CODING THEOREMS FOR THE COMPOUND SEMI-
CONTINUOUS MEMORYLESS CHANNELS

By Ken-1cHI YOSHIHARA

1. Summary.

The idea of “compound channels” was introduced by Blackwell, Breiman, and
Thomasian [1] and Wolfowitz [4], independently, and coding theorems and their
strong converses for the compound discrete memoryless channels were proved by
Wolfowitz, mainly. In [3], Kesten considered coding theorems and their weak
converses for the compound semi-continuous memoryless channels in the case where
the output alphabet is the set of integers.

In this paper, under some assumptions, we shall consider coding theorems and
their strong converses for the compound semi-continuous memoryless channels in
the case where the output space is the real line. In Section 2, we shall make
assumptions and in Sections 3 and 4, we shall prove some lemmas by which coding
theorems will be proved in the following sections. The results in this paper con-
tain, as a special case, Wolfowitz’s results in [6].

2. Assumptions.

In this paper, we shall consider the semi-continuous compound channels under
the following assumptions:

A1: Let S be defined by

(1) S= X [, 1)

where [11?, ] denotes a (bounded) closed interval of the real line, and ><l denotes
1=
the Cartesian products of these intervals.

A2 (a) For each seS, the channel (D}, Dy, h(-|-|s)) is the semi-continuous
memoryless channel where

(1) Dy=x {1, - a},
J=1

(ii) Dy= x Dy, D; being the real line,
J=1
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(iii) for u=(m>, -++, zn)€D, and v=(y1, -+, Yn)€D,,
(2) Holads)= I1 (o121l

where w(-|z|s) denotes the probability density for each xzef{l,---, @} and for each
seS.
(b) If so and s; are in S and s;3s,, then

(3) w(y|x|so)dy>0  for some zefl, -, a}.

S(y: w(ylz|sD*wylz]so)}

A3: (a) For all x and for almost all y, the partial derivatives

Qogewltlely) iy .
exist for every s=(s®, ..., sm)eS.
(b) Let s, be an arbitrary point in S. There exists a positive number p, in-
dependent of s, such that, for any se{s’: |s’—so|<p} NS, the following two conditions
are satisfied:
(1) There exists a bounded and integrable function F(y) for which

dw(y|x|s)

(4) Tas® =F(y) for almost all ¥

holds for all ¢ (i=1, ---, m) and for all z (z=1, ---, a).
(ii) There exists a measurable function H(y) for which

0 logs w(y|x|s)

FR =H(y) for almost all v

(5)

holds for all i (i=1, ---, m) and for all z (z=1, -+, @), and
(6) [” wwiatom@ar<e.

A 4: There exists a positive number B such that, for all 7 (0<¢=p), for all
seS and for all probability a-vector =,

(Y1|X1ls)
(7) E“)[expe tlog % 71'] < oo
where
(8) ¢Oulm= 4:2; ()| z)s).

A5: For any probability a-vector =,
(9) E®[{loge w(Y1|x|s)}b|n] = My< o0 for all ze{l, -+, a}
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3. Some Lemmas.

In this section, we shall prove some lemmas which are needed in later.

Lemma 1. For any se€S and z€{l, ---, a}, let

(10) Gs,  T)={y: |log. w(y|z|s)| = T}.
Then
1
(11 Sas:x(T) w(y|z|s)-|log. w(y|x]s)]dy=0(—ﬁ) for all z.

Similarly, for any se€S and ze{l, ---, a}, let
12) G (T)={y: |log: ¢ (|m)|=T}.
Then

13) S 4| m)|loge q<s><y|n>1dy=o(
Gg'(T)

1
T )

E®[{log, w(Vilz|s)}*|x]=M,  for all .

Proof. By A5, for any probability e-vector =,

Thus, for all »

P0Gy ) = -

and

[ wisls)-| g wleloldy
Gs,2(DD

Mz

= w(y|x|s)] log: w(y|xz|s)|dy

k= T]SG’S 2(B)—Gg, z(k+1)

= 3 (BHD)PO{Gy, o(k)—Gs, o(k+1)| 2}
k=[T1
> < (k+1)-M, M,
= 7 (B+1PS{Gs, (B)z}= 2, LS i
k=[T] k=[T]

Since by A5,
E®[{log, ¢*(Y1|m)}S|x] =M,

so, similarly, we have (13).
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LEMMA 2. Let soeS be arbitrary. Let n be a large number such that K2-¥7 <p,
where K is a constant. For any s€{s: |s'—so|<K2=V#} S and for any probability
a-vector ©

a4 |H(g ®|s)— H(q®*?|50)] =O(n~*2)
and
(15) zZ::1 () H(w(- | z|s])— Z::l 2(2)Hw(- | z|s0))|=0(m=*"2)

under assumptions from A1l to A5.
Proof. We shall prove (15), at first.

