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1. Summary.

The idea of " compound channels " was introduced by Blackwell, Breiman, and
Thomasian [1] and Wolfowitz [4], independently, and coding theorems and their
strong converses for the compound discrete memoryless channels were proved by
Wolfowitz, mainly. In [3], Kesten considered coding theorems and their weak
converses for the compound semi-continuous memoryless channels in the case where
the output alphabet is the set of integers.

In this paper, under some assumptions, we shall consider coding theorems and
their strong converses for the compound semi-continuous memoryless channels in
the case where the output space is the real line. In Section 2, we shall make
assumptions and in Sections 3 and 4, we shall prove some lemmas by which coding
theorems will be proved in the following sections. The results in this paper con-
tain, as a special case, Wolfowitz's results in [6],

2. Assumptions.

In this paper, we shall consider the semi-continuous compound channels under
the following assumptions:

A 1: Let S be defined by

ra

( i ) s= x [Tlv}=ι

where [r^\ γ^} denotes a (bounded) closed interval of the real line, and X denotes
.7 = 1

the Cartesian products of these intervals.

A2: (a) For each seS, the channel (D'n, D'ή, h( \ \s)) is the semi-continuous
memoryless channel where

(i) D'n= x {!,-,*},
J=l

n
(ii) D'ή= X DΪ, DΪ being the real line,

,7=1
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(iii) for u=(xι, •••, xn)GD'n and v=(yίt •••, #«)€/);,',
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( 2 )
.7=1

where w( \x\s) denotes the probability density for each #€{1, • • • , a] and for each
seS.

(b) If So and Si are in S and Sι^s0, then

(3) \ w(y\x\So')dy>Q for some #€{1, • • - , # } .

A3: (a) For all x and for almost all y, the partial derivatives

3 Iog2 w(y\x\s)

exist for every s=(s(1), • • • , sCm))eS.
(b) Let So be an arbitrary point in S. There exists a positive number p, in-

dependent of So, such that, for any se{sr: |s ;—s0 |<p} (ΊS, the following two conditions
are satisfied:

( i ) There exists a bounded and integrable function F(y) for which

(4)
dw(y\x\s)

ds™
for almost all y

holds for all i (/=!, •••, m) and for all x (x=l, •••, a).
(ii) There exists a measurable function H(y) for which

(5) for almost all y

holds for all i (z=l, •••, m) and for all x (x=I, •••, a\ and

(6) Γ w(y\x\s)H(y)dy<oo.
J -00

A 4: There exists a positive number /3 such that, for all t(Q<t^β), for all
s€S and for all probability a-vector π,

(7)

where

(8)

λ expe

w (Y, |
π <oo

A 5: For any probability #- vector π,

(9) for all
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3. Some Lemmas.

In this section, we shall prove some lemmas which are needed in later.

LEMMA 1. For any seS and #€{1, • • • , a}y let

(10) G,,^T)={y: \log2w(y\x\s)\^T}.

Then

(11) \ w(y\x\s) -\\Qgz w(y\x\s)\dy=θ(-7Fr) for all x.
JGs>xm W /

Similarly, for any seS and a?€{l, ••• , a}, let

(12) G,'(T)={y:

Then

(13)

Proof. By A 5, for any probability #- vector TT,

E^[{\og2w(Y1\x\s)}6\π]^Mtί for all x.

Thus, for all x

and

\ w(y\x\s) \logzw(y\x\s)\dy
JGg>x(T)

w(y\x\s)\log2w(y\χ\s)\dy

(k+l)P^{Gs,x(k)-Gs,x(k+l)\x}

,^)|»}^ Σ

vSince by A 5,

so, similarly, we have (13).
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LEMMA 2. Let s0eS be arbitrary. Let n be a large number such that K2r^n <p,
where K is a constant. For any se{s': \sf—
a-vector π

(14)

and

(15)

under assumptions from A 1 to A 5.

Proof. We shall prove (15), at first.

Δx=\H(w( \x\s}}-H(w( \x\s«})\

and for any probability

π(x}H(w( |φ|))-

(16)

Moo poo

= \ w(y\x\s) Iog2 w(y\x\s)dy — \ w(y\x\sQ) Iog2 w(y\x\So)dy
IJ-oo J-oo

Γw(y\x\s} Iog2 w(y\x\s)dy— \ w(y\x\So) Iog2 w(y\x\s0)dy
s0.a;(^»/2) Jί?so'Λ;(^/2)

\ w(y\x\s)\ log2^(?/
JGSO,X(VW/V

By A3(b), we have, for ^ sufficiently large,

w(y\x\s)\ )— \Qgzw(y\x\sύ)\dy

-\ \w(y\x\s)—w(y\x\so)\ {log* w(y\x\sQ)\dy

m r) Incr^ ιn(ιι\ v\ ?'\\,
\dy

(17)

mF(y)dy
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By Lemma 1,

(18) 73-O(^-4/3).

