ON A SIMPLIFIED METHOD OF THE ESTIMATION OF
THE CORRELOGRAM FOR A STATIONARY
GAUSSIAN PROCESS, III

By Mrruakr Huzn

§ 1. Introduction.

In this paper we shall deal with a simplified method for the estimation of the
correlogram for a stationary process.

Let X(n) be a real-valued stationary process with discrete time parameter .
We assume EX(7)=0. We put

EXm)y =0,  EX(n)X(n+h)=0pn,

and we consider to estimate the correlogram px.

In the previous papers [4], [5], we discussed a simplified method for the esti-
mation of the correlogram when 62 is known. But in the present paper, we discuss
the case when o¢* is unknown. For simplicity, let us assume the process X(#) to
be observed at n=1,2, .-, N, .-, N-+A.

Usually, in order to estimate the correlogram p,, we use the estimate

N
o 2 X X(nth)
=" - .
2 X(n)?
n=1
Now we shall modify the estimate I',. The essential part of our modification
is to replace X(n)X(n+h) by X(n)sgn (X(n-+4%)), where sgn (y) means 1,0, —1 corre-
spondingly as y>0, y=0, y<0. The new estimate is

3 X(n) sgn (X(u-+4)
Ph — n=1 X

n; | X(m)|

This new estimate I', may be considered as follows. We make a nonlinear
operation on the input X(») and assume that the output is Y(#)=sgn (X(»)). Then,
the estimate I, consists of the cross-correlation of the input X(#) and the output
Y(n).

We shall show below that when X(z) is a Gaussian process satisfying some
conditions, the estimate I, is an asymptotically unbiased estimate of the correlogram
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196 MITUAKI HUZII

on as N—oo. We evaluate the asymptotic variance of I",. The estimate [, is also
an asymptotically unbiased estimate of p,. Further, I, and I', are both consistent
estimates of p». We compare, for the typical cases, the asymptotic variance of 7'
with that of I's.

§2. The estimate /.

Let X(n) be a stationary Gaussian process having a finite moving average repre
sentation

(1) X(n)=Gol(m)+Gié(n—1)+ - +Gyén—M),
where &(») is the white noise with
E&(n)=0, Efn)?*=1,
E(n,)é(n,)=0 when #;3#n,,

M is some positive number and {G’s} are constants.
Let L,(X;#n) denote the closed linear manifold generated by {X(j);7=#n} and
Ls(&; n) denote the closed linear manifold generated by {&(j); 7<n}.

LemMa 1. If X(n) is a stationary Gaussian process which has the moving
average representation (1) and if the condition

(2) Ly(X; n)=La(&; n)

holds for an arbitrary integer n, &(n) is a stationary Gaussion process.

In fact, we consider the joint distribution of £(m.), ---, é(n,). As &(n.)eL.(X; n.),
there are constants {a;;/=0,1,2, ---} such that

N
Em)=L1im. Y e, X(n,—I).
N—oo [=0
Therefore for any real numbers A;, As, -+, A,
Aé(m) 4 A (o) + - -+ ArE(nr)
N N N
=Li.m [Al ( 3 azX(nl——l)> +A2< > mX(m—l)) + ---+Ak( b a,X(nk—D) }
—00 =0 =0 =0
The distribution of
N N N
A1<Z CllX(ﬂl—‘l)> +A2<LZ: alX(nz—l)> - +Ak<IZ (llX(nk—l))
=0 =0 =0

is Guassian, so the distribution function of
AiE(m)+ A (m)+ -+ +Ak$(nk)

is Gaussian. This shows &(z) is a Gaussian process.