4z =|H(w(-|z|5))—H(w(- |z]s0))]

=" wtwtats togs wtwizlsray " _wtwielsn oge wtulaisoas|
a6)

=

w(y|z|s) log: w(y]x[s)dy—S w(y|z|so) log: w(ylxlso)dyl

Sasovx(ﬂ’/;/z) Gsgr (¥ n/2)

w(y|x|s)| log. w(ylxls)ldy+8 . )w(ylxlso)l logz w(y|z|s0)|dy

Gsg, (V0 /2

Saso,z( Y/
=Il +I2+I3.

By A 3(b), we have, for » sufficiently large,

Ilég __w(y|z|s)| loge w(y|x|s)— logs w(y|x|so)|dy
Gsgrx(¥Vn/2)

lew(y|x|s)—w(y|x|so)| - | loge w(y|x|so)|dy

Jav

Sng-x(V?/Z)

m |9 log. !
wiylals)| 3| B

1=1

éKZ-WS

G zx(Vn/2)
an

ow(y|x|s’")

3[ = m
+—*{2 K2 “"S PR

g

¥n peomva(®
muw(y|z|s)H(y)dy+ 5 K2-¥=\  mF(y)dy

Gs(,,x(«‘/ﬁlz){

ng-WSw
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=0(2- 7).

By Lemma 1,

18) Li=0(n""3).

On the other hand, by A 3(b), we can find a positive number K; such that Fy)=K;
for all ¥, and thus we have

w(ylxlso)-—mKlKZ‘ Yn
=w(y|z|s)=w(y|x|se)+mK K2~ V7.

Accordingly, for y€Gs,, ( ¥/n |2)
¥—
(19 log w(vlal)] =

for sufficiently large ». By (19) and Lemma 1, we have
(20) L=0(m""?).

Combining (17), (18) and (20), we conclude that

@n dz=0(n""").

Using (21), we have

Z w(2)Hw(- | z|s)) — Z]1 w(x)Hw(- | 2|s0))

lr=1

é

n(x)Ax =0(n""?).

|||_\j:

We can prove (14) by the same method as we proved (15), using Lemma 1 and
the following two inequalities:

aq<s’ a
%su'()y) as(w {§ ﬂ(x)W(ylx]s)]
(1)
<Z n(2) awgy(';f‘s) <Fy) for all i (i=1, ---, m);
(@ii) since, for any p(=0) and g(=0),
Pitpottpn _ b1 P2 P
a+gtFam T @ + Q2 et Gn

where 0/0=0, so
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0 log, ¢®
- Ogasé(li) @ |_ as(“ 10g2’2ﬂ(x)w(y|x|s)}
S 0
= 51 70)| 2552/ S omivialo= 5| S| futwials

dlog, W(y|$,3)

5@ =aH(y) for all i (i=1, ---, m).

a
-5
x=1

LeEmMMA 3. Let sc€S be arbitrary. Let n be a large number such that K2—¥7<p
wheve K is a constant. Furthermore, let u, be any n-sequence in D,’. Then, for
any se€{s’: |s'—so|<K2~¥7} S and for any BeB(D.'")

(22) [P {Bluo} — P {Bluo} | =O(n~""*)
under the assumptions from Al to AD.
Proof. Let uo=(x1, ---, xn) be fixed. Let
Fe={y: w(y|welso) =2~ Y2/},

Define F as the n-dimensional Cartesian product of Fy (k=1, ---, n), i.e., F=F/X--
X Fyn. Then

IP“’{Bluo}—P““{Bluo}|=lS h(viuo[s)dv—g A0 oto| So)dv
B B

(23)
gS _h(v!uols)dv+g _h(vluolso)dv—l—g | () 2t0| $) — B(|20] S0)| dV.
B F B, B~F

f\F '\
Now, if v=(y1, -+, ¥») is an n-sequence in F,

(24) w(Yr|Tk|So) =2V /2 for all & (k=1, -, n)
and thus, using A 3(b),

S |2(v|20]$)— h(v|2to] S0)|d¥
B~ F

h(|uols)
Sw A e

I

ﬁl {ow(ye|ze| So) +m KK 2~ ¥n)

