TANGENT BUNDLE OF A MANIFOLD WITH
A NON-LINEAR CONNECTION

By Avako KANDATU

The concept of a non-linear connection was introduced by Friesecke, and was
later studied by Kawaguchi and others [1,2,3,4,5,6]. On the other hand, the
geometry of tangent bundle of a Riemannian manifold has been studied by Sasaki
and that of a Finslerian manifold by Yano and Davies [8, 9, 12].

In this paper, we shall study the geometry of the tangent bundle of a manifold
with a non-linear connection. As is well known, a linear connection is by definition
a mapping of ¥x¥ into ¥. Then, in §1 we define a non-linear connection as a
mapping 7 of ¥x¥ into ¥, where ¥ is the totality of differentiable vector fields on
the manifold. By studying vector fields on the tangent bundle, we shall show in
§ 2 that there exists an almost complex structure in the tangent bundle of a mani-
fold with a non-linear connection. In §3 we introduce the so-called adopted frame
which is very useful for our discussions. §4 is devoted to the study of integrability
conditions of a non-linear connection and of the almost complex structure determined
by a non-linear connection. Since the tangent bundle of a manifold with a non-
linear connection admits an almost complex structure, we can define almost analytic
vector fields on tangent bundle, which will be discussed in §5.

§1. Non-linear connection.

Let ¥(M™) be the set of all differentiable functions of class C* on an #-
dimensional differentiable manifold M™ of class C> and X(M*) the set of all differ-
entiable vector fields of class C> on M™.

Let us suppose that there is given a mapping F: ¥(M") x X(M™)—X(M™) satis-
fying the conditions:?

@) VyizX=VyX+V:X,
(b) FrX=fVyX,
(L1 © Te(fX)=(Y)X+fVrX,
@ TrX)o=0rX) if X,=0,
© CrX+Xo=rX)p+rX)p i Xp+Xp=0,
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1) This definition was suggested by Professor S. Ishihara.
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X, X, Y and Z being arbitrary elements of ¥(M*) and f an arbitrary element of
F(M™), where X, denotes the value of a vector field X at a point p of M=, and
the symbol F appearing in the equation (d) above denotes an arbitrary linear con-
nection in M" We shall call such a mapping V a non-linear connection in Mn™.
(17YX);, does not depend on the linear connection F involved if X,=0.

As is well known [7], a linear connection D in M is by definition a mapping
D: X(M™) x ¥(M™)—X(M™) which satisfies

@) DyzX=DyX+D:X,
(b) DrrX=fDrX,

© Dy(fX)=(Yf)X+fDrX,
(d) Dy(X+X)=DyX+DrX,

1.2

X, X, Y and Z being arbitrary elements of ¥(}/") and f an arbitrary element of
FM™). Comparing (1.2) with (1.1), we see easily that a linear connection is a
non-linear connection.

Now, we shall establish the local representation of a non-linear connection. Let
us suppose that a non-linear connection F, which satisfies the conditions (1. 1), is
given in M. Let U be a coordinate neighbourhood of Af* with local coordinates
(6" and e;=0/06*=0; the natural frame corresponding to (£*). Taking an arbitrary
element X of ¥(M"), we may represent V. X as

1.3) Ve X=(0:X"+1I'"(, X))en

where we have put X=X"e, in U. Then, we get n?-functions I";*(§, X) depending
on coordinates & of a point in U and a vector field X. Taking arbitrary elements
X and Y of ¥(M™), we have

PyX=YieX

because of (a), (b) of (1.1), where we have put Y= Y%, in U. The equation above
then reduces to

1. 4). VyX=Y@:X"+T'M¢& X))en.

Further, I'/*(&, X) are functions depending only on the coordinates (&%) of the point
p and the value X, of the vector field X at p, that is,

(1. 4) g X)p=IE X)y i Xp=X,.

In fact, if we assume
Xpsip;

then, taking account of (1. 3), we get
(7o X—X))p= @0 X— X+ T'(&, X)— T'ME, X))pen
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because of (c) and (e)~of (1.1). On the other hand, putting X=X"es, X=Xrey,
and Xp=X%en, Xp=Xbher, we have from (d) of (1. 1)

Vel X—X))p= (@0 X" —XM)pen,  if Xp=2X,.

