
ON GALOIS CONDITIONS IN DIVISION ALGEBRAS

BY MOTOICHI OKUZUMI

1. Introduction.

A division subring A of a division ring D is said to be Galois in D (and D is
Galois over A), if A is the set of fixed elements of a group of automorphisms act-
ing in D. When that is so, as commutative case, there is one to one correspond-
ence between a division subring B of D over A and a closed group H of automor-
phisms of D with finite reduced order. And, in commutative case, we know that
the necessary and sufficient conditions for D to be Galois over A are: D is finite,
separable and normal over A. Jacobson, developing Galois theory in division rings,
had shown that it is an unsolved problem to determine conditions on a division
subring A of D in order that there exists a closed group G of finite reduced order
whose ring of the fixed elements is A. And he had proved the following result
which is in essence due to Teichmuller:

If ZQ is a subfield of the center Z of a division ring D and [D: Z] is finite,
then necessary and sufficient conditions that there exists a closed group G of auto-
morphisms whose set of fixed elements is Zo are

1) Z is separable and normal over Zo and
2) every automorphism of the Galois group of Z over Zo can be extended to

an automorphism of D.
In the present paper we shall derive conditions for D to be Galois over its divi-

sion subring A in the case of finite dimension over the center. In the followings
we assume that the center of D has an infinite number of elements.

2. Central elements in a division ring.

In the followings we denote by Vs(A) the set of all elements of δ1 which are
commutative with every element of A. Then,

LEMMA 1. If R is a ring with unit element e and center Z, and A is a sub-
ring of R containing e, then

VR(A)=VR{AyZ),

where (A, Z) is the ring generated by A and Z.

Proof. It is evident that VR(A, Z) is contained in VR(A). If c is any element
of VR(A) and a is any element of (A, Z), then
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DEFINITION. Let R be a ring with unit element e and center Z. A subring
A of R is said to be regular if VR(VR(A)) = (A, Z) and contains the unit element
of R.

In our case of division rings, any division subring is regular.

LEMMA 2. Let R be a ring with unit element e and center Z. If A and B are
regular subrings such that Az^B and VR(A)=VR(B), then Acz(B,Z).

Proof VR(A)= VR(A, Z)= VR(B, Z)= VR{B).

From regularity of A and B, (A,Z) = (B,Z) and Ac(B,Z).

When subrings A and B are as in lemma 2, we say that A is a central exten-
sion of By that is, A is generated by adjunction of central elements of R. When
a division ring D is Galois over its division subring A, then the commutator al-
gebra N of VR(A) is a central extension of A.

Next, we shall derive a property of central elements in a division ring.

LEMMA 3. Let D be a division ring with center Z, let Zo be a sub field of Z
such that Z is a Galois extension field of Zo, and let a be a generating element of
Z over Zo. If β is an element of D such that Z0(β) is isomorphic with Z0(a) leaving
the elements of Zo invariant, then β is contained in the center of D.

Proof. Let K be the field generated by β over Z o : K=Z0(β). We adjoin a to
K, then K(ά) is a finite extension field of Zo. But, in a commutative field, an iso-
morphic element is a conjugate element, so β is contained in Z.

COROLLARY 1. Under the same assumptions in lemma 3, let Δ be a sub field of
Z over Zo and Δf a subfield of D isomorphic with Δ over Zo, then Δ' is contained
in Z.

The proof is similar to that of lemma 3.

In the case of a simple ring, this lemma is not valid in general. For example,
let D b e a total matrix ring [Z]ny and let the defining equation of a which is a
generating element of Z over Zo

f(x)=xn+aixn'1 + '

Then the matrix

0 1 0 0

0 0 1 0 ••• 0
β=

—an
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has f(x)=0 as its defining equation. Therefore, Z0(β) is isomorphic with Z0(ά), but
β is not contained in the center.

LEMMA 4. Let D be a division ring with center Z, let Zo be a sub field of Z such
that Z is Galois over Zo, and let f(x)=0 be the defining equation of a which is a
generating element of Z over Zo. If A is a division subring of D such that A^Z
=Zo, then the polynomial f(x) is irreducible in A[x\.