(25) ={ oo —— 1l
ot 1 co(uel el so)
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g{(1+me2*m)n—1}S Rl ulse)dv
B~ F

=A+mKK2-V7l2m 1 =0(2~¥7)

for sufficiently large =, where K, is a constant such that F(y)<K, for all v.
On the other hand, if veF, then there is at least one % for which (24) does
not hold. Thus, using Lemma 1,

S h(vluolso)dv§s h(o|o] so)dv
B-F 7

'~

>

k=lg(yk: w(yglogls)<a— V7 /2

(26)

lIA

) w(’yklxlc[ So)AYx

w(Yr) x| So)dyr=n0(n"4*)=0(n"3).

IIA
M=

k lg {yg: logaw(yg| 2 ]s0) | >—V7'/2}

Similarly, using A3 and Lemma 1, we have
@0 S _ h@|uo|s)dv=0(n""").
~F

Combining (25), (26) and (27), we have (22). Thus the proof is completed.

4. Capacities and their approximations.

Let S,* be the set of all points s*€S whose j-th coordinate is of the form
(28) (s+ )PP ORIARD (=0, -, T =1, )

Define C and C,* as follows:

(29) C= max migl R(xls)
3 s€
and
(30) Cn*=max msin R(z|s*)
T s*e n"
where

w(Y1|X1]s)

R(ﬂs):E(s)[logz (_I(S)( Yllﬂ)

|
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Then, by Lemma 2, we have

) Co* — 57— §C§Cn*+—3ﬁ

for sufficiently large #. In Section 5, we shall show that C is the capacity for the
compound semi-continuous memoryless channel whose channel probability function
(c.pf.) is not known by the sender.

Similarly, define C and C,* as follows:

(32) C =mi§1 max R(z|s)
S€E T

and

(33) Co*= mgn max R(z|s*).
S*eSp* =@

Then, also by Lemma 2, we have
. ~ o2 N R g, M2
(34) Cn Yn =C=C*+ 7

for sufficiently large n. In Section 7, we shall show that C is the capacity for the
compound semi-continuous memoryless channel whose c.p.f. is known by the sender.

5. A coding theorem and its strong converse for the compound semi-continuous
memoryless channel with c.p.f. unknown to both sender aud receiver.

DerFINITION 1. A code (NN, @) for the compound semi-continuous memoryless
channel with c.p.f. unknown to both sender and receiver is a system

{(uly Al)r ) (uNy AN)}

which satisfies the following conditions:
(i) the u,; are n-sequences and the A, are disjoint sets in B(D.”), and
(i) as(wi)=a,i=1, ---, N; seS,

where
P‘S){Ailui} =1—a(u;).
In this section we shall prove a coding theorem and its strong converse for
the compound semi-continuous memoryless channel with c.p.f. unknown to both

sender and receiver.
(@) A coding theorem.
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To prove Theorem 1, we use the following two theorems.

TrHEOREM A. (Blackwell-Breiman-Thomasian) (cf. [1] and [7]) Let 6,0 and
a<l be arbitrary positive numbers. For the compound channel with T c.p.f.’s whose
cp.f. is unknown to both sender and rveceiver, there exists an (N, ) code such that

P T
s=1

where P is the probability distribution corresponding to p(u)h(v|u|s) and

h(v|u|s)

A<s>(0+0')=l(u, v). log, 7 )

g(i-{-o'}.

TueoreMm B. (Cramér) (cf. [2]) Let Zi, Z, --- be independent, identically dis-
tributed random variables with mean 0 and finite variance o2 Let v(x) be the dis-
tribution function of Z,'s, and

IIA

F7l(x)=P121—+l\/;—ﬁ x}.

We assume that there exists a positive constant A such that
R:S cvu(dy)  for |f<A

always exists. If x>1 and x=0mn"), then

— —Cox8/ /7 x_lc)g_n .___TL_
Fi—a)=0(—a) om0 LREN, oo It

where
(0] =———1~ ) ~22(] .
(x) o) e x

THEOREM 1. Let o, 0<a=1, be arbitrary. Under the assumptions from A1l to
A5, there exists a positive number K, such that, for sufficiently lavrge n, there exists
a code (n, N, @) for S with c.p.f. unknown to both sender and receivey, with

N> ZnE—Ko{/F‘.
Proof. Let L, be the number of elements of S,*. Then, by construction,
Lné([2V7]+1)m__<_2("’”DW.

