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The concept of a non-linear connection was introduced by Friesecke, and was
later studied by Kawaguchi and others [1,2,3,4,5,6]. On the other hand, the
geometry of tangent bundle of a Riemannian manifold has been studied by Sasaki
and that of a Finslerian manifold by Yano and Davies [8,9,12].

In this paper, we shall study the geometry of the tangent bundle of a manifold
with a non-linear connection. As is well known, a linear connection is by definition
a mapping of 36 x 36 into 36. Then, in § 1 we define a non-linear connection as a
mapping P of 36x36 into 36, where 36 is the totality of differentiate vector fields on
the manifold. By studying vector fields on the tangent bundle, we shall show in
§ 2 that there exists an almost complex structure in the tangent bundle of a mani-
fold with a non-linear connection. In § 3 we introduce the so-called adopted frame
which is very useful for our discussions. § 4 is devoted to the study of integrability
conditions of a non-linear connection and of the almost complex structure determined
by a non-linear connection. Since the tangent bundle of a manifold with a non-
linear connection admits an almost complex structure, we can define almost analytic
vector fields on tangent bundle, which will be discussed in § 5.

§1. Non-linear connection.

Let g(Mn) be the set of all differentiate functions of class C°° on an n-
dimensional differentiate manifold Mn of class C°° and %(Mn) the set of all differ -
entiable vector fields of class C°° on Mn.

Let us suppose that there is given a mapping P: 36(M~n) x 36(Mrι)—>36(Mn) satis-
fying the conditions:υ

(a) Pγ+zX=rγX+PzX,

(b) PfγX=fPγX,

(1.1) (c) Pγ(fX)=(Yf)X+fPYX,

(d) (PYX)p=(ϊrX)p, if Xp-0,

(e) (Pγ(X+X))P=(PγX)P+(PγZ)p, if XP+Xp=0,
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X, X, Y and Z being arbitrary elements of £(Mn) and / an arbitrary element of
g(Mw), where Xp denotes the value of a vector field X at a point p of Mn, and
the symbol F appearing in the equation (d) above denotes an arbitrary linear con-
nection in Mn. We shall call such a mapping V a non-linear connection in Mn.
(ΫγX)P does not depend on the linear connection F involved if XP=Q.

As is well known [7], a linear connection D in Mn is by definition a mapping
D: %(Mn)x%(Mn}-^X(Mn} which satisfies

(a) Dγ+zX=DγX+DzX,

(b)
(1-2)

(c) Dr(fX)=(Yf)X+fDγX,

F and Z being arbitrary elements of %(Mn) and / an arbitrary element of
. Comparing (1. 2) with (1. 1), we see easily that a linear connection is a

non-linear connection.
Now, we shall establish the local representation of a non-linear connection. Let

us suppose that a non-linear connection F, which satisfies the conditions (1. 1), is
given in Mn. Let U be a coordinate neighbourhood of Mn with local coordinates
(ξh) and ei=d/dξl=di the natural frame corresponding to (ξh). Taking an arbitrary
element X of 36(Mn), we may represent ΫeiX as

(1. 3) Γβ<-3Γ=(9*XΛ+ΓAf, *))*ft

where we have put X=Xhβh in U. Then, we get /^-functions AΛ(ί> -X") depending
on coordinates ί71 of a point in U and a vector field X. Taking arbitrary elements
X and Y of 3e(Mw), we have

because of (a), (b) of (1. 1), where we have put Y= Ylei in U. The equation above
then reduces to

(1. 4)ft PγX= FWΛ+ΛΛ(£, Z))*Λ.

Further, Γιh(ξ , J^) are functions depending only on the coordinates (ξh) of the point
/> and the value Xp of the vector field X at p, that is,

(1.4)b Γ^(ξ9X)p=Γt\ξ9X)p9 if Xp=^p.

In fact, if we assume

XP=XP,

then, taking account of (1. 3), we get
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because of (c) and (e) of (1. 1). On the other hand, putting X=Xheh, X=Xflefl

and Xp=X$βh, Xp=X$efl, we have from (d) of (1. 1)

(Feί(X-X))P=(di(Xh-Xh»Peh, if XP=XP.

Thus the equation above reduces to (1. 4)b.
Taking an arbitrary constant t, if we put f=t in (c) of (1. 1), we have

FeitX= tV e.X,

which implies together with (1. 3)

d.4)c trw,X)=rW,tX).

