ON ULTRAHYPERELLIPTIC SURFACES

By Mitsuru Ozawa

§1. Let R be an open Riemann surfaces. Let MM(R) be a family of non-constant
meromorphic functions on R. Let f be a member of M(R). Let P(f) be the number
of Picard’s exceptional values of f, where we say a a Picard’s value of f when « is
not taken by f on R. Let P(R) be a quantity defined by

sup P(f).

FEMCR)
In general P(R)=2. In [4] we showed that this was an important quantity belonging
to R for a criterion of non-existence of analytic mapping.

Now let R be an ultrahyperelliptic surface, which is a proper existence domain
of a two-valued algebroid function ,/y(z) with an entire function g¢(z) of z whose
zeros are all simple and are infinite in number. Then by Selberg’s generalization
of Nevanlinna’s theory we have P(R)=4. Further we showed that P(R) was equal
to 2 in almost all cases of ultrahyperelliptic surfaces, that is, we had the following
result: If g(2) is of non-integral finite order, then P(R)=2. In the present paper
we shall establish the existence of an ultrahyperelliptic surface R with P(R)=3.
The existence of the surfaces with P(R)=4 is evident, however we need a chara-
cterization of these surfaces with P(R)=4 for our purpose. We do not give any
characterization of the ultrahyperelliptic surfaces with P(R)=3.

§2. A lemma on the number of simple zeros of the function ¢ —yp, In the
sequel we need a property of the function e*—v on the number of simple zeros
several times. Let T, m, N, N, N and S be the quantities defined in Nevanlinna’s
theory [3]. Let N:(»; @, f) and Ni(r; a, f) be the N-functions with respect to the
simple a-points and to the multiple e-points of the indicated function f, which is
counted only once, respectively.

LEMMA. Let h be an arbitrary given entive function of z. Then we have
i Ny(7; v, e) _
—e  1(1; e")

Sfor every non-zevo constant v.
Proof. By Nevanlinna’s second fundamental theorem we have
T(r, e")<N(r; 0, e*)+N(r; oo, e")+N(r; v, e")—Ni(r; e")+S(r),

S(»)<O(log r1(r, e))
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with some suitable exceptional intervals. In this case N; 0, e*)=N; co, e*)=0.
On the other hand we have

wmr, k" )=m(r, h'e"[e")=0(log rT(r, e"))
with some exceptional intervals. Since 4’ is an entire function, we have
T(r, W)y=m(@, k).
Thus we have
N@; 0, )=T(r, B')=0(og rT(r, e")).
However we have
Ni(r; e®)=N(@; 0, I').
Since there are relations
N; v, e")—N(r; v, e")=Ny(r; v, e =Ni(7; e,
we have
Ni(r; v, )= Ni(r; v, em)=0(log rT(r, ev)).
Therefore by the second fundamental theorem we have
— Mr; v, e?)— Ny(r; v, eh)—1\71(r: v, e) _1

lim T(r, e

Thus we have

= No(r; v, em) 1
T ey

which is the desired result: If % is a polynomial, then our result is evident.

§3. We shall here give a characterization of R with P(R)=4 by the form of
defining function ¢(z). Suppose that P(R)=4. Then there is a two-valued entire
algebroid function f of z which is regular on R and whose defining equation is

F(z, /)=*—2f1(2) f+Sf1(2)* —f2(2)°9(2)=0

with two single-valued entire functions f3(2) and f:(z) of 2. Further we may assume
that 0, 1, @ and co are four Picard’s values of f. Then, by Rémoundos’ reasoning
of his celebrated generalization of Picard’s theorem [6] pp. 25-27, we have three
possihilities:

F(z 0 c Bret Biet
F(z, 1) |=| Bie* | or c | or | B.e® |
F(z, a) B Bee®? ¢

where B, and B. are non-zero constants and 7f, and H, are two entire functions of
z satisfying Hi(0)=H>(0)=0 and being non-constant functions.
In the first case we have



ULTRAHYPERELLIPTIC SURFACES 105

P—fitg=c
1=2f1+f1*—fa*g=Bie™
a*—2af1+ 11" —f2"g =™,

Then we have
(a—c)1—a)=apie™ — Bret:.
On the other hand the impossiblity of an identity of the form
Are? 4 Aze = A,,

where A,, A. and A; are constants, when A;=0, is cquivalent to Picard’s theorem.
This is nothing but Borel’s formulation of Picard’s theorem [1], [2]. Thus we have
a=c, since ¢x1. Simultaneously we have api=p, and H;=H,. Then we have

(1—a)P—2(1+a)p.e™+B.*e* =415,
Let b be a zero of ¢(z), then we have

(A —a)*—2(1+a)pe™ @+ pi*e* @ =0,
that is,

Pt ®=14ax,/q .
Thus we have
4f2%g=(Bre™ — e P)(Bre™ + 1" ® —2—2a)
=p(e™ —7)(e™ =),
r=0+a)f, =0—/a )b

Since a=0, 1, we have 700 and y=xd. Then ¢(2) 1s equal to an expression of the
following form:

(e™—r)e—0)
U ’
where U(z) is an entire function of z which is defined in the following manner:
If the function e®*—y has a point z as its zero of multiplicity 2 or 241, then the

function V has the point z as a zero of multiplicity z. Similarly we shall define
a function W for ¢#'—¢d. Then we put U=VW. Thus we have

1
f2=i% ) f1=——‘;a ——“;I‘eH'-

Therefore we finally have

1+a e
) ——'BZLe”‘i “%1«/ (e —r)(eH —0),

f

Hence the surface R is defined by an equation of the form
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'!/2 — (eHx(x) _r)(eHz(l‘) _5)/ UZ(J}),
70%0, 70
In the second case we have similarly a representation

f= -CZZ— + %e"“i % N (=) — ),

'=04+/T=alIB, =(1—/1=2)p, 790, y'xd
and a defining equation of R with an entire function U defined quite similarly
Y= (e — ") (e™® —3")| U*(x).
In the third case we have a representation

1 -
f= 7 + 129_;€H'i % N/(e”‘—r”)(e”‘—— o),

r"=—a(l—2a+/ (1=3a)1—a)), ¥’ = —a(l—2a— /(I —3a)1=a)).