As &(m) is a white noise, £(%;) and &(n.) are orthogonal, for any #,3#n., so that,
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by the above lemma, &(x;) and &(xn.) are mutually independent.
Now we determine the asymptotic distribution of the estimate I",. Without loss
of generality, we can assume that 2>0. We have

ﬁ X(n) sgn (X(n-+h))

'\/N(]—']L—Ph)z/\/ﬁ n=1 I — 0On
3 |X00)
B ]im/?—l ﬁ XCr) sgn (X(n-+-)
:,\/N 1 —POn
N Z | X(n)|
ﬁ\@ % 3 {X0) sgn (X(n-+)—on| X}

2L S xo)

T =1

In the first place, we consider the statistic

1
=y 5o 3 X0,

Using the results in Huzii [4], we have
E(ro)=1
and
V(ro)=the variance of 7,

2 =t ezl — (Zpk)zm 2 f__l____
= e 2, (N—B1 =D (mz o r<m+1>)+ Y

LemMa 2. If X(n) is a process having the vepresentation (1), then V(y,)—0 as
N—co,

Proof. For our process X(n), px=0 when |k|>M. So we have

— 2 & 213/2 px)*™ 2
V(m—ﬁg W-Ba—pey( 5 ST ron-17)
e 2 (N—B+ 5oL
Now,
2 X 2 (N—M—D(N—M) _ . @M+1)  MM+1)
Wk:%ﬂ(N_k)—NZ 2 =1 N + N? )

Therefore we get
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_ 2 X _i _ q2\3/2 < (2pk)2m 2
V(ro)——N kZ=Il <1 N>(1 03) <m§=30 @] T(m+1)>
eM+1) MM+1) = 1
TN TN TIw

This shows T(7,)—0 as N—oco.
From this Lemma 2, we can find the following result:
TurorREM 1. 7, converges in probability to 1 as N—co.

In the next place, we consider the numerator of /N (I'n—pz), that is,

N
:/% _g-}}_‘:l{X(n)sgn(X(n+h))—ph|X(ﬂ)|}-
Let us denote

Vi) = 2~ (X(0) s (Xn-+ 1)l XG0 ).

Since the process X(x) has the representation (1) and the £(n)’s are mutually inde-
pendent, Y(»,) and Y(n,) are mutually independent if |7;—n.|>M-+h.
Here, we quote the result in Diananda [2].

DeriniTiON 1 (Diananda). Let d. be a function of »#. Suppose {X;} (i=1,2,--)
is a sequence of random variables such that the two sets of variables (Xi, X5, -+, X5)
and (X, Xs41, -+, X») are independent whenever s—»>d,.. Then we say that {X,}
(i=1,2,---) is a sequence of d.-dependent variables or is a da-dependent process.

LemMA 3 (Diananda). Let {X.} (i=1,2,---) be a sequence of stationary m-
dependent scalar variables with the mean zevo and E(X.X;)=C.-,. Then the distri-
bution function of the random variable (Xi+Xo+--+Xo)I % — the normal distri-
bution function with the mean zervo and the variance Y™, Cp as n—co.

In our case, Y(x) is a sequence of (M-+4)-dependent variables and since X(z)
is a stationary Gaussian process, Y(n#) is a stationary process. It is clear that
EY(#n)=0. Let us denote EY(#n)Y(m)=Cn—m). From the above Lemma 3, the
distribution function of the random variable

. N
T 2 Y=y 5 (X0 sgn (Xlu-- )= pal X))

n=

tends to the normal distribution function with the mean zero and the variance
Z%_-+_’.l(M+h) C(k) as N—oo.,
Now, we shall evaluate the value of C(B)=EY(n)Y(n+k).
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CRy=EY(n)Y(n+k)
- B{(XO0) sgn (Xou-+ ) —0u] X))
“(X(n+Fk) sgn (X(n+k+1))—pu| X(n-+k)))}

T

T2

e % aiZ LX(n) sgn (X(n-+h) X(n-+k) sgn (X(n-+k-4-1))

L OAEX (0 sgn (Xou-+ 1) X B)
T

—5 (,lz—an | X0)| X(n-+- k) sgn (X(n-k4-1) + %-olTp;,E | X()|| Xu+-R).