The condition (1. 4)b shows that Γih are functions defined in the open set
π-\U) of the tangent bundle T(Mn) and hence we may represent /V as follows

where (ξh) are coordinates of the point p=π(σ) belonging to £7 and (vh) are components
of the tangent vector v with respect to the natural frame (et\ π being the pro-
jection T(Mn)-*Mn. The condition (1. 4)c means that the functions Γi

h(ξk

ί vk) are
homogeneous of degree 1 with respect to ^-variables vk. Hereafter in the present
paper, we shall denote Γih(ξk, vk) simply by Γih(ξ, v), which give the value of A71

at an element σ of T(Mn\ where π(σ)=p. The functions Γj1 thus defined in π~l(U)
are called coefficients of the given non-linear connection Ψ with respect to local
coordinates (ξh) in U.

Let U(ξί) and £/'(£*') be two intersecting coordinate neighbourhoods of Mn,
and Γih(ξ, v) and Γί,

h'(ξf, vf) coefficients of a non-linear connection in U and U' re-
spectively. To arbitrary X and Y belonging to 36 there corresponds an element
VYX of 36, that is,

where we have put X=Xiei=Xi'ei, and Y— Yiei= Y^e^. Therefore, we have

d& d£h' d£l d2£h'
(I 4L Γ ,h'(ξf X'}—Γ h Xη

u' jd l ^ ' A ;~ * af»' 9fΛ 9?' 9f*9fJ '

which is the so-called transformation law of coefficients Γih of a non-linear con-
nection corresponding to the coordinate transformation

n
Conversely we can show that the functions Γf defined in each open set π~l(U)

determine a non-linear connection V globally in Mn, if Γf satisfy the conditions
(1. 4)a, (1. 4)b, (1. 4)c and (1. 4)d.

We shall conclude this section by showing that a manifold with a non-linear
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connection in our sense is a general affine space of paths and that any general
affine space of paths admits naturally a non-linear connection. Let Mn be an n-
dimensional differentiate manifold in which a system of curves called a system of
paths is given by a system of ordinary differential equations of the form

, -,
at

where Γh(ξ , | ) are functions of the 2n independent variables ξh and ξh, homogene-

ous of degree 2 with respect to ξh and Ms a scalar parameter determined up to an
affine transformation. Such a space is called a general affine space of paths [11].

In our manifold with a non-linear connection, we have

where we have put ξ = ξheh which is the tangent vector of a curve ξh=ξh(t} in the
manifold. If we put

(1. 6) Γ*=/y£,

our manifold becomes a general affine space of paths defined by differential equation
(1. 5) above, because the functions Γh defined above are homogeneous functions
of degree 2 with respect to ξh. *

Conversely, if there is given such a system of paths, we put

(1- 7) /V(f, η)= - _ (f , ?); £>=^,

then these functions Γ O1 are homogeneous functions of degree 1 with respect to
ζh. We see easily that such functions define a non-linear connection V globally in
Mn.

§ 2. Vectors and almost complex structure in T(Mn).

Let Mn be an ^-dimensional differentiate manifold with a non-linear con-
nection, and T(Mn) its tangent bundle. Let U be a coordinate neighbourhood of
Mn and (ζh) local coordinates defined in U. Then, the open set π~l(U) is a coordi-
nate neighbourhood of T(Mn) and (ξh,ηh) are local coordinates in π~\U\ π being
the bnndle projection : T(Mn)-^Mn where, for a point σ having local coordinates
(ξh,ηh) in π~l(U), the point p=π(σ) has local coordinates (ξh) in t/ and (ηh) are
linear coordinates in the fibre Fp=π'1(p) with respect to the natural frame djdξh.

To the transformation of local coordinates in £7(0 Π

(2.1) '̂̂ '(f1, »•,£»),

there corresponds a transformation of local coordinates in τr-1
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If we put

J^'=f/t" = £(«•*«', yh==ξh*==ξn + h9

then we may rewrite (2. 2) as

(2. 3) ί'1/=ί:^/(ίjB)=fyl/(f, <?*),

where >1, #, C=l, 2 , - - ,2w. The Jacobian matrix of the transformation (2.3) is
given by

/

(2.4)

0

Because of (2. 4) the transformation of components of an arbitrary vector V at a
point σ belonging to π-^U^π'^U') is given by

yh>

where we have put V= VAΰ&— VA'dA, at σζπ
Let v be a vector field on Mn. We may consider the following three vector

fields 'X, "X and X of T(Mn):

(a) 'X has the components ('XA) at σ(f, T?) of T(Mn), where

(2.5)