On the other hand, by A 3(b), we can find a positive number K\ such that
for all yt and thus we have

Accordingly, for yeGgQ, χ( %/n /2)

(19) |log2

for sufficiently large n. By (19) and Lemma 1, we have

(20) I2=0(n-4/*).

Combining (17), (18) and (20), we conclude that

(21) Δ*=O(n-*'*).

Using (21), we have

Σ π(x)H(w( \x\s)) - Σ π(x)H(w(-\x\So))

We can prove (14) by the same method as we proved (15), using Lemma 1 and
the following two inequalities:

ds™
π(x)w(y\x\s)

(i)

^ Σ
dw(y\x\s)

(ii) since, for any A(^0) and g*(^0),

\-pn ^ Pi . p2 _____ n

\-qn

 = q\ q* qn

for all i (i=l, —,m)\

pn

where 0/0=0, so
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d ,
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< V τr(r>
= / I U\ Λ'J

= Σ

dw(y\x\s) dw(y\x\s)
w(y\x\s)

8s™
for all i (f=l, •••, w).

LEMMA 3. Let 50eS be arbitrary. Let n be a large number such thatK2~^n<p
where K is a constant. Furthermore, let UQ be any n-sequence in Όn

r Then, for
any ss{s': \sf-sQ\<K2r^}^S and for any

(22) |P°° {B\u,} -P^ {B\u,} I =O(n~1

under the assumptions from A 1 to A 5.

Proof. Let UQ=(XI, •••, χn) be fixed. Let

Fk={y:

Define Fas the ^-dimensional Cartesian product of Fk(k=l, ~,ri), i.e., F=FιX
χFn. Then

= \( h(v\u«\s)dv-( h(υ\u*\s*)dv\
\JB JB I

(23)

^\ _ Λ(^l^o|5)^+\ _Λ(^|«o|50)^+\ \h(v\Uo\s)—h(v\Uo\s0)\dv.

Now, if v=(yι, ~, yn) is an ^-sequence in F,

(24) w(?/A;|xA;|5o)^2""^^/2 for all k (&—1, •••, w)

and thus, using A3(b),

Γ= \
JB

-1 dv

(25) A(^|«o|5o)

Π
fc=l -1

Π
k=l

dv
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h(v\u\sύ)dv

for sufficiently large n, where Kι is a constant such that F(y)^Kι for all y.

On the other hand, if vsF, then there is at least one k for which (24) does
not hold. Thus, using Lemma 1,

(26) — Σ\ S-/ Λ w(yk\Xk\sϋ)dyk

n p

-SLi

Similarly, using A3 and Lemma 1, we have

(27) C _ A(φ0|s)rfι>=O(»-1/8).

Combining (25), (26) and (27), we have (22). Thus the proof is completed.

4. Capacities and their approximations.

Let Sn* be the set of all points s*eS whose j-th coordinate is of the form

(28)

Define C and Cn* as follows:

(29) C= max min R(π\s)

and

(30) Cn*=max min R(π\s*)
π S*€Sn*

where

•}
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Then, by Lemma 2, we have

(31) ^

for sufficiently large n. In Section 5, we shall show that C is the capacity for the
compound semi-continuous memoryless channel whose channel probability function
(c.p.f.) is not known by the sender.

Similarly, define C and Cn* as follows:

(32) C=min max R(π\s)
s€S π

and

(33) Cn*= min max R(π\s*).
S*ζSn* π

Then, also by Lemma 2, we have

/ O Λ \ /* * ^2

(34) Cκ*-

for sufficiently large n. In Section 7, we shall show that C is the capacity for the
compound semi-continuous memoryless channel whose c.p.f. is known by the sender.

5. A coding theorem and its strong converse for the compound semi-continuous
memoryless channel with c.p.f. unknown to both sender aud receiver.

DEFINITION 1. A code (N, a) for the compound semi-continuous memoryless
channel with c.p.f. unknown to both sender and receiver is a system

{(«ι, Aι\ ••-, (UN, AN}}

which satisfies the following conditions:
( i) the Ui are ^-sequences and the Aι are disjoint sets in SB(ZV), and
(ii) as(ut)^a, i=l, •••, N;

where

In this section we shall prove a coding theorem and its strong converse for
the compound semi-continuous memoryless channel with c.p.f. unknown to both
sender and receiver.

(a) A coding theorem.
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To prove Theorem 1, we use the following two theorems.