Let # be a probability @-vector such that
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C.*=max min R(z|s)=min R(z|s).
x SESR* SESR*

Since, by A4 and by the fact that, for any =, and for any ¢ (—1=<¢=0)

7'c:|<ooy
we can conclude that, the above relation also holds, for any ¢ (|#|<min(1, p)), and
since

i

for all seS,*, so, from Lemma 3 and Theorem B, we have that, for any K>0
and #» sufficiently large

E‘*’[expe{t log: wl¥i| Xals) }

g (Yi|m)

C YilXi
Cu* =R(|s)= E(s{logz %

PO {ADC,*— K ¥ 0P} =P {ADnR(E|S) — K ¥nP)
(35
1 7 . log n -
= 21K ¥n Al [9'“"34-0(—%*)} < Me—K2 ¥/

for all seS;*, where P(-) denotes the probability distribution corresponding to
27 (z)w(ys| zls).

Let Ki>4(m+1) and put 0=nC.*—K, ¥n* and 0’=K; ¥/n?/2. Since, by (35)
7 PO{AS(O+0")} = L, Me K2 Vuwl2 < Vo~ E1/2—(m+ D) V7
SESR*

and
an-ol = 9—(K1/2—2(m+1)) ¥ *

for sufficiently large #, so

anz—o/_l_ Z Pw {A(s)(g.l_g')} = %

SESy*

for sufficiently large ». Applying Theorem A to this case, we conclude that, for
n sufficiently large, there exists a code (n, N, 3a/4) for the compound channel S,*
such that

N> % nCn*—K1 V7,

Now, we choose Ky>K;+M,. Then, combining the above result and Lemma
3, and using (31), we have the desired result.
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(b) Strong converse of the coding theorem.
Corresponding to Theorem 1, we shall show the strong converse. In order to
do this, we use the following theorem proved by Kemperman (cf. [7]):

TueoreM C (Kemperman) Let «, 0=a<l, be arbitrary. For any semi-con-
tinuous memoryless channel, theve exists a constant Ky>0 such that, for every n, a
code (n, N, &) satisfies

N< C+Ko V7,
Now, we state and prove the strong converse.

THEOREM 2. Let €>0 and a,0=a<l, be arbitravy. Under the assumptions
from A1 to A5, there exists a positive constant K, such that, for every n, any (n,
N, @) code for the compound semi-continuous memoryless channel S with c.p.f. un-
known to both sender and receiver satisfies

N< 2nC‘+Ko vu,

Proof. 1t is sufficient to prove the theorem for >0. Let = be any probability
a-vector and 5e€S such that

36) R@[3)<C+ 717

Since an (#, N, ) code for S is surely an (#, N, @) code for the semi-continuous
memoryless channel with (single) c.p.f. w(-|-|s), so, by Theorem C and (36), we
have the desired result.

6. A coding theorem and its strong converse for the compound semi-con-
tinuous memoryless channel with c.p.f. known to the receiver but not to the sender

DeFINITION 2. For each s in S, let T be a code (#, N, a) for the semi-conti-
nuous memoryless channel with (single) c.p.f. w(-|-|s), thus,

Ts={(w1, A1 (5)), *+, (un, An(5))}

where u;, i=1, ---, N, is the same for all s, but A;(s) is a function of s and A(s)
~Aj(s)=¢ for each s in S. A set of codes T%, seS, is called a code (n, N, a) for
the compound semi-continuous memoryless channel with c.p.f. known to the receiver
but not to the sender.

Now, we shall consider a coding theorem and its strong converse for the com-
pound semi-continuous memoryless channel with c.p.f. known to the receiver but
not to the sender. Following the same method in [7], we have
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THEOREM 3. Let >0 and a, 0<a=1, be arbitrary. Under the assumptions
Jrom A1 to AD, there exists a positive constant K, such that, for sufficiently lavge
n, theve exists a code (n, N, a) for the compound semi-continuouns memoryless channel
with c.p.f. unknown to the receiver but not to the sender with

N> 2n€‘—Ko b

TuEOREM 4. Let o, 0=a<1, be arbitrary. There exists a positive constant K,
such that, for every n, any code (n, N, a) for the compound semi-continuous memoryless
channel with c.p.f. known to the veceiver but not to the sender satisfies

N< 2nC‘+Ko’ va,
7. A coding theorem and its strong converse for the compound semi-con-
tinuous memoryless channel with c.p.f. known to the sender but not to the receiver.