Proof. A[x] is a semi-commutative polynomial ring in Kasch's meaning, and
is a principal ideal ring. If f(x) is reducible in A[x] and let h{x) be the minimum
polynomial of a in A[x], then h{x) is a divisor of f{x). But, by lemma 3, all roots
of h(x) lie in Z and h{x) is a polynomial in Z0[x]. So, f(x) has h(x) as a divisor in
Zo[x]. This is a contradiction.

THEOREM 1. Let D be a division ring with center Z, and let A be a division
subring of D such that Ar^Z=Zo, [A: Zo] is finite and Z is Galois over Zo, then any
isomorphism of A into D leaving the elements of Zo invariant can be extended to an
inner automorphism of D.

Proof. Let B be the isomorphic image of A in D, then by corollary 1, Br^Z
=ZQ. SO, by lemma 4, the composite division subring A(ά) and B{a) becomes iso-
morphic to each other leaving the elements of Z invariant, where a is a generating
element of Z over Zo. Therefore, by the well known theorem, the isomorphism
can be extended to an inner automorphism of D.

Under the same assumptions in theorem 1, we obtain the following theorem.

THEOREM 2. D is Galois over A, if and only if D is Galois over AΓ^Z=Z^.

Proof. Let D be Galois over A, G the Galois group of D/A and H the sub-
group of inner automorphisms in G. The automorphisms σ of G induce automor-
phisms σ in the center Z and the induced groug G of G in Z is isomorphic with
G/H. Then, the fixed field of G is Ar^Z=Z0 and Z is Galois over Zo. Therefore,
Jacobson-Teichmiiller's conditions are satisfied and D becomes Galois over Zo.

Conversely, if D is Galois over A^Z, then every automorphism σ maps A onto
Aσ and by theorem 1, this isomorphism can be extended to an inner automorphism
τ. But the Galois group of D/Zo contains every inner automorphism. So, σv1 are
automorphisms of D leaving the elements of A invariant. Therefore, we can select
a set of automorphisms of D/Z which induce distinct automorphisms of Z/Zo and
leaving the elements of A invariant. If we adjoin to them all inner automorphisms
induced by elements of VD(A), then we obtain a closed group G of automorphisms
of D. Let σ be an automorphism leaving A invariant, then σ must be contained
in G. And let Ai be the fixed ring for G, then Ai must be central extension of A
and Ax corresponds to the automorphism group of Z/Zo. So, Aι=A. Therefore, D
is Galois over A.



GALOIS CONDITIONS 19

3. Generating elements in a division ring.

Let D be a non-commutative division ring with center Z, and let A be a proper
division subring not contained in Z and [Z:Z^A]=--n. Let Dx denote the multi-
plicative group of all non-zero elements of D, then [Dx: Ax] is infinite. This is
proved by Faith. Similarly, the additive group A+ has infinite index in D+. For,
suppose A+ has finite index in D+. Then for any element d in D, there are
elements ci, c2 and a such that

dci=dc2

Jra, c

But, CI*FC2, so this contradicts A^D.
First, we introduce the concept of union-coset in groups. Let G be a group of

infinite order, and Hu H2y'-> Hn its subgroups of infinite indices. If aιHly a2H2}---} anHn

are right cosets of H\,H2,-^Hn in G, then the union of these cosets aiH^azH^ -
^anΐln is called a union coset of degree n.

Under these assumptions, we prove the following lemma and then show a sim-
ple proof of Albert-Kasch-Nagahara's generating theorem in division rings.

LEMMA 5. G can not be covered by a finite number of union-cosets, of any
finite degree.

Proof. For n=l, the assertion is obvious, therefore, assume it to be correct for
n—\. Suppose G is covered by a finite number of union-cosets as follows:

G=a1H1

K^a2H^' ^aJIn+bJI^btH^ ^bnHn+ Λ-dJI^dJI^dnHn.

But, G can not be covered by union-cosets of degree n—\ from the assumption of
induction, so there is an infinite covering of G containing

Let the covering be as follows:

G=a1H1^
/a2H2" ^an-i

And let the decomposition of G by cosets with respect to Hn be as follows.

