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§ 1. Introduction.

In this paper we shall deal with a simplified method for the estimation of the
correlogram for a stationary process.

Let X(n) be a real-valued stationary process with discrete time parameter n.
We assume EX(ri)=0. We put

771 "V/ΛΛ\2 2 27* W/IΛ\ WΛ/I I 7*\ 2

tLΛXfl) =(J , £SA(^7,)A(72-r/Z) —<T Ph,

and we consider to estimate the correlogram ph.
In the previous papers [4], [5], we discussed a simplified method for the esti-

mation of the correlogram when σ2 is known. But in the present paper, we discuss
the case when σ2 is unknown. For simplicity, let us assume the process X(ή) to
be observed at n=l,2, ••, N, ~,N+h.

Usually, in order to estimate the correlogram phi we use the estimate

Σ X(n)X(n+h)
fί 71 = 1

N

Σ
71 = 1

Now we shall modify the estimate 7\. The essential part of our modification
is to replace X(ή)X(n+h) by X(ή)sgn (X(n+h)), where sgn (y) means 1,0,-1 corre-
spondingly as y>0, y=0, y<0. The new estimate is

Σ Mn) sgn (X(n+h))

N

Σ \X(n)\
n=l

This new estimate Γh may be considered as follows. We make a nonlinear
operation on the input X(n) and assume that the output is Y(ή)=$gn(X(ή)). Then,
the estimate Γh consists of the cross-correlation of the input X(ή) and the output

We shall show below that when X(ή) is a Gaussian process satisfying some
conditions, the estimate Γh is an asymptotically unbiased estimate of the correlogram
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ph as TV—>oo. We evaluate the asymptotic variance of Γh. The estimate Γn is also
an asymptotically unbiased estimate of ph. Further, Γh and Γh are both consistent
estimates of ph. We compare, for the typical cases, the asymptotic variance of Γh

with that of f Λ.

§ 2. The estimate Γh.

Let X(n) be a stationary Gaussian process having a finite moving average repre
sentation

(1)

where ξ(ri) is the white noise with

Eξ(n)=0,

)=0 when

M is some positive number and {G*'s} are constants.
Let L2(X;n) denote the closed linear manifold generated by {X(j);j^n} and

L2(ξ;ri) denote the closed linear manifold generated by

LEMMA 1. If X(ή) is a stationary Gaussian process which has the moving
average representation (1) and if the condition

(2)

holds for an arbitrary integer n, ξ(n) is a stationary Gaussion process.

In fact, we consider the joint distribution of ξ(nx), •••,?(%). As ξ(nv)€L2(X',nv),
there are constants {ar,l=0,1,2, •••} such that

JV

ξ(Wv)=l. i. m. Σ aιX(nv~l).

Therefore for any real numbers ΛhΛ2y •••, Λk,

A1ξ(n1)+A2ξ (w2)+ +A k ξ (nk)

iV- Σ
= 0

The distribution of

\ι=o } \ι=o

is Guassian, so the distribution function of

is Gaussian. This shows ξ(ή) is a Gaussian process.

As ξ(ri) is a white noise, ξ(ni) and ξ(n2) are orthogonal, for any nλ^n2i so that,
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by the above lemma, ζ(tii) and ξ(n2) are mutually independent.
Now we determine the asymptotic distribution of the estimate Γh. Without loss

of generality, we can assume that h>0. We have

N

Σ
71 = 1

sgn (X(n+h))

Σ

J
v Jy v z a w = i

Σ

In the first place, we consider the statistic

-ph

Using the results in Huzii [4], we have

and

F(ro) ̂ the variance of γ0

9 N~ι

= £ Σ CΛΓ-
TΓ 1

f i-i.
LEMMA 2. // X(ή) is a process having the representation (1), then V(γ0)—>0

iV->oo.

Proof. For our process X(«), p&=0 when \k\>M. So we have

iV2 k=\

Σ

Now,

_
(2M+1) . M(M+1)

AT ^ TV2 '

Therefore we get
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(2M+1) M(M+ΐ) π 1

AT iV2 2 A T

This shows F(TΌ)->0 as N->oo.

From this Lemma 2, we can find the following result:

THEOREM 1. γ0 converges in probability to 1 as N-^oo.

In the next place, we consider the numerator of */N (Γh—ph), that is,

Let us denote

wJ^r-Σ {X(n)sgn(X(n+h))-Ph\X(n)\}.
iV * Z σ n=ι

= J ί - {X(n) sgn (X(n+h))-ph\X(n)\}.
v Δ σ

Since the process X(n) has the representation (1) and the ξ(n)'s are mutually inde-
pendent, Y(nJ and Y(#2) are mutually independent if \n1—n2\>M+h.

Here, we quote the result in Diananda [2].