DerFINITION 3. For each s in S, let 7y be a code (#, N, a) for the semi-con-
tinuous channel with (single) c.p.f. w(-|-|s), thus:

Ts,= {(ul(s)) Al)) Tty (uN(S)) AN)})
here ui(s) depends on s but A, is the same for all s. A set of codes 7V, seS,
is called a code (x, N, a) for the compound semi-continuous memoryless channel

with c.p.f. known to the sender but not to the receiver.

In this case, to prove that C is the capacity, we need the following theorem
proved by Wolfowitz.

TaeorREM D (Wolfowitz) (cf. [5] and [7]) Let 6, 0/, and a<1 be arbitrary positive

number. For the compound channel with T c.p.f.s whose c.p.f. is known only to the
sender, there exists an (N, @) code such that

0 T

N> —Zf[a—TZ-Z“”— 1 P@ (BB + 0/)}]
s=1

where P(+) is the probability distribution corresponding to p(u|s)h(v|u|s), and

h(v|uls)
SD(u)$)h(v|u|s)A(du)

B®@+0")= {(u, v): log, L6046 }

THEOREM 5. Let ¢>0 and a, 0<a=1, be arbitrary. Under the assumptions
from A1 to A5, there exists a constant K, such that for sufficiently large n there

exists an (n, 2"—KCo¥% o) for the compound semi-continuous memoryless channel with
c.p.f. known to the sender but not to the receiver.
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Proof. We shall lean heavily on the proof of Theorem 1. For each seS, define
n(s) to be a probability a-vector for which

max R(z|s)=R(z(s)|s)=C(s).

Since
M)( Y1 |X1|S)

= 4 — ST
C*=C(s)=E [logg g (Y1|a(s)

n(s)] for all seSy*,

so, from Lemma 3 and Theorem B, we have that, for any K>0 and » sufficiently
large,

PO{ADUC,— K ¥n¥)} =P {ADnC(s)— K ¥/n2)}

1

— log n
= V2nK-§n

Vn

for all seS,*, where P®(.) denotes the probability distribution corresponding
5-m(zs]8)w(y |25 s)- _

Thus, putting Ko >4(m+1), 0=nC.*— Ky §%* and 0’ =K, ¥/n?/2, and using Theorem
D, we have the theorem.

.e—-K2Vu /2 ! e-cu{s_,_o( > , <Me—K2¥ul2

THEOREM 6. Let ¢>0 and a, 0=a<l, be arbitrary. Under the assumptlions
Srom A1 to A5, there exists a positive constant K,' such that, for every n, any
(n, N, @) code for the compound semi-continuous memoryless channel with c.p.f.
known to the sender but not to the rveceiver satisfies

N< onC+Ko’' V7|

Proof. Apply Theorem C to the individual code 7y, each of which has the
capacity C(s) and we have the theorem using the fact that C is the infinimum of
the capacities C(s), s€S.

8. Applications.

As a special case, we shall consider the next compound semi-continuous
memoryless channel which was considered by Wolfowitz in [6].

Let the input alphabet consist of the % (real) numbers ay, ---, @x. Let #o=(x;,
.-+, Tn) be any #u-sequence sent, each x; being one of ai, -+, @, and let

0(tto)=(Y1(tho), -+, Yn(tt0))

be a sequence of independent random variables received, where Y,(#,)—=z, has a
Gaussian distribution with mean g and variance ¢2. Let /i and /: be bounded closed
intervals of the real line; and J; is to contain positive numbers only. The para-
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meters g and o? lie, respectively, in /i and /s.
In this case all the assumptions from A1 to A5 are satisfied. Thus, if we put

37 Ci=max min R(z(y, ¢%))=max min R(z|0, ¢%)),
x  (,02)EJ1XJ2 z a2€J2
and
(38) Ci= min max R(z|(x ¢%)=min max R(z|(0, 4?)),
(w,0D€EJ1XJ2 = 2€J2 =«

the same results of Theorems 1 to 6 are true, and they are somewhat stronger
than Wolfowitz’s ones.
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