THEOREM A. (Blackwell-Breiman-Thomasian) (cf. [1] and [7]) Let θ, θf and
α<l be arbitrary positive numbers. For the compound channel with T c.p.f. 's whose
c.p.f. is unknown to both sender and receiver, there exists an (N, a) code such that

where P(s) is the probability distribution corresponding to p(u)h(v\u\s) and

THEOREM B. (Cramer) (cf. [2]) Let Zi, Z2, ••• be independent, identically dis-
tributed random variables with mean 0 and finite variance σ2. Let v(x) be the dis-
tribution function of Zn's, and

We assume that there exists a positive constant A such that

R=Γ e'vvtfy) for \t\<A
J— 00

always exists. If x>l and x=O(n1/6), then

where

THEOREM 1. Let a, 0<α^l, be arbitrary. Under the assumptions from A l to
A 5, there exists a positive number KQ such that, for sufficiently large n, there exists
a code (n, N, a) for S with c.p.f. unknown to both sender and receiver, with

Proof. Let Ln be the number of elements of Sn*. Then, by construction,

Lw^([2^+l)m^2Cw+lW.

Let π be a probability ^-vector such that
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Cri*=max min P(τr|s)=min R(π\s).

Since, by A 4 and by the fact that, for any π, and for any t (— l^^

we can conclude that, the above relation also holds, for any t (\t\<min(l, β)), and
since

for all seSn*, so, from Lemma 3 and Theorem B, we have that, for any K>0
and n sufficiently large

(π\S) -K ty

(35)

for all s€Sw*, where PCs)( ) denotes the probability distribution corresponding to
ΠΓ=ιπ(^)^(^l^|5).

Let AΊ>4(w+l) and put θ=nCn*-Kι ^/^ and θ'=Kι tyή*/2. Since, by (35)

Σ PCs){^
β€Sn*

and

for sufficiently large w, so

for sufficiently large n. Applying Theorem A to this case, we conclude that, for
n sufficiently large, there exists a code (n, N, 3cr/4) for the compound channel £„*
such that

Now, we choose Kύ>Kι+Mι. Then, combining the above result and Lemma
3, and using (31), we have the desired result.
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(b) Strong converse of the coding theorem.
Corresponding to Theorem 1, we shall show the strong converse. In order to

do this, we use the following theorem proved by Kemperman (cf. [7]):

THEOREM C (Kemperman) Let a, 0^α<l, be arbitrary. For any semi-con-
tinuous memoryless channel, there exists a constant K0>Q such that, for every n, a
code (n, N, α) satisfies

Now, we state and prove the strong converse.

THEOREM 2. Let e>0 and a, 0^«<1, be arbitrary. Under the assumptions
from A 1 to A 5, there exists a positive constant K0 such that, for every n, any (n,
N, a) code for the compound semi-continuous memoryless channel S with c.p.f. un-
known to both sender and receiver satisfies

Proof. It is sufficient to prove the theorem for α>0. Let π be any probability
#- vector and JςS such that

(36) £(τr — 7=-.
\/n

Since an (n, N, a) code for S is surely an (n, N, a) code for the semi-continuous
memoryless channel with (single) c.p.f. w( \ \~s), so, by Theorem C and (36), we
have the desired result.

6. A coding theorem and its strong converse for the compound semi-con-
tinuous memoryless channel with c.p.f. known to the receiver but not to the sender

DEFINITION 2. For each s in S, let Ts be a code (n, N, a) for the semi-conti-
nuous memoryless channel with (single) c.p.f. w( | |s), thus,

TS={(U!, A(s)), -., (UN, AN(s))}

where Ui, i=l, ••-, N, is the same for all s, but Ai(s) is a function of s and Aι(s)
^Aj(s)=<f> for each s in S. A set of codes Ts, ssS, is called a code (n, N, a) for
the compound semi-continuous memoryless channel with c.p.f. known to the receiver
but not to the sender.

Now, we shall consider a coding theorem and its strong converse for the com-
pound semi-continuous memoryless channel with c.p.f. known to the receiver but
not to the sender. Following the same method in [7], we have
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THEOREM 3. Let ε>0 and α, 0<α^l, be arbitrary. Under the assumptions
from A 1 to A 5, there exists a positive constant KQ such that, for sufficiently large
n, there exists a code (n, N, a) for the compound semi- continuous memoryless channel
with c.p.f. unknown to the receiver but not to the sender with

THEOREM 4. Let a, 0^α<l, be arbitrary. There exists a positive constant K0'
such that, for every n, any code (n, N, a) for the compound semi- continuous memoryless
channel with c.p.f. known to the receiver but not to the sender satisfies

7. A coding theorem and its strong converse for the compound semi-con-
tinuous memoryless channel with c.p.f. known to the sender but not to the receiver.