DEFINITION 1 (Diananda). Let dn be a function of n. Suppose {Xi} (£=1,2, •••)
is a sequence of random variables such that the two sets of variables (Xu X2, •••> Xr)
and (Xs,Xs+i, •••, X») are independent whenever s—r>dn. Then we say that {Xx}
(i=l,2, •••) is a sequence of dn-dependent variables or is a dn-dependent process.

LEMMA 3 (Diananda). Let {Xι} (z=l, 2, •••) be a sequence of stationary in-
dependent scalar variables with the mean zero and E(XtXj)=Cι-J. Then the distri-
bution function of the random variable (X1

JrX2-\ \-Xn)l\/ n —* the normal distri-
bution function with the mean zero and the variance Σi™mCP as n—>com

In our case, Yin) is a sequence of (M+ h)-dependent variables and since X(n)
is a stationary Gaussian process, Y(ή) is a stationary process. It is clear that
EY(n)=0. Let us denote EY(ή)Y(m)=C(n—m). From the above Lemma 3, the
distribution function of the random variable

7wΣ Y(n)=4WJ~^-~Σ {X(n)sgn(X(n+h))-Ph\X(n)\}Σ ( ) W ^ Σ
M = i V JM v Z σ n=ι

tends to the normal distribution function with the mean zero and the variance

Σf=+ίcϋf+Λ> C(k) as N—oo.
Now, we shall evaluate the value of C(k)=EY(ri)Y(n+k).
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C{k)=EY(n)Y(n-\-k)

= j^τE{(X(n) sgn (X(n+h))-ph\X(ή)\)

•(X(n+k) sgn (X(n+k+h))-Ph\X(n+k)\)}

ι(X(n+h))X(n+k)sg

sgn

199

sgn

( i ) When k is neither zero nor ±h, we have, by using the results in the
previous paper [5],

and

where

LJ G
gn (X(n+h))X(n+k) sgn (X(n+k+h))

' 2s/Ό

fc-Λ 1

Pk-h ph pk

ph Pk+h 1

D=
pk-h pk

Ph 1

ph

Pk+h

1

pk-h

ph

Pk-h

1

Pk

Pk-h

1

Pk i

G~D

ph

Pk

1

jθ*

Ph

?k+h

1

i0fc Ph
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Now, the value of
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^r — phEX{ri) sgn (X(n+/ι))\X(n+k)\
Δ G

is as follows. Suppose that

X(ή)= UιX(n+k)+

where vL{n) is a Gaussian process with the mean zero and satisfies

Ev1(n)X(n+k)=0) Eu1{n)X{n+h)=Q.

Then, Uι and Vi are determined by the following conditions:

E(X(n)- UχX{fi+k)- ViX(n+h))X(n+k)=0,

E(X(n)~

From these, we get

Pk βh-k

Ph 1

and V l = π

1 Pk

Ph-k Ph

where

The new random variable ι>i(n), determined in the above, is independent of X(n-\-k),
X(n+h) and (X(n+k), X(n+h)). Using these results, we have

EXin) sgn {X(n+h))\X{n+k)\

=E{U1X(n+k)+ ViX(n+h)+vi(n)) sgn (X(n+h))\X(n+k)\

sgn (X(n+h))\X(n+k)\ + VιE\X(n+h)\ \X(n+k)\

—
π

—
π

So we have

^r\PhEX{n) sgn

Similarly, we get

= -^- {UiD
i

ι

/2S1(ph-.k)+ ViD\/2S,{pk-k)}.
Δ

sgn (X(n+k+h))= ^- { U2DϊnSi(pk,u
Δ

where

D2 =
ph 1

and
1 pk

Pk vh Ph
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Consequently, using the above results, we obtain

C(k)=EY(ή)Y{n+k)

201

H ϋiSiOt»ft_*)+ ViS

(ii) Here we shall treat the case \k\=h. In the first place, let us consider the
case k=h.

C{h)= ~-\-EX(n)\X(n+h)\ sgn (X(n+2fi))
Δι G

- •£-A p*EX(n)X(n+h)- -J \PhE\X(ή)\X(n+h) sgn (X(n+2h))
Δ G Δ G

In this expression,

where

And

We treat the term

i-Z^

- | i p PhEX{n)X(n+h) - 1 -

1

ph

ph

1

1

Dh

Ph Ph

P211 1
and

1

as the following. Let us put

X(n+h)=H2X(n)+K2X(n+2h)-{-d2(n),

where 32(n) is independent of X(ή), X(n+2h) and (X(n), X(n+2h)). The above con-
dition is satisfied by determining the constants H2 and K2 from the following
relations:

Eδ2(n)X(n)=0 and Eδ2(ή)X(n+2h)=0.
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Then II2 and K2 are

where

Hence we have

Ph p'lh

ph 1

M1TUAKI HUZlί

and
D* p2!ι Pit

sgn (X(»)) sgn

Li G

Lastly, it is shown

y - ^ plE\X(n)\ \X(n+h)\ = y

Consequently, we obtain

C{h)= j [Df

In the next place, when k=—h, we can consider

C{-h)=C{h).