Since @0, we have 7”0”x0. If y”=06”", then @=1/3, since ax1. If ¢=1/3, then f
is reduced to a single-valued entire function and hence P(f)=2, which may be
omitted. Thus we have 7”%0”. Hence we have the defining equation of R

ygz(e;{,(z) __T//)(eH:(z) _5//)/ U(.:L')z

Here we should remark that the function e”—y, y=0, has an infinite number of
simple zeros. This is due to the Lemma in §2, although we can prove this quali-
tatively by the ramification relation in Nevanlinna theory [2].

In every case we have a defining equation of R in the following form

y2 — (eH (€] _r)(eH(.‘c) ___5)’
60, 735, H(0)=0.

Here U may be omitted. This is a characterization of R with P(R)=4. To con-
struct a function f with P(f)=4 is easy now. In fact it is sufficient to consider
a meromorphic function
«/?1_—7
eH—¢’

which omits evidently four values 1, —1, \/7/5, —a/7/3-

§4. We shall here prove the existence of an ultrahyperelliptic surface R with
P(R)=3. Let R be an ultrahyperelliptic surface defined by an equation

y2=8le'* —T72e** —2¢**—8e»-1.

Let f be an entire algebroid function

-;— (1+4e*—9e%*) 4+ %— A 8lets —T72e3 —2¢% —8e* 1
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of 2z, which is an entire function on R, then f does not take three values 0,1 and

oo on R. To this end we examine this by Rémoundos’ reasoning. In fact we have
that

F f=f 2—(1+4ez*962’)f+711-(1+4e2—9e”)2

— %(816“—-7263z—2622—882—]—1)

satisfics I'(z, 0)=4e? and F(z, 1)=9?:. Thus f%0,1 and oo on R.
Since we have
g(2)=(e?—1)(81e%*+9e?+Te:—1)
=8l(e*—1)(e*—e1)(e* —ex)(e”—e3),
lesl1, j=1, 2, 3; (e1—ea)(e1—es)(ea—¢5) X0,

¢(z) has no double zeros. Next we should prove that ¢(z) does not satisfy the
equation

L__ L__
pompe £
where L, f and % are three entire functions of z satisfying L(0)=0 and f=0, 2x0
and U is the entire function determined as in §3. If it is not so, then the equation
holds. Let both side terms be denoled by X(z) and Y(z) for simplicity’s sake. If
L is a transcendental entire function, then eX has infinite order by Pélya’s theorem
[56]. Let Ns(z; 0, Y) be the N-function with respect to zeros of odd multiplicity of
the indicated function Y, which are all counted only once. Then Ni(r; 0, Y)
= Ny(7; 7, eX)+No(7; 9, ) and hence it has infinite order by the Lemma. On the
other hand Ni(7; 0, X)=N:(r; 0, ¢) has order one, which is absurd. If L is a poly-
nomial of degree p, then N;(r; 0, Y) has order p and hence p must be equal to one.
Therefore our equation reduces to the following form

X(2)=h(2)*9(2)= f(2)*(ef*—7)(ef*—0)=Y(2),

since ef*—y and ef—3d have only simple zeros and U is constructed from the
multiple zeros of e*—y and e*—4. Since ¢(z) has the form

, 730, 700,

81(e*—1)(e* —e1)(e* —e2)(e* —es),
lesl1, =1, 2, 3; (e1—ea)(e1—es)(ea—e3) =0,
2nri is a simple zero of ¢ and hence
(um—7)ur—0)=0,  u=e*=,

Then the modulus of # is equal to 1. If #==+1, then #"=y and #"*d for some
integer », which is absurd. If #=1, then § is a non-zero integer p and y=1 or
0=1. Therefore we have
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X(2)=1()"(er*—1)(e*—0), {x0, {x1.

If px =41, then
M2)Pg(z)
er—1
has at least one zero with odd multiplicity which is due to the function (e?*—1)
+(e*—1). For this zero z, we may assume that e*=e?#?, However the left hand
side term has it as a zero of even multiplicity. This is a contradiction. If p=1,

then

e Lm0

X(2)=71(2)"e*—1)(e*—).
If p=—1, then we have

X()=r (2)*(e*—1)(er—1/0)le*.

Both cases are absurd by the form of ¢(z). If #=-—1, then B is a non-zero half
integer ¢ and y=1 and d=—1. Therefore we have

X(2)= f () (e —1)(e”*+1)= f(2)*(e**—1).
If g +1/2, then

X) . et
er—1 A er—1

has the zero z, satisfying e*=e¢?%*¥?, which is of odd multiplicity. However it has
at most even multiplicity in the left hand side term, which is absurd. If g=+1/2,

then
X(2)= f(2)*(e**—1),

and hence

28 _rer o —riape

These are also absurd. Therefore we have the desired fact.

This shows that the ultrahyperelliptic surface R defined by y%=g¢(x) satisfies
P(R)=3. Thus the existence of the surface with P(R)=3 is established. Some
characterizations of such surfaces would be possible, though it would be very
troublesome to settle. This is an open problem.
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