NOTE ON A COUSIN-II DOMAIN OVER C^2

By Joji Kajiwara

Dedicated to Professor A. Kobori on his sixtieth birthday

Serre [7] gave a canonical exact sequence

$$0 \rightarrow Z \rightarrow D \rightarrow D^* \rightarrow 0$$

where Z is the additive group of all integers and $\mathbb O$ and $\mathbb O^*$ are, respectively, the sheaves of all germs of holomorphic mappings in a complex plane C and $\mathrm{GL}(1,C)$. Therefore we have an exact sequence of cohomology groups

$$H^1(X, Z) \rightarrow H^1(X, \mathbb{Q}) \rightarrow H^1(X, \mathbb{Q}^*) \rightarrow H^2(X, Z) \rightarrow H^2(X, \mathbb{Q}).$$

Hence $H^1(X, \mathbb{O}^*)=H^1(X, Z)=0$ and $H^1(X, \mathbb{O})=H^2(X, Z)=0$ imply, respectively, $H^1(X, \mathbb{O})=0$ and $H^1(X, \mathbb{O}^*)=0$. Taking Cartan [3]-Behnke-Stein [1]'s theorem into account, we see that any domain (D, φ) over C^2 with $H^1(D, \mathbb{O}^*)=H^1(D, Z)=0$ is a domain of holomorphy over C^2 . Therefore, as we remarked in the previous paper [4], Thullen [9]'s example $E=C^2-\{(0,0)\}$ is a Cousin-II domain with $H^1(E,\mathbb{O}^*)\neq 0$. In the present paper we shall prove that any domain (D, φ) over C^2 satisfies $H^1(D, \mathbb{O}^*)=0$ if and only if (D, φ) is a domain of holomorphy over C^2 with $H^2(D, Z)=0$. Therefore any Cousin-II domain (D, φ) over C^2 which is not a domain of holomorphy over C^2 is always an example of a Cousin-II domain with $H^1(D, \mathbb{O}^*)\neq 0$.

Let φ be a holomorphic mapping of a complex manifold D in C^n such that φ is locally a biholomorphic mapping. Then (D, φ) is called a *domain over* C^n . Let (D_1, φ_1) and (D_2, φ_2) be domains over C^n . If there exists a holomorphic mapping λ of D_1 in D_2 such that $\varphi_1 = \varphi_2 \circ \lambda$, (D_1, φ_1) is called a *domain over* (D_2, φ_2) . Moreover, if there exists a neighbourhood U of x for any $x \in D_2$, such that λ is a biholomorphic mapping of each connected component of $\lambda^{-1}(U)$ onto U, then (D_1, φ_1) is called a *covering manifold of* (D_2, φ_2) . For any domain (D, φ) over C^n , we can uniquely construct a covering manifold $(D^{\sharp}, \varphi^{\sharp})$ of (D, φ) such that the fundamental group $\pi_1(D^{\sharp})$ of D^{\sharp} vanishes. This $(D^{\sharp}, \varphi^{\sharp})$ is called a *universal covering manifold of* (D, φ) . If (D, φ) coincides with its universal covering manifold, (D, φ) is called *simply connected*.

Lemma 1. Let (D, φ) be a domain over C^n and (D', φ') be its covering manifold. Then (D, φ) is a domain of holomorphy over C^n if and only if (D', φ') is a domain of holomorphy over C^n .

Received September 1, 1964.

Proof. The Euclidean distance in C^n induces naturally distances in D and D'. Let $\delta(x)$ and $\delta'(y)$ be, respectively, the distance of $x \in D$ and ∂D and that of $y \in D'$ and $\partial D'$. Since (D', φ') is a covering manifold of (D, φ) , we have $\delta' = \delta \circ \lambda$ where λ : $D' \to D$ is the canonical projection. From Oka [5] (D, φ) is a domain of holomorphy over C^n if and only if $-\log \delta$ is plurisubharmonic in D. Since $-\log \delta$ is plurisubharmonic if and only if $-\log \delta'$ is plurisubharmonic, (D, φ) is a domain of holomorphy over C^n if and only if (D', φ') is a domain of holomorphy over C^n . See [8].