(iii) When k=0,

=T A E{X{n) sgn
^ G

sgn (X(»)) sgn (X(n+h))+plEX(nY)

From the above results, we have
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M+h M+h

ch= Σ C(ft)=C(0)+2 Σ cut)

( 9 \ ϋf+Λ Γ

Σ (^F
fc = l L

(fcΛ)

Now we shall make the following assumptions:
(A, 1) The determinants J, Z>, A and £>2 are not zero when k^l and
(A, 2) Dh*0 and D2Λ=^0.

Here we rearrange the above results.

THEOREM 2. / / X(n) is a stationary Gaussian process having a finite moving
average representation (1) which satisfies the condition (2) and if the correlogram
has the properties (A, 1) and (A, 2), the distribution function of ΣS=i Y(ri)l*/Ή tends
to the normal distribution function with the mean zero and the variance Cu as N-^oo.

Now, we shall consider the distribution function of \/N(Γh—ph). By Theorem 1,

converges in probability to 1 as N-*co. And by Theorem 2, the distribution func-
tion of

W - ^ Σ {X(n)sgn(X(n+h))-pu\X(n)\}
iV v Z (7

tends to the normal distribution function with the mean zero and the variance
Ch as N—>oo. Therefore we have the following theorem.

THEOREM 3. / / X(n) is a stationary Gaussian process having a finite moving
average representation (1) which satisfies the condition (2) and if the correlogram
has the properties (A, 1) and (A, 2), the distribution function of */~N(Γh—ph) tends
to the normal distribution function with the mean zero and the variance Ch as

% 3. The estimate Γ Λ .

In this section, we shall consider, with respect to the estimate Γ\, the same as
we did in § 2. Let the process X(ή) have the same properties as § 2.
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Λ

We

Now

/NO

shall

we have

— (

1
Λ/ΛΓ

denote
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Σ X(n)X(n+h) \

Σ XinY J
71 = 1 '

~Σ(X(n)X(n+h)-PΆX(n)
<J n=l

ΛT 9 Zj ^ W

lτr\ΣX{n)X{n+h)

2)

Then from the results in Huzii [4],

and

F ( f o ) = W% {N~k) a+2pι) + Iί

Hence, we have following lemma and theorem.

LEMMA 4. // X(n) is a stationary Gaussian process which has a finite moving
average representation (1), V(f0) tends to zero as N-*oo.

THEOREM 4. / / X{n) is a stationary Gaussian process having a finite moving
average representation (1), f0 converges in probability to 1.

Now, we shall consider the statistic

Let us put

As X(n) is a stationary Gaussian process having a finite moving average represen-
tation (1) which satisfies the condition (2), Yin) is a (M+ h)-dependent variable and
EΫ(n)=0. Clearly, Y(ή) is a stationary process. We shall denote

EΫ(n)Ϋ(m)=C(n-m).

By using the result of Lemma 3, the distribution function of the random variable
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Σ ?(») = 4 = i Σ (X(n)X
n=ι ViV σύ

 n=ι

tends to the normal distribution function with the mean zero and the variance

Σf=+?<JΓ+Λ) £(*) as JV->oo.
Combining the above result with Theorem 4, we can say that the distribution

function of A/N(Γh—Ph) tends to the normal distriburion function with the mean
zero and the variance Σiί=-c^+/υ C(k) as JV—>oo.

Let us now compute the value of Σf=-cif+Λ>

-^φ^

( i ) When k is neither zero nor ±h,

(ii) When k=h,

C(h)=

and when k=—h,

C(-h)=C(h).

(iii) When &=0,

Putting

we obtain, from the above results,

M+h

+ 2 Σ {pk+Ph-kPhvh—
(ί ΪΛ)

Hence we have the following theorems:

THEOREM 5. If X(ή) is a stationary Gaussian process having a finite moving
average representation (1) which satisfies the condition (2), the distribution function
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of Σn=i Ϋ(n)l\/N tends to the normal distribution function with the mean zero and
the variance Ch as N-^oo.

THEOREM 6. If X{n) is a stationary Gaussian process having a finite moving
average representation (1) which satisfies the condition (2), the distribution function
of Λ/N (fh—ph) tends to the normal distribution function with the mean zero and
the variance Ch as iV—>oo.

§ 4. Comparison of the estimate ΓK with the estimate / \ .