(i) When k is neither zero nor +4, we have, by using the results in the
previous paper [5],
1

0.2

(AF*+BF)D**S:(px) +(2AFG+BG+CEF)D¥%5.(px)

EX(n) sgn (X(n+1)) X(n+k) sgn (X(n+k-+-1))

pol = o™

4
+(AG*+CG)D**5:(px)+-A- Wss(m)

and
T 1 2 B)| = 1 2 7)3/2
5 o REIXW X (At )| = 5 oRD*“Sx(0x)s
where
1 pe-r o1 Ok Ok On
1
Ad=|pg-n 1 px) AZZ On 1 ol
o pr 1 Ocin 0 1
1 oc on 1 pk-n P&
B=2 =Ll 1
=7 Ok—n  Pn Pk, =[P On |
On  Pk+h 1 On Ok Pk+h
1 o 1| Pe-rn Ok 1 1 px-n
_pk 1] Dpn 1 Dﬂlc pn’

Si0=2( % %F(mw)l '<m+1)),

\m=0

oo 2 2m
Sz(”")=2<,,§o (<2ifz)>! F(’”“)?)’

. B © (2pr)Pm \
53<pk>_2( 3 ) ot ) )

m=0
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Now, the value of

% —1}2— prfrX(n) sgn (X(n-+/1))| X (k)|

is as follows. Supposec that
X(m)=UX(n+k)+ ViX(n+h)+vi(n),
where v,(#) is a Gaussian process with the mean zero and satisfies
Evin)X(n+k)=0, Evi(m) X(n-+n)=0.
Then, U, and V; are determined by the following conditions:
E(X(n)— U X(n+k)— ViX(n+h) X(n+k)=0,
E(X(n)— U X(n+k)— ViX(n+h) X(n+-1)=0.

From these, we get

Pk On-k 1 14
U= and  Vi=3- dl
1 On 1 1 On-k  On
where
1 P~k
D1:
On—k 1

The new random variable v;(#), determined in the above, is independent of X(#--k),
X(n+h) and (X(n+k), X(n+h)). Using these results, we have

EX(n) sgn (X(n+h)| X(n+£)|
=E(U: X(n+k)+ ViX(n+h)+vi(n) sgn (X(n+2)| X(n+ k)]
= UlEX(n-I—k) sgn (X(n+h))|X(n+k)l + ViE| X(n+)|| X(n+k)|

—U1 Di 2Si(on-r)+ Vl Dmsz(ﬂh £)e

So we have
T EX () sgn (Xt )| Xt B = 5 (UDYS (-0 + VDY S0}
Similarly, we get
e OuELX00| Xn-+ ) s (X O 0) = 2 (ULDY S, e+ VDS pes ),
where
| p""k,, P N L R o B
Prie 1 D. on 1 D, Pkin  Pn
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Consequently, using the above resulls, we oblain
Clk)=EYn)Y(n-+k)
1

=7 [ ‘ (AF*+BEF)D¥*S1(or) +AF G+ BG+CI) DS, ox)

4
2 /2 =S
+(AG*+CG)D¥2S,(pi)+ A oD Sa(pi) }
— 01 DY*H{ UsSi(on-1)+ ViSe(pr-x)}
—,O/LDi”{ UzS1(Ph+k) + stz(Pluk)} + ()iD:VzSz(PIc)J-

(ii) Here we shall treat the case |k|=/%4. In the first place, let us consider the
case k=h.