DEFINITION 3. For each s in S, let TV be a code (n, N, a) for the semi-con-
tinuous channel with (single) c.p.f. w( \ \s), thus:

here Ut(s) depends on 5 but Aι is the same for all 5. A set of codes TV,
is called a code (n, N, a) for the compound semi-continuous memoryless channel
with c.p.f. known to the sender but not to the receiver.

In this case, to prove that C is the capacity, we need the following theorem
proved by Wolfowitz.

THEOREM D (Wolfowitz) (cf. [5] and [7]) Let 0, 0', and α<l be arbitrary positive
number. For the compound channel with T c.p.f. 's whose c.p.f. is known only to the
sender, there exists an (N, a) code such that

N> ^\a-T* 2-θf- Σ P^{B<S\Θ + 00}]
1 L «=ι J

where PCs)( ) is the probability distribution corresponding to p(u\s)h(v\u\s\ and

THEOREM 5. Let e>0 and a, 0<α^l, be arbitrary. Under the assumptions
from A 1 to A 5, there exists a constant K0 such that for sufficiently large n there
exists an (n, 2n~κ°°^, a) for the compound semi- continuous memoryless channel with
c.p.f. known to the sender but not to the receiver.
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Proof. We shall lean heavily on the proof of Theorem 1. For each seS, define
π(s) to be a probability ^-vector for which

max R(π 1 5) = R(π(s) \ s) = C(s).
π

Since

for all*(*)]

so, from Lemma 3 and Theorem B, we have that, for any K>Q and # sufficiently
large,

= */2π K tyn

for all seSn*, where PCs)( ) denotes the probability distribution corresponding

^ _
Thus, putting K0> 4(w+l), 0=nCn*-KQ ^Jri2- and 0'=/sΓ0 V«*/2, and using Theorem

D, we have the theorem.

THEOREM 6. Let ε>0 <md α, 0^α<l, be arbitrary. Under the assumptions
from A l to A 5, #z0r£ exists a positive constant KQ' such that, for every n, any
(n, N, a) code for the compound semi- continuous memoryless channel with c.p.f.
known to the sender but not to the receiver satisfies

Proof. Apply Theorem C to the individual code 2V, each of which has the
capacity C(s) and we have the theorem using the fact that C is the infinimum of
the capacities C(s),

8. Applications.

As a special case, we shall consider the next compound semi-continuous
memoryless channel which was considered by Wolf o wit z in [6].

Let the input alphabet consist of the k (real) numbers aίf •••, ak. Let u0 = (xι,
•••, xn) be any ^-sequence sent, each xj being one of aίt •••, a*, and let

be a sequence of independent random variables received, where YJ(UQ)—XJ has a
Gaussian distribution with mean μ and variance σ2. Let Λ and /2 be bounded closed
intervals of the real line; and /2 is to contain positive numbers only. The para-



CODING THEOREMS FOR MEMORYLESS CHANNELS 43

meters μ and σ2 lie, respectively, in Λ and /2.
In this case all the assumptions from A1 to A 5 are satisfied. Thus, if we put

(37) Ci^max min R(π(μ, σ2)) = max mm R(π\φ, σ2)),

and

(38) δι= min max R(π\(μ, <72))=min max R(π\(Q, <τ2)),

the same results of Theorems 1 to 6 are true, and they are somewhat stronger
than Wolfowitz's ones.

ACKNOWLEDGEMENT. The author is indebted to Prof. M. Udagawa, Tokyo
University of Education, for suggesting the problem and for his encouragement
and guidance.

REFERENCES

[ 1 ] BLACKWELL, D., L. BREIMAN, AND A. J. THOMASIAN, The capacity of a class of
channels. Ann. Math. Stat. 30 (1959), 1229-1241.

[ 2 ] CRAMER, H., Sur un nouveau theoreme-limite de la theorie des probabilites,
Actualites Sci., Hermann, Paris (1938).

[ 3 ] KESTEN, H., Some remarks on the capacity of compound channels, in the semi-
continuous case. Information and Control 4 (1961), 69-184.

[4] WOLFOWITZ, J., Simultaneous channels. Arch, Rational Mech. Anal. 4 (1960),
371-386.

[ 5 ] WOLFOWITZ, J., On coding theorems for simultaneous channels. Trans. IRE.
Prof. Group on circuit theory, CT-7 (1960), 513-516.

[ 6 ] WOLFOWITZ, J., On channels in which the distributions of error is known only
to the receiver or only to the sender. Information and decision processes 178-
182 McGraw-hill Book Co., Inc., New York (1960).

[ 7 ] WOLFOWITZ, J., Coding theorems of information theory, Springer, Berlin (1961).

FACULTY OF ART EDUCATION, YOKOHAMA NATIONAL UNIVERSITY.