(b) 7/^ has the components ("XA} at (τ(f, η) of Γ(Mn), where

/ °("XAΪ=(
\vh(ξ

(c) A has the components (XA) at σ(ξ, rj) of T(Mri), where

We shall call (a), (b) and (c) the horizontal, vertical and complete lifts of v [12].
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Consider the set of values, at a point σςT(Mn), of horizontal lifts of all vector
fields in Mn. Obviously, such a set of vectors determines an ^-dimensional sub-
space Hσ of tangent space at each point σ of T(Mn}. Such a subspace Hβ is spanned
by a basis (Bι)\

(2.6) (BiAy

where Bi is the horizontal lift of local vector field βt on Mn. We shall call Hβ the
horizontal plane at σ.

Consequently we get a distribution

and we shall call H the horizontal plane field or the horizontal distribution.
It is evident that the set of values, at a point σsT(Mn\ of vertical lifts of all

vector fields in Mn determines the tangent space of fibre Fp and such subspace
Tσ(Fp) is spanned by a basis (Ct*):

<2.7) «V>

where C£* is the vertical lift of local vector field βι on Mn.
Consequently we get a integral distribution σ—*Tσ(Fp) which is complementary

to the horizontal distribution H.
Thus the tangent space Tσ(T(Mn)) of T(Mn) at σ is a direct sum:

(2. 8) Tσ(T(Mn))=Hσ+ Tσ(Fp),

where p=π(σ).
Equation (2. 8) shows that an arbitrary vector field X of T(Mn) can be written

uniquely as follows

(2.9) X='X+"X,

where 'XβsHβ and ffXa^Ta(Fp). A vector field J£ is said to be horizontal if

(2.10) X='X,

and to be vertical if

(2.11) X="X.

By making use of the functions /Y-(<f, η) defined in each π~l(U)c:T(Mn), which
are the coefficients of the given non-linear connection, we may show that such
T(Mn) admits an almost complex structure [10]. If we define (2^)2-functions
FB

A(ξ, η) on T(Mn) as follows:
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(2. 12) (FB

A(ζ, η))
(ί, 17) -/Y(f , η)t

then we can easily verify that

(2.13) FB

AFG

B=-δ$.

Since we have directly from the above definitions

(2.14) FB

ABiB=-Ci*
A and FB

ACi,
B=Ei

A,

we can easily verify that the matrix (FB

A} defined in each neighbourhood π~\U)
determines globally a tensor field of type (1, 1) in T(Mn). The tensor field F thus
determined by (FB

A) is an almost complex structure in T(Mn), because of (2. 13).
Thus we have

THEOREM 2. 1 [10]. // there is given a non-linear connection in Mn, then there
exists an almost complex structure F in the tangent bundle T(Mn) of Mn.

§ 3. Adapted frame [12].

Let us denote 2n-vector fields on π~l(U)

(3. 1) (Ar) = (£i, C,0 (α, ft r=l, -., 2n\

where

(3.2) (̂ )

Such a system (ylα) is called the adapted frame associated with coordinates (ξfl)
defined in U.

We also denote by

(3.3) (Aa

A)=(Bh

A,C
hΆ)

the matrix inverse to the matrix (Bl

A,Cί*
A\ Then we have

(3.4) Λa

ΛA*B=δi, AaAAPΛ=δί

or

(3.5)
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Because of (3. 2) and (3. 5) we have

(3.6) (BhA}=(dί 0), (CΛ*Λ=(/YS 5J)

If components of a tangent vector F of T(Mn) at a point σ are F^4, then the
components with respect to the adapted frame are Va= VAAa

A, that is:

V= VA3A= V«Aa.

We see that the components of any horizontal vector field X are given by

(3.7, , o

with respect to this frame, and those of any vertical vector field X are given by

0
(3. 8)

We also see that the components of any complete l i f t X of a vector field v on Mn

are given by

(3.9)

where we have put

Since the components of the almost complex structure F with respect to the adapted
frame is given by

Fβ*=A*ΔFB

AAβ

B,

we have from (2.12), (3. 2) and (3. 6)

0
(3.10) (F,«)=

\-<5* 0

Similarly we can find that the so-called Nijenhuis tensor N of the almost complex
structure F which is defined in every π-\U(ζ,ή)) by

(3. 11)

has the following components Nΐβ

a with respect to the adapted frame:

Nrβ*=Fr (A.Fβ*-AβFs)-Fβ (AtFr*-ArFt*)
(3. 12)
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where we have put

(3.13) ΩTβ*Aa=ArAβ-AβAr

or

(3.14) Qrf=A*A(ArAtA-AtAr

A).