Thus the equation above reduces to (1. 4)s.
Taking an arbitrary constant ¢, if we put f=¢ in (c) of (1. 1), we have

VeitX:tVeiX,
which implies together with (1. 3)
1. 4. trE, X)=I""¢§, tX).

The condition (1.4), shows that I';» are functions defined in the open set
7=}(U) of the tangent bundle 7'(}M*) and hence we may represent I';* as follows

I o)y=1"E" Y,

where (&%) are coordinates of the point p=rn(s) belonging to U and (»*) are components
of the tangent vector » with respect to the natural frame (e;), = being the pro-
jection T(M™—Mn. The condition (1.4). means that the functions I'/*(&% v*) are
homogeneous of degree 1 with respect to nm-variables v*. Hereafter in the present
paper, we shall denote I';*(&,v*) simply by I':*(&,v), which give the value of I';*
at an element ¢ of T'(M?"), where n(6)=p. The functions I';* thus defined in =~(U)
are called coefficients of the given non-linear comnection V with respect to local
coordinates (¢*) in U.

Let U() and U’(§¥) be two intersecting coordinate neighbourhoods of A7,
and I';"(&,v) and [',,”(&,v’) coefficients of a non-linear connection in U and U’ re-
spectively. To arbitrary X and Y belonging to X there corresponds an element
FyX of ¥, that is,

VyX=Y 0. X"+ 1§ X))en=Y V0, XV 41", 7 (&, X"))ew,
where we have put X=X’e;=X%e,; and Y=Y'’e;=Y?%e¢;. Therefore, we have

(1. 4)(1 ['i,h’(g:/’ X/)=th‘a_€l, o0& ___a_gj_ azsn' X,’

which is the so-called transformation law of coefficients I';)* of a non-linear con-
nection corresponding to the coordinate transformation

Er=£M(&, -, 8

in UnU".

Conversely we can show that the functions I';* defined in each open set z—(U)
determine a non-linear connection F globally in A=, if I';» satisfy the conditions
1. 4., 1. 4, 1. 4). and (1. 4)a.

We shall conclude this section by showing that a manifold with a non-linear
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connection in our sense is a general affine space of paths and that any general
affine space of paths admits naturally a non-linear connection. Let M™ be an #-
dimensional differentiable manifold in which a system of curves called a system of
paths is given by a system of ordinary differential equations of the form

d2€h

. . h
o e =0, =

1.5

where I™(g, é) are functions of the 2» independent variables & and S"L, homogene-

ous of degree 2 with respect to & and ¢ is a scalar parameter determined up to an
affine transformation. Such a space is called a general affine space of paths [11].
In our manifold with a non-linear connection, we have

. 2£h ..

Vee= (d—i +I(E &) )eh,
dt

where we have put &= £, which is the tangent vector of a curve £*=£"() in the

manifold. If we put

(1. 6) =TI 8,

our manifold becomes a general affine space of paths defined by differential equation
(1. 5) above, because the functions 7™ defined above are homogeneous functions
of degree 2 with respect to &

Conversely, if there is given such a system of paths, we put

1 orn .
3 — = . )=

1.7 I'M&, ) 7 oy &n); &=y,
ghen these functions 7';* are homogeneous functions of degree 1 with respect to
&r. We see easily that such functions define a non-linear connection F globally in

Mr.

§2. Vectors and almost complex structure in 7'(M?").

Let M» be an #m-dimensional differentiable manifold with a non-linear con-
nection, and T(M*) its tangent bundle. Let U be a coordinate neighbourhood of
Mm and (é*) local coordinates defined in U. Then, the open set =~%(U) is a coordi-
nate neighbourhood of T'(M") and (&",7") are local coordinates in #~%U), = being
the bnndle projection: T(M™)—Mn where, for a point ¢ having local coordinates
(™ 9™ in =X U), the point p=nr(s) has local coordinates (£*) in U and (y*) are
linear coordinates in the fibre Fp,=x"'(p) with respect to the natural frame 9/9&".