We shall compare the estimate Γh with the estimate ΓK on the viewpoint of
the variance. Without loss of generality, we can assume h>0.

a) When X(ή) is a white noise, we have PA~O for any k^O. So we have

for any h'^L
b) Let us assume

I i i 2(ϋf+D -Plklcoskθ; 0^\k\^
( 4 )

' 0;

where p and θ are constants and 0 ^ p < l . For simplicity, we write

Then we have |α f c |< l and Pk=akp{1c{.
In this case, we can say as follows:

THEOREM 7. // \pκ<\<ph*<ε holds for sufficiently small positive number ε, C*
and Ch are given approximately for any h^h0 as follows;

and

Ch~l+2Σ/*,

where the sign ~ is used to indicate that the left side and the right side are coin-
side by ignoring the magnitude of the order ε.

Proof. Here, we shall prove this theorem only when M^h. The stituation is
the same when h^l
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As ^*=α*p | f c |, we have for h>k>0, in the expression (3),

A=akpfi+O(ε), F=aΛ-kp
h-*/(l -al

And each of B, C, G, Hu Kι is O(ε). Further AFW^S^ is O(ε2). Now we
have

( oo

Using the above results, we obtain

Σ

Similarly we have

C Λ = l + 2 ;

Concerning the relation between Ch and Ch, we can obtain the following
theorem:

THEOREM 8. If the value of \pho\ is sufficiently small, that is, \phO\<pho<ε
holds for sufficiently small positive number ε, it holds

~o" Ch=Ch > Ch

for any h^ho.

Proof. In the first place, we shall prove that Ch>Ch. By Theorem 7,
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and

& - 1 + 2 Σ Pi

We shall show

for each k. For simplicity we put pl=X> then the above relation is

y Δ Km.) χ m \ > 1

We consider the function

for O^X<1. We have /(0)=0. Further

1 α _
¥ ( 1

(2m+l)(2m-l)-5 3 l
l

( 2 ^ + l ) ϋ \ γ m - :

Now we write

and

Then

We have

7 W = 1

2 1 , 2 1

If bm>Cm holds, we find

because

2 2 (m+2) 3

{ } (2w+4)(2w+5)(m+l)

(2m-l) (2m+l).



ESTIMATION OF CORRELOGRAM 209

So we have am>0 for any positive integer m and this shows / ' (X)>0 for X^O.
This result shows f(X)^0 for O^X<1 and we obtain

Consequently we have Ch>Ch-
in the next place we shall prove that {πj2)Ch^Ch. For this purpose, we show

by writing p2k=X as the above. Let us consider the function

2

for O_^X<1. We have g(0) = ττ/2-l>0 and

/ *(2m+3)!

We shall write

_ π
β w " 4

and

Then we have

< ? o = j > / o = y and go>O.

We show Om^0 for any positive integer m. Let us assume that, for a certain
integer m, gm<0, that is, em<fm. Then we find

wι+l—Jm
(2m+4)(2m+5)(m+l)'

by using the relation (5). This shows gm'<0 for any nτ'^m and we have

-. βm βm+l βm+2

fm fm±l fm+2

(2w+3)!

On the other hand,

- = lim
Ί

π

1
(2w+3)!
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Using Stirling's formula

MITUAKI HUZII

we have

fm

r — (2π)1/2(2m+S)2m+7/2e-(

22Cm+Ό(m+l)(2π)(m-\-l)2m+3e-

This is a contradiction. Consequently we have gm

From this result, we obtain g'(X)>0 for Ô Ξ
This implies

Table 1.

for all positive integer m
and g(X)>0 for O^

h

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

30

ph

0.4322

-0.2663

-0.5069

-0.2677

0.0929

0.2517

0.1581

-0.0244

-0.1223

-0.0901

0.0004

0.0580

0.0499

0.0060

-0.0267

-0.0269

-0.0062

0.0119

0.0142

0.0047

-0.0050

-0.0072

-0.0031

0.0019

0.0035

0.0001

c
h

0.484

1.244

2.000

2.630

3.101

3.430

3.650

3.793

3.887

3.950

3.992

4.022

4.044

4.060

4.073

4.084

4.091

4.096

4.098

4.098

4.099

4.099

4.099

4.099

4.099

4.100

c
h

0.279

0.829

1.423

1.948

2.360

2.661

2.870

3.010

3.103

3.165

3.207

3.236

3.256

3.271

3.284

3.293

3.300

3.305

3.307

3.307

3.308

3.308

3.308

3.308

3.308

3.309
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and we obtain ( / )

c) As it is difficult to compare

CΛ with Cu generally, we make a

comparison numerically.

For this purpose, we treat the

case when the correlogram pjc is

defined by (4).

Considering the case

p=0.8, 0=0.25 and M=30,

we obtain the result of numerical

comparison as Table 1. This result

is also shown as Figure 1.

The situation of the other cases,

assuming each of the parameters p,

θ and M to have various values, will

be similar to that of the above case.

Generally, Ch will be greater than CΛ.
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