NOTE ON A COUSIN-II DOMAIN OVER (*

By Joji KajiwARA

Dedicated to Professor A. Kobori on his sixtieth birthday

Serre [7] gave a canonical exact sequence
0—-Z—0—0*—0

where Z is the additive group of all integers and © and £* are, respectively, the
sheaves of all germs of holomorphic mappings in a complex plane C and GL(1, C).
Therefore we have an exact sequence of cohomology groups

HYX, Z)-H'(X, O)—~H'(X, O")—H*X, Z)—~H*X, D).

Hence HYX, O%)=HYX, Z)=0 and H X, O)=H*X, Z)=0 imply, respectively,
HY(X, 9)=0 and HY(X, O*)=0. Taking Cartan [3]-Behnke-Stein [1]’s theorem into
account, we see that any domain (D, ¢) over C? with HY(D, O¥)=HYD, Z)=0 is a
domain of holomorphy over C®. Therefore, as we remarked in the previous paper
[4], Thullen [9]’s example E=C?—{(0, 0)} is a Cousin-II domain with H(E, O*)0.
In the present paper we shall prove that any domain (D, ¢) over C? satisfies HY(D,
O*)=0 if and only if (D, ¢) is a domain of holomorphy over C?* with H* D, Z)=0.
Therefore any Cousin-II domain (D, ¢) over C? which is not a domain of holomorphy
over C? is always an example of a Cousin-II domain with H*(D, O%)x0.

Let ¢ be a holomorphic mapping of a complex manifold D in C» such that ¢
is locally a biholomorphic mapping. Then (D, ¢) is called a domain over C». Let
(Ds, ¢1) and (D., ;) be domains over C» If there exists a holomorphic mapping 2
of D; in D, such that ¢;=¢z04, (D1, ¢1) is called a domain over (D., ¢:). Moreover,
if there exists a neighbourhood U of z for any xeD., such that 2 is a biholomor-
phic mapping of each connected component of 2-%(U) onto U, then (D;, ¢;) is called
a covering manifold of (D:, ¢;). For any domain (D, ¢) over C», we can uniquely
construct a covering manifold (D% ¢*) of (D, ¢) such that the fundamental group
(D of D¥ vanishes. This (D¥, ¢*) is called a universal covering manifold of (D, ¢).
If (D, ¢) coincides with its universal covering manifold, (D, ¢) is called simply
connected.

LemMA 1. Let (D, ¢) be a domain over C* and (D', ¢’) be its covering manifold.
Then (D, ¢) is a domain of holomorphy over C* if and only if (D', ¢’) is a domain
of holomorphy over C™.
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Proof. The Euclidean distance in C* induces naturally distances in D and D’.
Let d(x) and 0’(y) be, respectively, the distance of x€D and 9D and that of yeD’
and 4D’. Since (D', ¢’) is a covering manifold of (D, ¢), we have §’=d-2 where
A D’—D is the canonical projection. From Oka [5] (D, ¢) is a domain of holomorphy
over C* if and only if —logd is plurisubharmonic in D. Since —logd is plurisub-
harmonic if and only if —log ¢’ is plurisubharmonic, (D, ¢) is a domain of holomorphy
over C" if and only if (D', ¢’) is a domain of holomorphy over C”. See [8].

LemMA 2. Let (D, ¢) be a domain over C* with HY(D, %)=0, (D} ¢ be its
universal covering manifold and 2. D¥*—D be the canonical mapping. Then for any
(n—1)-dimensional analytic plane H in C* and for any holomorphic function h in
Dnoe~(H), the holomorphic function hod in D*N¢*~(H) is a trace of a holomorphic
Junction f in DA

Proof. Without loss of generality we may suppose that H={z=/(zi, 2», ***, 2Za);
2z;=0}. There exists a neighbourhood V of DN¢~(H) such that % is a trace of a
holomorphic function 4’ in V. We take another open subset U of D such that
U={U, V} is an open covering of D and Un¢-'(H)=¢. We put

g=gh!m

in UnV. Then {(9, UnV)} is a 1-cocycle of I with value in *. Since H'(D, %)
=0 implies H'(11, O%*)=0, there exist ;e H*(U, O*) and f.e H*(V, O*) such that