G={anHnΛ-bnHnΛ-'''Λ-dn

The set

is contained in the set (anHn-\ \-dnHn). So, (panHnΛ \-sdnHn) is contained in
the set Q. Therefore, G is covered by Q+P^Qλ Vs~ιQ. This contradicts with
the assumption that G has not a finite covering of union-cosets of degree n—1.

THEOREM 3. A division algebra D is generated by two elements over the center,
and one of them is separable over the center.

Proof. A division algebra D has a separable maximal subfield M over the cen-
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ter Z, and there exist only a finite number of subfields in M over Z. By lemma
5, D can not be covered by their commutator algebras. Therefore, there exists an
element β such that M(β)=D. So, D is generated by two elements over Z, and
one of them is separable over Z.

THEOREM 4. Let D be a division algebra with center Z and β be any element
of D not in Z, then there exists a separable element over Z such that Z(a, β)=D.

Proof. Let M be a separable maximal subίield of Z), then there are a finite
number of subfields betwien M and Z. These subfields are simple extensions over
Z. Let 7Ί, TV , ϊι be generating elements of these subfields over Z. By lemma 5,
there exists an element b which does not lie in any commutater algebras of 7-1,̂ 2,
-"9γι and VD(β). But, Nagahara's lemma says that for γ and Fo(β), in the set of
elements b+cub+C2, ~,c%€Z, there exist at most two (b+d)'s which transform γ
into Fz>(/3). So, there exists an element t transforming all subfields of M over Z
out of Fz)(j9). Therefore, VD(β)r^-1Mt=Zf and t^Mtfβ) becomes D.

4. Normality in a division algebra D.

Let D be a division algebra with center Z and A a division subalgebra of D
such that Z) is Galois over A. Then by theorem 2, Z) is Galois over A/^SZ=ZQ.
Consequently, Galois conditions are as follows:

1) Z is separable, finite and normal over Zo and
2) D is G-normal over Z^A^Z, that is, every automorphism of G can be ex-

tended to an automorphism in D, where G is the Galois group of Z/Zo.
First we consider the normality in commutative cases. Let N be a finite ex-

tension field of Z, and Zo be a subfield of Z such that Z is Galois over Zo. Let σ
be an automorphism of Z/Zo. The conditions of G-normality are as follows:

1) N is separable over Z and
2) If every polynomial gθ), irreducible in Z[x], has one root a in A/", then the

conjugate polynomial g*(x) has one root a' in iV.
Let a be a generating element of N over Z, and /O)=0 be the defining equa-

tion of a over Zo, then /(#) is decomposed into conjugate prime factors of the same
degree with respect to Z/Zo:

If /o(α)=O, then from 1), there is an element af such fact /(f(α/)=0. The mapping

is an automorphism in N.
These conditions can be written in language of ideal as follows. If every ideal

in the polynomial ring Z[x] has one root a in N, then the conjugate ideal with re-
spect to Z/Zo has one root af in D, where a root of ideal is an element which is a
root of all polynomials of the ideal.

In the preceding paragraph we see that a division algebra is generated by two
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elements (a, β) over the center Z. And any element d of D is represented by a non-
commutative polynomial in (a, β). For, non-zero element d in D has the inverse
element in D and from finite dimensionality the inverse element is represented by
a polynomial in d. Therefore, the polynomial ring Z[a, β] becomes D itself.

Thus, if we denote by Z[x, y] the non-commutative polynomial ring, then Z[x, y]
may be mapped homomorphically upon Z[a, β]=D. The homomorphism is given
by the following mapping:

x—>α, y-+β. Elements of Z are invariant.

So, let f(x, y) be an element of Z[x, y]:

where [x, y]τ are free products of x, y and atQZ.
Then, the homomorphic image of f(x, y) is represented by

The kernel of this homomorphism is two-sided ideal p of all polynomials f(x, y)
which have (a, β) as roots, i.e., for which f(a, β)=0. And,

Z[x}y]/p=Z[a,β]=D.