Lemma 2. Let (D, φ) be a domain over C^n with $H^1(D, \mathbb{Q}^*)=0$, (D^*, φ^*) be its universal covering manifold and λ : $D^* \to D$ be the canonical mapping. Then for any (n-1)-dimensional analytic plane H in C^n and for any holomorphic function h in $D \cap \varphi^{-1}(H)$, the holomorphic function $h \circ \lambda$ in $D^* \cap \varphi^{*-1}(H)$ is a trace of a holomorphic function f in D^* .

Proof. Without loss of generality we may suppose that $H=\{z=(z_1, z_2, \cdots, z_n); z_1=0\}$. There exists a neighbourhood V of $D\cap \varphi^{-1}(H)$ such that h is a trace of a holomorphic function h' in V. We take another open subset U of D such that $\mathfrak{U}=\{U,V\}$ is an open covering of D and $U\cap \varphi^{-1}(H)=\phi$. We put

$$g = e^{h'/z_{1} \circ \varphi}$$

in $U \cap V$. Then $\{(g, U \cap V)\}$ is a 1-cocycle of \mathfrak{U} with value in \mathfrak{D}^* . Since $H^1(D, \mathfrak{D}^*) = 0$ implies $H^1(\mathfrak{U}, \mathfrak{D}^*) = 0$, there exist $f_1 \in H^0(U, \mathfrak{D}^*)$ and $f_2 \in H^0(V, \mathfrak{D}^*)$ such that

$$f_1/f_2 = e^{h'/z_{1} \circ \varphi}$$

in $U \cap V$. We put

$$F=f_1$$

in U and

$$F = f_2 e^{h'/z_1 \circ \varphi}$$

in $V-D\cap \varphi^{-1}(H)$. Then we have $F\in H^0(D-D\cap \varphi^{-1}(H), \mathbb{O}^*)$. Hence any function element obtained by $(z_1\circ \varphi^*)\log F\circ \lambda$ is analytically continued along any Jordan curve in $D^*-D^*\cap \varphi^{*-1}(H)$ for any branch of logarithmus. Since it can also be analytically continued at any point of D^* which is simply connected,

$$f=(z_1\circ\varphi^{\sharp})\log F\circ\lambda$$

gives a uniform and holomorphic function in D^{\sharp} if we take a fixed branch. Moreover we have

$$f=h\circ\lambda$$

in $D^{\sharp} \cap \varphi^{\sharp -1}(H)$.

Lemma 3. Under the assumption of Lemma 2, if each connected component of $D \cap \varphi^{-1}(H)$ is a domain of holomorphy over H for any (n-1)-dimensional analytic plane H in \mathbb{C}^n , then (D, φ) is a domain of holomorphy over \mathbb{C}^n .

Proof. Let $(D^{\sharp}, \varphi^{\sharp})$ be the universal covering manifold of (D, φ) . From Lemma 2 each point of ∂D^* has the frontier property in the sense of Bochner-Martin [2]. Hence there exists a holomorphic function f in D^* which is unbounded at each point of ∂D^{\sharp} . Let (D', φ') be the domain of holomorphy of f and $\lambda: D^{\sharp} \to D'$ be the canonical mapping. We shall prove that $(D^{\sharp}, \varphi^{\sharp})$ is a covering manifold of (D', φ') . Let $K = \{x = x(t); 0 \le t \le 1\}$ be a curve in D' such that $\lambda(y_0) = x(0)$ for $y_0 \in D^{\sharp}$. Let τ be the supremum of t' such that $\lambda(y(t)) = x(t)$ $(0 \le t \le t')$ for a curve $\{y = y(t); 0 \le t'\}$ $\leq t'$ in D^* with $y_0 = y(0)$. Obviously $0 < \tau$. Suppose that $\tau < 1$. There exists a semiopen curve $K_{\tau} = \{y = y(t); 0 \le t < \tau\}$ such that $\lambda(y(t)) = x(t) (0 \le t < \tau)$ and $y_0 = y(0)$. Then K_{τ} defines a point y_{τ} of ∂D^{\sharp} . Since f is unbounded at y_{τ} , the image $x(\tau)$ of y_{τ} by the canonical continuous extension of λ does not belong to D'. But this is a contradiction. Hence we have $\tau=1$. In the same way we can prove the existence of a curve $\{y=y(t); 0 \le t \le 1\}$ in D^* such that $\lambda(y(t))=x(t)$ $(0 \le t \le 1)$ and $y_0=y(0)$. Therefore $(D^{\sharp}, \varphi^{\sharp})$ is a covering manifold of (D', φ') . From Lemma 1 $(D^{\sharp}, \varphi^{\sharp})$ is a domain of holomorphy over C^n . Again from Lemma 1 (D, φ) itself is a domain of holomorphy over C^n .