Tilfa=et!lee
in UnV. We put
F=f
in U and
F=foeh/ee

in V—DneY(H). Then we have FeH(D—DNoe Y (H), ©%. Hence any function
element obtained by (z;0¢%) log F-4 is analytically continued along any Jordan curve
in D*—Dtn¢*(H) for any branch of logarithmus. Since it can also be analytically
continued at any point of D* which is simply connected,

f=(21°¢*%) log Fo2

gives a uniform and holomorphic function in D! if we take a fixed branch.
Moreover we have

f:/lo 1
in DFN @I,
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LemMMA 3. Under the assumption of Lemma 2, if each connected component of
Dnye~\H) is a domain of holomorphy over H for any (n—1l)-dimensional analytic
plane H in C», then (D, ¢) is a domain of holomorphy over Cr.

Proof. Let (D% ¢% be the universal covering manifold of (D, ¢). From Lemma
2 each point of aD* has the frontier property in the sense of Bochner-Martin [2].
Hence there exists a holomorphic function f in D! which is unbounded at each
point of oD% Let (D’, ¢’) be the domain of holomorphy of f and & D*—D’ be the
canonical mapping. We shall prove that (D%, ¢* is a covering manifold of (D, ¢').
Let K={z=xz(#); 0=¢=1} be a curve in D’ such that A(y,)=x(0) for yoeD*. Let
be the supremum of # such that A(y(9)=z(#) (0=¢=¢) for a curve {y=y(); 0=¢
=¢#} in D* with yo=y(0). Obviously 0<rz. Suppose that r<1. There exists a
semiopen curve K.={y=y(?); 0=¢<z} such that Ay(@®))=xz() (0=t<r) and yo=v(0).
Then K. defines a point y. of dD% Since f is unbounded at y., the image x(r) of
y. by the canonical continuous extension of 2 does not belong to D’. But this is
a contradiction. Hence we have r=1. In the same way we can prove the existence
of a curve {y=y(¢); 0=¢=1} in D* such that A(y(®))=z() (0=¢t=1) and y,=y(0).
Therefore (D¥, ¢*) is a covering manifold of (D’, ¢’). From Lemma 1 (D# ¢*) is a
domain of holomorphy over C». Again from Lemma 1 (D, ¢) itself is a domain of
holomorphy over C».

ProrositTioN 1. Any domain (D, ¢) over C? satisfies H\(D, O%)=0 if and only
if (D, @) is @ domain of holomorphy over C* with H¥D, Z)=0.

Proof. If (D, ¢) satisfies HY(D, %)=0, (D, ¢) is a domain of holomorphy over
C? from Lemma 3. Since H¥D, 0)=0, from the exact sequence

H\D, Z)—H"(D, 0)—H\D, O%—H*D, Z)—~H*D, D),

we have H*D, Z)=0. Conversely if (D, ¢) is a domain of holomorphy over C*
with H%D, Z)=0, we have HYD, O*)=0 from the above exact sequence as HD,
9)=0.

For a domain (D, ¢) over C? we have the following diagram where A—B means
that A implies B and A——B means that A does not imply B:

/ D is a domain of holomorphy
\ D is a Cousin-I domain

H(D, ©)=0
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D is a domain of holomorphy

-
e M

D is a Cousin-II domain.

Serre [7] proved that HYX, O)=H*X, Z)=0 implies HY(X, O*)=0 for any
complex manifold X. D=C"—{(0, 0, ---, 0)} satisfies H D, O)=H*D, Z)=0 from
Scheja [6] for #=3. Hence there exists a domain D in C* with H'(D, ©*)=0 which
is not a domain of holomorphy for #=3. But we can prove the following pro-
position by induction with respect to #=3 making use of Lemma 3.

ProrosiTION 2. Let (D, ¢) be a domain over C* with HY(D, O*)=0 such that
HY DN Y(H),0%)=0 for any [-dimensional analytic plane H in C" 2=l=n—1).
Then (D, @) is a domain of holomorphy over C».
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