (a) } \quad(\underset{X}{\mathcal{L}} F)_{j}^{h}=-(\underset{X}{\mathcal{L}} F)_{J^{*}}^{h^{*}}=v^{a} R_{a j} j^{h} \tag{5.5}\\
\text { (b) } \quad\left(\underset{X}{\mathcal{X}_{X}} F\right)_{j^{h^{*}}=(\underset{X}{\mathcal{L}} F)_{J^{*}}=-\left(\partial_{j} v^{h}+v^{a} \partial_{J^{*}} I_{a}^{\prime}\right)} .
\end{array}\right.
$$

Let X be an arbitrary vertical vector field on $T\left(M^{n}\right)$. The components X^{h} being zero, we have

Especially, if X is an arbitrary vertical lift of a vector field v on M^{n}, then (5. 6) are replaced by

$$
\left\{\begin{array}{l}
\text { (a) } \quad\left(\mathcal{X}_{X} F\right)_{j}^{h}=-\left(\underset{X}{\left.\mathcal{S}_{X} F\right)_{j^{*}} h^{*}=\partial_{j} v^{h}+v^{a} \partial_{a *} I_{j}^{h},}\right. \tag{5.7}\\
\text { (b) } \quad\left(\mathcal{X}_{X} F\right)_{j}^{h^{*}}=\left(\mathcal{X}_{X} F\right)_{J^{*}}=0 .
\end{array}\right.
$$

Thus, we have from (5.4) and (5.5)
Theorem 5.1. In a tangent bundle with a non-linear connection a horizontal vector field X is almost analytic if and only if

$$
\begin{equation*}
\hat{\nabla}_{\jmath} X^{h}=0 \quad \text { and } \quad \nabla_{j *} X^{h}+X^{k} R_{k j}^{h}=0 \tag{5.8}
\end{equation*}
$$

Especially, if X is a horizontal lift of a vector field v on M^{n}, then (5.8) is replaced by

$$
\begin{equation*}
\hat{\nabla}_{j} v^{h}=\partial_{j} v^{h}+\Gamma_{a}{ }_{j} v^{a}=0 \quad \text { and } \quad v^{k} R_{k j}{ }^{h}=0 \tag{5.9}
\end{equation*}
$$

where

$$
\Gamma_{j}^{h_{\imath}}=\frac{\partial \Gamma_{j}{ }^{h}}{\partial \eta^{\imath}}
$$

We have from (5.6) and (5.7)
THEOREM 5.2. In a tangent bundle with a non-linear connection a vertical vector field X is almost analytic if and only if

$$
\begin{equation*}
\nabla_{\jmath} X^{h^{*}}=0 \quad \text { and } \quad \nabla_{j *} X^{h^{*}}=0 \tag{5.10}
\end{equation*}
$$

Especially, if X is a vertical lift of a vector field v on M^{n}, then (5.8) is replaced by

$$
\begin{equation*}
\nabla_{j} v^{h}=\partial_{j} v^{h}+\Gamma_{j}{ }^{h}{ }_{a} v^{a}=0 . \tag{5.11}
\end{equation*}
$$

Let X be an arbitrary complete lift of a vector field v on M^{n}, then we have from (3.9) and (5.1)
where we have put

$$
\begin{gather*}
\mathcal{L}_{v} \Gamma_{j}{ }^{h}{ }_{\imath}=\nabla_{j} \hat{\nabla}_{i} v^{h}+v^{a} R_{a j i^{h}}+\eta^{a}\left(\nabla_{a} v^{k}\right) \partial_{k{ }^{k}} \Gamma_{j}{ }^{h}{ }_{\imath}, \tag{5.13}\\
\nabla_{j} v^{h}=\hat{\partial}_{j} v^{h}+\Gamma_{j}{ }^{h}{ }_{a} v^{a}, \quad \hat{\nabla}_{j} v^{h}=\partial_{j} v^{h}+\Gamma_{a}{ }^{h}{ }_{j} v^{a} \quad \text { and } \quad \Gamma_{j}{ }^{h_{\imath}}=\frac{\partial \Gamma_{j}{ }^{h}}{\partial \eta^{2}} \quad[11] .
\end{gather*}
$$

Thus, we get from (5.12)
Theorem 5.3. In a tangent bundle $T\left(M^{n}\right)$ with a non-linear connection, a complete lift X of a vector field v on M^{n} is almost analytic if and only if

$$
\left(\underset{v}{\left.\left(\Omega_{j}{ }_{i}\right)\right) \eta^{\imath}=0 .}\right.
$$

Bibliography

[1] Bortollotti, E., Differential invarıants of direction and point displacement. Annals of Math. 32 (1931), 361-377.
[2] Friesecke, H., Vektorübertragung, Richtungsübertragung, Metrik. Math. Annalen 93 (1925), 101-118.
[3] Kawaguchi, A., On the theory of non-linear connection, I. Tensor, N.S., 2 (1952), 123-142.
[4] -, II. Convegno internazıonale di Geom. Diff. (1953), 17-32.
[5] -, II. Tensor, N.S., 6 (1956), 165-199.
[6] Mikami, M., On the theory of non-linear direction displacements. Jap. Journ. of Math. 17 (1941), 541-568.
[7] Nomizu, K., Lie group and differential geometry. Math. Soc. of Japan (1956).
[8] Sasaki, S., On the dfifferential geometry of tangent bundles of Riemannian manifolds, I. Tôhoku Math. Journ. 10 (1958), 338-354.
[9] , II. Tôhoku Math. Journ. 14 (1962), 146-155.
[10] Tachibana, S., and M. Okumura, On the almost complex structure of tangent bundles of Riemannian spaces. Tôhoku Math. Journ. 14 (1962), 156-161.
[11] Yano, K., The theory of Lie derivatives and its applications. Amsterdam (1957).
[12] Yano, K., and E. T. Davies, On the tangent bundles of Finsler and Riemannian manifolds. Rendiconti del Circ. Mat. di Palermo 12 (1963), 1-18.

Kitasato University.