To the transformation of local coordinates in UE)N U'(§)x¢

@0 EV=EM(&, -, £7),

there corresponds a transformation of local coordinates in z=(U)N="Y(U")*¢



TANGENT BUNDLE OF A MANIFOLD 263

a{:h'

o0&

2. 2) En —EN (gL ... £, ="

If we put

h o *__ A(ndh)! __FR*__ =nil
7 _Sh — £&n h)’ 77}1,__§h =¢nt L’

then we may rewrite (2. 2) as
(2.3) =84 (EB)=E4(¢, &%),

where A, B,C=1,2,---,2n. The Jacobian matrix of the transformation (2.3) is
given by

den
- 0
Py o&"
@. 4) (__> _
asA aZEh ag‘h

Because of (2. 4) the transformation of components of an arbitrary vector V at a
point ¢ belonging to ==X (U)N="*(U’) is given by

aéh’ .
(V’V o v
Vh">= o oEn . ’
Wﬂ] Vi af” v

where we have put V=V40,=1V40, at ccx~}(U)N="Y(U’).
Let v be a vector field on M». We may consider the following threc veclor
fields /X, /X and X of T(M™):

(@) ’'X has the components ("X4) at a(§,7) of T(M™), where
oME)

—Ip, n)vf(5)>’

(b) X has the components ("’X4) at o(&, 5) of T(M™), where

0
("X4)= < )
v™(§)

(¢) X has the components (X4) at a(&,7) of T(M™), where

(’XA>=<

2.5)

(&) )
pid (&)
We shall call (a), (b) and (c) the horizontal, vertical and complete lifts of » [12].

(X9= (
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Consider the set of values, at a point ee T(M™), of horizontal lifts of all vector
fields in M= Obviously, such a set of vectors determines an n-dimensional sub-
space H, of tangent space at each point ¢ of T(M™). Such a subspace H, is spanned
by a basis (B:):

&
@ 6) (Bw>=< )
—I

where B; is the horizontal lift of local vector field ¢; on M™ We shall call 77, the

horizontal plane at o.
Consequently we get a distribution

H. 0—H,,

and we shall call H the horizontal plane field or the horizontal distribution.

It is evident that the set of values, at a point oe T'(M™), of vertical lifts of all
vector fields in M determines the tangent space of fibre F, and such subspace
T.(Fp) is spanned by a basis (C;.):

0
@7 (cw:( )
&

where C;. is the vertical lift of local vector field ¢; on M™.

Consequently we get a integral distribution ¢—7,(F},) which is complementary
to the horizontal distribution H.

Thus the tangent space T,(T(M™) of T(M™) at ¢ is a direct sum:

2.8 TA(T(M™)=Ho+ To(F),

where p=n(o).
Equation (2. 8) shows that an arbitrary vector field X of T'(M™) can be written
uniquely as follows

2.9 X="X+"X,

where 'X,eH, and ""X,eT,(Fp). A vector field X is said to be horizontal if
(2. 10) X=X,

and to be vertical if

(2.11) X="X.

By making use of the functions I'5*(¢, ) defined in each =~Y(U)c T'(M™), which
are the coefficients of the given non-linear connection, we may show that such
T(M™) admits an almost complex structure [10]. If we define (2%)*-functions
Fg4(&, 1) on T(M™) as follows:
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.12 O )
—h—1"%(&, )™, ) —I'*¢, )

then we can easily verify that

(2.13) FpAFoB= —34.

Since we have directly from the above definitions
2. 14) Fg4B;=—C;4 and FpiC;8= B,

we can easily verify that the matrix (Fp4) defined in each neighbourhood =='(U)
determines globally a tensor field of type (1,1) in T(M™). The tensor field F thus
determined by (Fs4) is an almost complex structure in 7'(M™), because of (2. 13).
Thus we have

THEOREM 2.1 [10]. If there is given a non-linear connection in M?, then there
exists an almost complex structure F in the tangent bundle T(M™) of M™.