Cl = EXCn)| Xn-+1) sgn (Xo-+-200)

L EXG)X () T 001 X0 X s (X020
4 1
+ 5 — GLE | XO0)|| Xt 1)

In this expression,

1 1 .
% —7 EX)| X(n+-1)] sgn (X (n-+2/)) =~ Dy *(ILSi(pn) + KiSu(pu)),

where

1 pn Or pn Lo

Dy= ) H = 'l" l and K= DL '

on 1 Do 1 “lon pun

And
1 . !
= o EXO)X(v-h) = . i

We treat the term

=1 onl2 | X(n)| X(n-+h) sgn (X(n-+2h))

2 g*
as the following. Let us put
X(n+h)=H, X(n)+ K: X(n+-2/)-6:(n),

where d,() is independent of X(#), X(n+2k) and (X(n), X(n+2k)). The above con-
dition is satisfied by determining the constants H, and K, from the following
relations:

Edy(1) X(1)=0 and E02(1) X(n-+27)=0.
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Then I{; and K, are

On P21 1 on
H,= LI L and K,= Dl !
D3y on 1 2| o pa
where
1 Ozh
1)::/L -
szL 1
Hence we have
1
% —7 PuE | X()| X(n-th) sgn (X(n+27)
= “g‘ 7‘17 oI, EX (n)? sgn (X (n)) sgn (X (n-+2k)
T 1 , .
+ 5 onIGE | X(n)|| X (n+20)|
1

= ? PhD%Z(f.{zsl(ch) +Kzsz(ﬂzh))-

Lastly, it is shown

1 1
5= OE X0 | X (u--h)| = 5 03D Su o).

Consequently, we obtain
1
C(h) = ? [D';}zlz (Hlsl((’h) +K152(ﬂh))

— 05— pn DY (H2S1(p20) + K So(02)) 07 D3 Se(o1)].
In the next place, when k=—#%, we can consider
C(—h)y=C(h).
(iii) When k=0,

CO)= 5 = EX(n) sgn (Xon-+12)—pa] X0

T

= % (EX(n)*—2pnEX(n)* sgn (X(n)) sgn (X(n-+7)+ 052X (1)")

[\

1 2
= %7 (02—2%070?/251(‘010) + P?ﬂz>

= % —pu D3 Si(on)+ —g— O

From the above results, we have
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M+h

M+
Cv= ) h)C(k)=C(0)—|—2 I§1C(k)

k=—(M+
- 'g" —pn D*Si(pn)— % 4D (HS1 (1) +1€15:(pn))

- PILD%Z(H 251(P2n) +K252(ch)) -+ P/ZLD;;/Z SZ(.” h)

M+1

(3) + 3 | (AF* 4 BF)D*S\(p) + QAFG+BG+CEF)D"*Sy(p)
Gxhy
4
HAGHHCEODV 500+ Ar 55 S0~ o DEUSiones)+ Vi)
— on DY UsSs(on1) - VaSalonr)+ p;D3fzsz<pk>].

Now we shall make the following assumptions:
(A,1) The determinants 4, D, D, and D, arc not zero when k=1 and kac/.
(A, 2) Dnx0 and Dy 0.

Here we rearrange the above results.

THEOREM 2. [f X(n) is a stationary Gaussian process having a finite moving
average representation (1) which satisfies the condition (2) and if the correlogram
has the properties (A, 1) and (A, 2), the distribution function of L3_, Y(n)/IN/N tends
to the normal distrvibution function with the mean zevo and the variance Cn as N—co.

Now, we shall consider the distribution function of A/N (I"s—ps). By Theorem 1,

_1 w1y
TO_N -z—gné‘llX(n)]

converges in probability to 1 as N—co. And by Theorem 2, the distribution func-
tion of

71]:\[__\/%% 3 (X0n) sgn (X(n-+1)—pul X(o)1}

tends to the normal distribution function with the mean zero and the variance
Cn as N—oo. Therefore we have the following theorem.

TueoREM 3. If X(n) is a stationary Gaussian process having a finite moving
average representation (1) which satisfies the condition (2) and if the correlogram
has the properties (A, 1) and (A, 2), the distribution function of /N (I'v—pr) tends
to the mnormal distvibution function with the mean zervo and the vaviance Ci. as
N—co,

§3. The estimate .