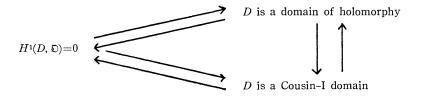
PROPOSITION 1. Any domain (D, φ) over C^2 satisfies $H^1(D, \mathbb{Q}^*)=0$ if and only if (D, φ) is a domain of holomorphy over C^2 with $H^2(D, \mathbb{Z})=0$.

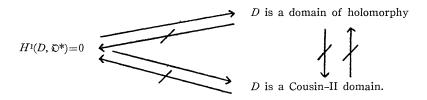
Proof. If (D, φ) satisfies $H^1(D, \mathbb{Q}^*)=0$, (D, φ) is a domain of holomorphy over C^2 from Lemma 3. Since $H^2(D, \mathbb{Q})=0$, from the exact sequence

$$H^1(D, Z) \rightarrow H^1(D, \mathbb{Q}) \rightarrow H^1(D, \mathbb{Q}^*) \rightarrow H^2(D, Z) \rightarrow H^2(D, \mathbb{Q}),$$

we have $H^2(D, Z)=0$. Conversely if (D, φ) is a domain of holomorphy over C^2 with $H^2(D, Z)=0$, we have $H^1(D, \mathbb{Q}^*)=0$ from the above exact sequence as $H^1(D, \mathbb{Q})=0$.

For a domain (D, φ) over C^2 we have the following diagram where $A \rightarrow B$ means that A implies B and $A \rightarrow B$ means that A does not imply B:





Serre [7] proved that $H^1(X, \mathbb{D})=H^2(X, Z)=0$ implies $H^1(X, \mathbb{D}^*)=0$ for any complex manifold X. $D=C^n-\{(0, 0, \cdots, 0)\}$ satisfies $H^1(D, \mathbb{D})=H^2(D, Z)=0$ from Scheja [6] for $n \ge 3$. Hence there exists a domain D in C^n with $H^1(D, \mathbb{D}^*)=0$ which is not a domain of holomorphy for $n \ge 3$. But we can prove the following proposition by induction with respect to $n \ge 3$ making use of Lemma 3.

PROPOSITION 2. Let (D, φ) be a domain over C^n with $H^1(D, \mathbb{Q}^*)=0$ such that $H^1(D \cap \varphi^{-1}(H), \mathbb{Q}^*)=0$ for any l-dimensional analytic plane H in C^n $(2 \le l \le n-1)$. Then (D, φ) is a domain of holomorphy over C^n .

REFERENCES

- [1] BEHNKE, H., UND K. STEIN, Analytische Funktionen mehrerer Veränderlichen zu vorgegebenen Null-und Polstellenflächen. Jber. Deut. Math. Verein. 47 (1937), 177-192.
- [2] BOCHNER, S., AND W. T. MARTIN, Several complex variables. Princeton Univ. Press (1948).
- [3] CARTAN, H., Les problèmes de Poincaré et de Cousin pour les fonctions de plusieures variables complexes. C. R. Paris 199 (1934), 1284-1287.
- [4] KAJIWARA, J., On Thullen's example of a Cousin-II domain. Sci. Rep. Kanazawa Univ. 9 (1964), 1-8.
- [5] OKA, K., Sur les fonctions analytiques de plusieures variables. IX Domaines finis sans point critiques intérieur. Jap. J. Math. 27 (1953), 97-155.
- [6] SCHEJA, G., Riemannsche Hebbarkeitssätze für Cohomologieklassen. Math. Ann. 144 (1961), 345-360.
- [7] Serre, J. P., Quelques problèmes globaux relatifs aux variétés de Stein. Coll. fonc. plus. var. Bruxelles (1953), 57-68.
- [8] Stein, K., Überlagerungen holomorph-vollständiger komplexer Räume. Arch. der Math. 7 (1956), 354-361.
- [9] THULLEN, P., Sur les deuxièmes problèmes de Cousin. C. R. Paris 200 (1935), 720-721.

DFPARTMENT OF MATHEMATICS, KANAZAWA UNIVERSITY.