§3. Adapted frame [12].

Let us denote 2n-vector fields on z==(U)

(3° 1) (Aa):(Biv Cz*) (0.’, 487 7:1» R 2”):
where
o 0
(.2 (BiA)=< ) (sz( )
= on

Such a system (A,) is called the adapted frame associated with coordinates (&%)

defined in U.
We also denote by

3.3 (A" )= (B"4,C"4)
the matrix inverse to the matrix (B4, C;»4). Then we have
3.9 AAA =08,  AAAPs=0"
or
BiABig+CpAC"3=04,
(3.5) BACH 4 =C,AB"4=0,
BiAB" 4=CpACY 4=0".
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Because of (3.2) and (3.5) we have
3. 6) (B"4)=(0% 0), C")=U"",

If components of a tangent vector V of 7'(M") at a point ¢ are V4, then the
components with respect to the adapted frame are Vo= V1A=, that is:

V=T40,4=V*A..

We see that the components of any horizontal vector field X are given by

h
3.7 (X ")=< >
0
with respect to this frame, and those of any vertical vector field X are given by
0
3.8 X “)=< >
X

We also see that the components of any complete lift X of a vector field » on Mn»
are given by

- o"
3.9 (X")=< A >,
7V jo*
where we have put
ﬁﬂ)hz 00"+ (0, Mve.

Since the components of the almost complex structure F' with respect to the adapted
frame is given by

F‘Sa':AaAFBAA‘sB,
we have from (2. 12), (3. 2) and (3. 6)
0 i
3. 10) (F,a“):< )
- 0
Similarly we can find that the so-called Nijenhuis tensor N of the almost complex
structure F° which is defined in every =—*(U(§, 5)) by
3.11) Nept=F¢P(0pFpt—0pFp4)— FpP(0pFo*—0cFpt)
has the following components N,;* with respect to the adapted frame:
Nyg = F (AFp — AF) — Fe(Adr*— A, )

3.12)
— 0 — Fg 0,5 — F B Q55"+ F P Fyr 2.,
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where we have put

3.13) .QT@“AQZATA,9~A§Ar
or
3.14) .Qrﬁ“: A“4(A A —AﬂArA)n

Finally, if X is a tangent vector field on 7(M™"), then the components of ,chB
with respect to the adapted frame are given by

(3. 15) (£F)pa= —Fp‘”’A;X"—{‘FsaA‘aXé"I‘—Xs(Qé,;“Fﬂ’s—.QEﬁsFat‘).

§4. Integrability conditions [10, 12].

We shall consider a condition for the horizontal distribution A in T(M?*) to be
integrable. As is well known [7], a necessary and sufficient condition for H to be
integrable is that

“.1) B;B;—B:B,=2;"B:
or
4. 2) 2;7=0

for the local basis B;=2B:404 of H. On the other hand, because of (3. 2), (3. 6) and
(3. 14) we can show that the non-vanishing components of 2,5* are written as

Q;i"=—0; "= —R;",

4. 3)
Qpi'=—80,,=—0,1",
where we have put

Rji"zajl“z-’b—ail’jh—1’]-"8,“11”—}—[’ikﬁk*l"j’”,
4. 4)

0,=0/0¢’ and 0,=4d/dy’.

Thus we have

THEOREM 4. 1. A mnecessary and sufficient condition for the horizontal distri-
bution H in T(M™) to be integrable is

it =0.

An almost complex structure is said to be integrable if the Nijenhuis tensor
vanishes identically. Making use of (3. 2), (3. 6), (3. 10), (3.12) and (4. 3), the com-
ponents of N,;* may be written as

Njit= — Ny = — Njiu* = — Nyuo= T} ",
4.5)

thithjith:Njih'= - jciah':Rjih’,
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where we have put
4. 6) Tyt =0, v —8,.0 ;.