In this section, we shall consider, with respect to the estimate /75, the same as
we did in §2. Let the process X(») have the same properties as § 2.
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Now we have

- B Zli X(m)X (1) B %%f} X(m) X(n-1-1o)
,\/N([,h_ﬂh):'\/N L_'I’_N—*—Q—“_ph :'\/N 1 nfl - —0On
Lxer LN B
1 1 ,
N Z=] (X(m) X(n+-h)— puX(m)?)
P=—=3 1 1 N .
Nt nf:,' X(n)?

We shall denote

1 N
Fo= NO—"ZJ X(n).
Then from the results in Huzii [4],
EF)=1

and
. 2 N-1 3
ViFo)= kaZ::l (N—FR)(1-+20%) + i —1
1 M k
- w g (-5

Hence, we have following lemma and theorem.

LemMa 4. If X(n) is a stationary Gaussian process which has a finite moving
average representation (1), V(Fo) tends to zevo as N—co.

THEOREM 4. If X(n) is a stationary Gaussian process having a finite moving
average representation (1), o converges in probability to 1.

Now, we shall consider the statistic

ﬁi ﬁ (X)) X(0+-)— on. X(0)?).

Let us put
Yn)= —01? (X(m) X(n+I)— 1. X(0)2).

As X(n) is a stationary Gaussian process having a finite moving avcrage represen-
tatNion (1) which satisNﬁes the condition (2), Y(n) is a (M-7%)-dependent variable and
EY (n)=0. Clearly, Y(n) is a stationary process. We shall denote

EY )Y m)=Cn—m).

By using the result of Lemma 3, the distribution function of the random variable



ESTIMATION OF CORRELOGRAM 205
1 N, 1 1 N )
TN B Y=g 5 (X)Xt —on X 1))

n=1

tends to the normal distribution function with the mean zero and the variance
S iny Clk) as N—co.

Combining the above result with Theorem 4, we can say that the distribution
function of /N (I’»—px) tends to the normal distriburion function with the mean
zero and the variance Y Y* .1, C(k) as N—co.

Let us now compute the value of Y% n, C(R).

Clty=EY )Y (n+k)
= %;E(X(n)X(n—i—h)—an(n)Z)(X(n+k)X(n+k+lz)—an(n—{—k)Z)

= 01—4 {(EX(m)X(n+k) X(n+h) X(n+k+h)—on EX() X(n+k) X(n+k+h)
—0n EX(m) X(n+-E)* X(n+ 1)+ 0, EX(n)* X(n-+k)*}.
(i) When % is neither zero nor +#,

Clk)= 0%+ 034 om0 1) — pr(on+200011) — 1(on - 2p01-) + 0L +20%)
= 0+ On-1n+k— 2010kt n— 2000011+ 20405
(ii) When k=nh,
C) = pant-204— 04— 20%000
and when k=—4,
C(—ny=C).
(iii) When &=0,
C0)=1—pi
Putting

M+h

6]1, = é(k) )

k=—(M+1N)
we obtain, from the above results,

Cr=1— 0%+ 2(0an-+204— pi—204p21)
M+h
+2 kZ_:l (0%~ Pn—ron 16— 2000600 1 ks — 2010k 1205 05).
(kxh)

Hence we have the following theorems:

THEOREM b. If X(n) is a stationary Gaussian process having a finite moving
average vepresentation (1) which satisfies the condition (2), the distribution function
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of XN, ?(n)/z/ N tends to the normal distribution function with the mean zero and
the variance Cn as N—co.

THEOREM 6. If X(n) is a stationary Gaussian process having a finite moving
average representation (1) which satisfies the condition (2), the distribution function
of NN T'w—pn) tends to the normal distribution function with the mean zero and
the variance Cy, as N—co.

§4. Comparison of the estimate I', with the estimate .

We shall compare the estimate I', with the estimate I, on the viewpoint of
the variance. Without loss of generality, we can assume %>0.
a) When X(#n) is a white noise, we have p,=0 for any 2x0. So we have

C’L= % and 'CV/L =1
for any A=1.
b) Let us assumc

1— p2—1kI+1)

(4) or= l_pz(M+1)
0; |kl =M1,

-p¥lcos kO; 0=|k|ZM,

where p and 0 are constants and 0=p<1. For simplicity, we write

1— M-Ikl +D

g cos k0.