Finally, if X is a tangent vector field on T(Mn\ then the components of £FC

B

with respect to the adapted frame are given by

(3.15) (£F)β«= -FtAJt*+Ft«AβX +X (Ω«*Ff-Ω.fFrt.
X

§4. Integrability conditions [10, 12].

We shall consider a condition for the horizontal distribution H in T(Mn) to be
integrable. As is well known [7], a necessary and sufficient condition for H to be
integrable is that

or

(4.2) ΩjF=Q

for the local basis Bi=BiAdA of H. On the other hand, because of (3. 2), (3. 6) and
(3.14) we can show that the non-vanishing components of Ωrβ

a are written as

(4.3)

where we have put

(4. 4)
and dj*=

Thus we have

THEOREM 4. 1. A necessary and sufficient condition for the horizontal distri-
bution H in T(Mn) to be integrable is

An almost complex structure is said to be integrable if the Nijenhuis tensor
vanishes identically. Making use of (3. 2), (3. 6), (3.10), (3.12) and (4. 3), the com-
ponents of Nrβ

a may be written as

(4. 5)
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where we have put

(4.6) Γyi*=94./y-d,JY.

Thus we get

THEOREM 4. 2. A necessary and sufficient condition for the almost complex
structure defined by (2. 12) to be integrable is that

(4.7) Tjih=0 and Rjt

h=Q.

If we put

then the conditions (4. 7) can be replaced by

(4.9) ΓΛ=ΛΛ, and Λy<αV=0,

where we have put

(4.10) Ήyί^dί/y^-Γ^dn^

§5. Almost analytic vector fields [10, 12].

Since T(Mn) with a non-linear connection admits an almost complx structure,
we may discuss almost analytic vector fields on T(Mn).

Let X be an arbitrary vector field on Γ(Mn). By the use of (3. 15), (3. 2), (3. 6)
and (4. 3), we have, for various types of components (£F)β

a

(a) (£W=-(£Fy^=9^Λ+^
(5.1) * x

(b) (£F),.Λ=
X

or

f(a)
(5.2)

(b)

where we have put

fΓ^β=^J
(5. 3)

Let X be an arbitrary horizontal vector field on T(Mn). The components X'1' being
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zero, we have

(
(5.4) \ * x

\(£F)^=(£F

Especially, if X is an arbitrary horizontal lift of a vector field v on Mn, then (5. 1)
are replaced by

f(a)
(5.5)

Let X be an arbitrary vertical vector field on T(Mn). The components J^"'4 being
zero, we have

f(a) (£F)/=-(£F),.Λ*=d,*Λ*-Γ/*dα^^^
(5 6)

Especially, if ^ is an arbitrary vertical lift of a vector field v on Mw, then (5. 6)
are replaced by

f(a) (£F),Λ= -(£F),.ft*=fyΛ+ι;«dα,ΓΛ
(5.7)

l(b) (£F)/*=(£F),.Λ=0.
x x

Thus, we have from (5. 4) and (5. 5)

THEOREM 5. 1. In a tangent bundle with a non-linear connection a horizontal
vector field X is almost analytic if and only if

(5.8) $,Xh=Q and Vj*Xh-\-XkRkj

h=V>.

Especially, if X is a horizontal lift of a vector field v on Mn, then (5. 8) is replaced
by

(5. 9) PjVh=djVh+Γa

h

jv
a=Q and vkRyh=0,

where

We have from (5. 6) and (5. 7)

THEOREM 5. 2. In a tangent bundle with a non-linear connection a vertical
vector field X is almost analytic if and only if

(5.10) VjXh*=Q and F,J^*-0.
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Especially, if X is a vertical lift of a vector field v on Mn, then (5. 8) is replaced by

(5. 11) PjΌh=djvh+Γjh

av«=Q.

Let X be an arbitrary complete lift of a vector field v on Mn, then we have
from (3. 9) and (5. 1)

ί(a)
(5. 12) )

(b)

where we have put

(5. 13)
A dΓ h

PjV*'=djVh+ΓJ»>av
a', Pjvh = djvh+Γa^va and r/, = -^f- [11].

Thus, we get from (5. 12)

THEOREM 5. 3. In a tangent bundle T(Mn) with a non-linear connection, a

complete lift X of a vector field v on Mn is almost analytic if and only if
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