Thus we get

THEOREM 4. 2. A necessary and sufficient condition for the almost complex
structure defined by (2. 12) to be integrable is that

(4. 7) Tjih=0 and Rjih:O.
If we put
a['jh o
A.8) =l

then the conditions (4. 7) can be replaced by
(4. 9) Fj’%:[’ihj and Rjia,hﬂa’z s
where we have put

(4 10) Rkjih — (ak[‘jhi _ ['kmam*lvjhz) —_ (aj['kni — ijam:lwkhz) + [vkhm] vjmi - Ivjnmlvkml.

§5. Almost analytic vector fields [10, 12].

Since 7'(M™) with a non-linear connection admits an almost complx structure,
we may discuss almost analytic vector fields on T°(M™).

Let X be an arbitrary vector field on 7°(M™). By the use of (3.15), (3.2), (3.6)
and (4. 3), we have, for various types of components (,AC’F),QH

) {(a) (LF)r=—(LF),4 =0, X -0, X0 — T 200 X"+ X 00l + X Raf
(

) (LF)t=(LF)" = —0,X T #00 X" = X0, o +0,. X",
or

@ (LF)'=—(LF)=0 X"+, X"+ X R.;",
(5.2) x x

) (,;:F)ﬁh=(§F>jh*=—ﬁfxwrvpxm,

where we have put
ViXe=0,,Xe,

. 3) V,Xe=3,Xa—1";990. X =+ X000,
P,X0=0,X0—1"00, X} X0,y

Let X be an arbitrary horizontal vector field on 7(M™). The components X** being
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zero, we have
6.4 { (§F)jh= —(ogF)],’L*:3]-*X"+X“Ra/‘=V]*X" +XoRy s,
(%F),,h=(§F)jh’= —(0,X"—T %95 X"+ X0,. )= —F , X"

Especially, if X is an arbitrary horizontal lift of a vector field » on M®, then (5.1)
are replaced by

{(a) (LE)=—(LE) M =0Ry ",
(5. 5) x x

(b) (,gF)/‘*——-(g F)lv= — (00" 4020, '4").

Let X be an arbitrary vertical vector field on 7(M%). The components X" being
zero, we have

{(a) <§ F)jr=— (£ ) =0, X" =100 X"+ X ¥ 00"t =V , X"
(
(b) (£F)p"=(£F)j"*=3]*X"*=I7]*X’“.

Especially, if X is an arbitrary vertical lift of a vector field » on M», then (5. 6)
are replaced by

@ (LI)f=—(LF)" =0p"+v"0a] "},
6.7 X X

B (LE)M=(LF),"=0.
X pe
Thus, we have from (5. 4) and (5. 5)

THEOREM 5.1. In a tangent bundle with a non-linear connection a hovizontul
vector field X is almost analytic if and only if
. 8) P,X"=0 and 7, X"+ X R"=0.
Especially, if X is a horvizontal lift of a vector field v on M™, then (5. 8) is replaced
by

5.9 ﬁjvh: ajl)h —|—Fahﬂ)a =0 and v*R;*=0,
where
. ol
Tho— J
I= 5

We have from (5. 6) and (5. 7)

THEOREM 5. 2. In a tangent bundle with a non-linear commection a vertical
vector field X is almost analytic if and only if

(5. 10) V,X"=0 and V;X"=0.
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Especially, if X is a vertical lift of a vector field v on M™, then (5.8) is replaced by
(5. 11) Vapr=0op"+I i pe=0.

Let X be an arbitrary complete lift of a vector field » on M?, then we have
from (3.9) and (5.1)

@ (LF)=—(LF)»M=L "),
X X v

(5. 12) {
(0) (LF)=(LF)=0,

where we have put

£thz=Vjﬁﬂ)h+1)aRajih+ﬁa(Vavk)a/c'thz;
(5.13) v
h— 2 b B pa B nh—g .t n _ory
Vﬂ) =0V —I—F] al?%, le) —aji) —I—Fa ]'Z)”' and FJ’LZ—W [11]
/

Thus, we get from (5. 12)

THEOREM 5.3. In a tangent bundle T(M™) with a non-linear connection, a
complete lift X of a vector field v on M™ is almost analytic if and only if

(’5 L'y =0.
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