A=

Then we have |ax| <1 and pe=ayp!®l.
In this case, we can say as follows:

THEOREM 7. If |pn| <o <e holds for sufficiently small posilive number e, Cp
and Cy, are given approximately for any h=h, as follows;

~ X s i s e |z>
Cn 2 2};:101;«/1—,0,0("‘2::0 (2m+1)1 (m.)
and

Cr~14-2 3 ok,
k=1

where the sign ~ is used to indicate that the left side and the rvight side are coin-
side by ignoring the magnitude of the orvder e.

Proof. Here, we shall prove this theorem only when M=#4. The stituation is
the same when A=M+1.
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As pr=azp'®!, we have for 2>k>0, in the expression (3),

A=1—a2p% —ai_p* 0 +-0(c), D=1—akp%,

Dy=1—a2_3p?" ", Dy=1+40(e?),
Dn=1+0(e?), D2n=140(%),
A=apo*+0(e), F=an_p" (1 —a}p?™)4-0().

And each of B, C, G, Hy, Ky is O(s). Turther AF?D*2S,(pr) is O(s?). Now we
have
4
A~m-53(ﬂk)

(l_alchﬂc__.ai_kpz(h——k)_I_O(e)) o (zakpk)2m+1
— k . . AL A Y3
(@ +0(e)) S 2( = oo )

o 2 k\2m
=2t/ T ( 5 om0 () 4000

Using the above results, we obtain

Cu= % + 5 A M 75 S5i(p,) +0()

k=1

== + 2 Z atp™n/1—alp™ (20%16)1; (m!)2> +0(e)

_Z R (& (o™
= 542 T ot/ T ( 3 g ) 1000

Similarly we have
&=1+2k§l 0E+0().

Concerning the relation between C, and C, we can obtain the following
theorem:

THEOREM 8. If the value of |pn| is sufficiently small, that is, |on|<p'<e
holds for sufficiently small positive number ¢, it holds

% 61L§C7L>éh
for any h=h.

Proof. In the first place, we shall prove that Cr>Co By Theorem 7,

™ , Qo)™ 2
C’L~~2_+2,§10k\/1_pk<2 (zm_’_l)y ( '))
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and

~

k=1
We shall show
Y ) (zpk)Zm Y2>
VI (5 T )21
for each k. Tor simplicity we put pi=JX, then the above relation is
Y ) 22m(m!)2 m)
VIEX(E G iy X1

We consider the function

(e 2mem N1
4 (X)“(Eo @mrir X > Vix

for 0=X<1. We have f(0)=0. Further

@ 2m(m)em

1
7’ . m-1__ — —3/2
S'X0= 2 gy X Tz

& 2O (DY ontD) & @mtDEm—1)--5-3-1

-z @mi3) Xr-z, miz X

_ i <22("‘“’((m+1)1)2(m+1) _ @m+DH >Xm )

A (2m-+3)! ml Qm1 :
Now we write

b 28m4 D (- DN2(m+-1) o Cm1)1
™ @m--3)! ’ Tl
and
U =Dm—Cm.
Then
FX)= 3 anX™.
We have
2 1 2
bo=?>()o='§' and 610:-:‘3"—%>0.
If bw>cm holds, we find
3 22(m+-2)° )
b= G D Em SYm T D) " T 2 1)

because
(5) 2%(m+-2)* (2m+3)

Cm+4)Cm+5)m+1) " 2m+1)"
1) @m+DI=1.3.5....(2m—1)-@m+1).
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So we have a»>0 for any positive integer » and this shows f/(X)>0 for X=0.
This result shows f(X)=0 for 0<X<1 and we obtain