From the structure of D, the ideal p has the following properties:
1) if ab=0 (modi)), then a=Q or b=0 (modp),
2) Z[x, y] has a finite basis over Z mod p.

[Z[x,y]lp:Z] = [D:Z]=ri\

3) the center of Z[x, y]/p is Z.
When an ideal p in Z[x, y] has the properties l)-3), we say that p is an R-Ίdeal of
degree n2.

Conversely, if p is an i?-ideal of degree ήz, then Z[x, y]/p becomes a division
algebra with center Z. For, let a^O (modp), then by 2), there is an irreducible
polynomial/(#) in Z[x] such that f(a)=0 (modp). By 1), the constant term can not
be zero. So, a has the inverse element in Z[x,y] modp) and Z[x,y] (modp) is a
division algebra of degree n2 with center Z.

From l)-3), if (a, β) are roots of p, then the root ideal of {a, β), that is, the set
of all polynomials which have (α, β) as roots, does not distinct from p. For, let
fix, y) be a polynomial such that f(a, β) = 0 but not in p, then /(#, y) has the inverse
polynomial g(x,y) (mod{)):

f(χ,v)9(χ,v) = l (modjj).

Then we obtain

This is a contradiction.
Let σ be an automorphism of the center Z/Zo, then σ can be extended to an

automorphism σ of Z[x, y] by the following correspondence:
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I I

/(#, y)=Σai[χ, y]i-+fa{χ, y)=Σ#fe y]ι-
i-=l 1 = 1

By the automorphism σ, an iMdeal p is mapped onto pσ which is the set of all
conjugate polynomials f°(x, y) of f(x, y) in p. Then pσ has the properties l)-3). For,

1) if fσ(x,y)ga{x,y)=b (mod))), then f(x,y)g(x,y) = 0 (mod})) and by 1) of p,
f(x,y) = Q or g(x,y) = 0 (mod})).

2) let Uι,u2,- ,Un* be linearly independent polynomials in Z[x,y] (mod})), then
uσ

lf u
a

2,--, uσ

n2 are linearly independent over Z (monpΌ So, the dimension of
Z[x,y] (mod})'7) over Z is invariant by σ.

3) if / σ(#, y) be contained in the center of Z[x, y] (mod p), then

/σ(#, y)x = χfσ(x, y) (mod }>σ),

fσ(.χ,g)y=yfa(χ,y) (mod})*).

Therefore, f(x,y) is contained in Z mod}). So, f°{x,y) lies in Z (mod})σ).
Now we can define the normality in a division algebra D with center Z which

is Galois over its subfield Zo as follows:
DEFINITION. D is said to be G-normal with respect to ZJZQ if an i?-ideal p in

Z[x, y] has roots (a, β) in A then the conjugate i?-ideal p" with respect to Z/Zo has
roots (a', β') in Z), where Z[xf y] is the ring of all non-commutative polynomials of
(x, y) with coefficient in Z.

This definition is a natural extension of that of commutative cases. If this
condition is satisfied in D, then D is Galois over Z.

Let (a,β) be generating elements of D over Z: Z)=Z[tf, β]. Let Z[x,y] and
the kernel of the homomorphism is an ivNideal p. Let σ be an automorphism of Z
leaving the elements Zo invariant, then by the preceding assertion σ can be extended
to an automorphism σ of Z[x,y]. And the i?-ideal p is mapped upon pσ which has
the properties l)-3). Therefore, Z[a', βr] becomes D and the mapping:

is an automorphism in D. So, by Jacobson-Teichwϋller's conditions, D is Galois
over Zo.

Conversely, when D is Galois over Zo, and let an i?-ideal p of Z[x, y] has roots
(a,β) in D, then by automorphisms σ of D leaving the elements of Zo invariant,
Z[α, /3] is mapped onto Za\a\ βσ] and (aσ, βa) are roots of conjugated i?-ideal pa with
respect to Z\Z§.

Consequently, we obtain the following theorem.

THEOREM 5. A division algebra D with center Z is Galois over its division sub-
algebra A if, and only if, 1) Z is Galois over A^Z and 2) D is G-normal with re-
spect to ZjA^Z.
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