) 22m(m[)2 "
VIX( E gy X0 =1

Consequently we have Cp>C. N
In the next place we shall prove that (z/2)C,=C,. For this purpose, we show

> VI-X ( > 2—ZmﬂX’")

meo Cm-1)!
by writing p*=X as the above. Let us consider the function
R T
0X)=7 ¢11 X5 (sz(ﬁ))! xn
for 0=X<1. We have ¢(0)=n/2—1>0 and
7= a-x)ve— 5 ZHOT
i (77 @m+D 22D (On4-1))*m+1) )X"’
mo\4 m!2m 2m-+3)!
We shall write
- T (2m+1)!£ _ 22D (1)) (m-1)
4 miom " (2m+3)!
and
Im=Cm—m.
Then we have
60=£—>fo=—§— and d0>0.

We show ¢»,=0 for any positive integer m. Let us assume that, for a certain
integer m, 9, <0, that is, en<fm. Then we find

(2m+3) . 22(m+2)*
2ot T G em sy

by using the relation (5). This shows ¢.,<0 for any m’=m and we have

Em+1=Em*

1>__ S Emi Em+1 Emy2

f’m fm+1 fm+2

On the other hand,

lim 2™ —1lim * @Cm—+1!! ) 2m+-3)!
m—wofm M— oo 4 ml om 22(m-(-1)((m+1)!)2(m+1)
—1im * @m+1)! 2m+-3)!

moeo 4 22m(pl)2 22D (1)) (mA+1)
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Using Stirling’s formula

nh~(2m)! Py /2 m,

we have
lim fl:hm l ) (2ﬂ)1/2(2m+1)27n-r3/2€—(2m+1) (271-)1/2(2m+3)2m+7/28—-(27n+3)
Mmoo fm m—soo 4 22m(2n)m2m+le—2m 22(7n-1—1)<m+1)(2ﬂ)(m_}__1)2m+3e—2(7n+l)
1 . 1 2m 1 2m+2 1 3/2 3 8/2 1
=1 — [ -~ —  ———=
e? ml—r»?o<1+2m> <1+ 2m—l—2) <1+2m) <1+2m> <1_I__1_>2 1.
m

This is a contradiction. Consequently we have ¢,=0 for all positive integer .
From this result, we obtain ¢/(X)>0 for 0=X<1 and ¢(X)>0 for 0=X<1.
This implies

Table 1.

/] on Cr Cn
1 0.4322 0.484 0.279
2 —0.2663 1.244 0.829
3 —0.5069 2.000 1.423
4 —0.2677 2.630 1.948
5 0.0929 3.101 2.360
6 0.2517 3.430 2.661
7 0.1581 3.650 2.870
8 —0.0244 3.793 3.010
9 —0.1223 3.887 3.103
10 —0.0901 3.950 3.165
11 0.0004 3.992 3.207
12 0.0580 4,022 3.236
13 0.0499 4.044 3.256
14 0.0060 4.060 3.271
15 —0.0267 4.073 3.284
16 —0.0269 4.084 3.293
17 —0.0062 4.091 3.300
18 0.0119 4.096 3.305
19 0.0142 4.098 3.307
20 0.0047 4,098 3.307
21 —0.0050 4,099 3.308
22 —0.0072 4,099 3.308
23 —0.0031 4.099 3.308
24 0.0019 4.099 3.308
25 0.0035 4.099 3.308
30 0.0001 4,100 3.309
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%>Jﬁ(<

and we obtain (7/2)Cr=Ch.

c) As it is difficult to compare
Cn with Gy generally, we make a
comparison numerically.

For this purpose, we treat the
case when the correlogram p; is
defined by (4).

Considering the case

p=0.8, =025 and M=30,

we obtain the result of numerical
comparison as Table 1. This result
is also shown as Figure 1.

The situation of the other cases,
assuming each of the parameters p,
6 and M to have various values, will
be similar to that of the above case.
Generally, C;, will be greater than Ch.
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